
TOWARDS INCREASED POWER EFFICIENCY IN LOW END

EMBEDDED PROCESSORS: CAN CACHE HELP?

Muhammad Yasir Qadri*, Klaus D. McDonald-Maier
†

Department of Computing and Electronic Systems

University of Essex, CO4 3SQ, UK

Email: yasirqadri@acm.org *, kdm@essex.ac.uk
†

Keywords: Cache overhead analysis, Cache mathematical

models.

Abstract

Embedded processors are often characterized by limited

resources and are optimized for specific applications. A rising

number of battery powered applications has driven a trend

towards increased energy efficiency sometimes even traded

with performance. Particularly, lower power and low

specification embedded processors lack on-chip cache

memories. This is mainly in order to avoid the higher energy

overhead a cache structure would pose in an embedded

processor. This paper proposes energy and throughput models

which can be used to analyze energy and time overhead for a

particular application due to introduction of a data cache

architecture in a previously non-cached system or

alternatively can be used in reconfigurable systems for cache

overhead analysis.

 1 Introduction

With the growing interest in mobile communication devices,

battery operated systems and wireless sensor networks in

particular, there is an increasing focus on power efficient

processor architectures that provide a greater throughput to

power consumption ratio. Most low power / low specification

8 and 16 bit embedded processors such as the MSP430 [1],

AVR [2], PIC [3], and MAXQ [4], typically lack dedicated

on-chip cache memories. This is mainly due to higher energy

overhead a cache structure poses on an embedded processor.

Related research has shown that caches may consume up to

50% of a microprocessors’ total energy [5-7]. This paper

presents energy and throughput models which can be used to

analyze energy and time overhead due to introduction of a

data cache architecture in a previously non-cache system. The

model can also be used in reconfigurable processors to

appraise the cache overheads. The models analyze the cache

overhead based on a particular application running on the

system, in that way it is possible to identify if adding a data

cache is feasible for a particular application or not. This is

particularly important for embedded systems which have to

run a single (or a few) application(s) for its life duration. The

models are independent of the specific cache configuration

used; however they do utilize inputs that may vary according

to cache configurations.

The remainder of this paper is divided into five chapters.

After the review of related work in the next chapter, the cache

energy and throughput models are presented. In chapter 4,

experimental setup is detailed and in the remaining two

chapters results are discussed and a conclusion is made.

2 Related Work

CACTI [8] is an open-source tool that has been widely used

for cache energy and timing analysis. It provides estimates

that are within 10% accuracy of the more detailed HSpice

results for the circuits chosen, and is computationally simpler

and faster than HSpice itself. However, it does not take

account of hit rate information as it is not a trace driven

simulator. Xipeng et al. [9] provide a framework to predict

miss rate based on particular software and cache

configurations. This model has shown accuracy within

2 percent of the hit rate for set associative caches on a set of

floating-point and integer programs, using array and pointer-

based data structures. This model can be utilized at an

advanced level to provide accurate hit rate information as an

input to the cache overhead models presented in this paper.

Based on the same principles a tool named RDVIS [10, 11]

was developed to analyze a program by plotting temporal

locality or reuse distance information. It utilizes cluster

analysis of basic block vectors to hint the user to optimize the

code. This tool is particularly useful to profile a piece of code

to minimize miss rate for a given size of cache. Chuanjun

et al. [5] have presented the idea of a configurable cache.

They also have presented an energy model of cache that gives

dynamic and static energy consumption in the cache system.

Milind et al. [12] have also presented a very detailed model of

cache energy consumption. Their analytical models use the

inputs such as hit/miss counts, fraction of read/write requests

and assume stochastical distributions for signal values. As per

their claim, the analytical models for conventional caches

were found to be accurate within 2% error. However, their

analytical models over–predict the dissipations of low–power

caches by as much as 30%. Wen-Tsong et al. [13] present

algorithms to find optimal memory configuration based on

cache size, the number of processor cycles and the energy

consumption.

mailto:yasirqadri@acm.org
mailto:kdm@essex.ac.uk

Most of the cache energy models presented in the work

discussed earlier require more accurate information of energy

consumed in a hit and miss. However, the cache energy

model presented in this paper provides estimates of energy for

a cache organization using per cycle energy consumption

values on a complete application which is more useful to

analyze the overall impact of cache in terms of energy and

throughput.

3 Cache energy and throughput models

As discussed above, the models that are presented here

estimate the energy consumption and throughput of a

complete application; which in fact would be helpful to

analyze the overhead caused by a data cache. The overhead

can be calculated as a ratio of energy or throughput in a cache

based architecture to the one in a non-cache architecture. The

two models are presented below.

3.1 Energy Model

The energy model takes into account the total energy

consumed by the cache structure for all the cache read and

write accesses, and cache to memory accesses along with the

energy consumption as cache miss penalty. Here the total

energy consumption is calculated as the sum of all the earlier

mentioned energy components with the energy consumed in

non-memory access instructions.

 (1)

where

 = Total energy consumption of the code [J],

 = Energy consumed by cache read accesses [J],

= Energy consumed by cache write accesses [J],

 = Energy consumed by cache to memory accesses [J],

 = Energy miss penalty [J] and

 = Energy consumed by other instructions (which do not

require memory access) [J].

The individual components, are further defined as

, (2)

, (3)

, (4)

, (5)

where

 = Total number of read accesses,

 = Total number of write accesses,

 = Energy consumed per read access [J],

 = Energy consumed per write access [J],

= Energy consumed per data memory access [J],

= Per cycle idle mode energy consumption of the

processor [J],

 = Miss ratio (in percentage) and

= Miss penalty (in number of stall cycles).

3.2 Throughput Model

Although throughput is often defined in MIPS; equation (6)

can be used to find the amount of time an application will

take to execute. Assuming cache to memory access time is

overlapping the cache access time (due to concurrent nature

of the two processes); it is possible to express that

 (6)

where

 = Total time taken by an application [Sec],

 = Time taken for cache operations [Sec],

 = Time saved from memory operations [Sec],

 = Time miss penalty [Sec] and

 = Time taken while executing other instructions (which

do not require memory access) [Sec].

Furthermore

 and

(7)

 (8)

where

 = Time taken per cache access [Sec] and

= Cycle time [Sec].

Figure 1: Essex AVR Code Profiler output

4 Experimental Setup

To analyze the proposed models, a simulation environment

was created that uses an AVR core (ATmega128 [14]) to

implement the models for a non-cache microcontroller,

AVRORA [15] was used to get the coarse-grained code

profile and cycle counts, and a cache modeler (CACTI 4.2

[8]) was used to obtain data for cache access time and energy

per access information. As the proposed models give the

information per application basis, a benchmark application

(i.e. BasicMath) from MiBench [16] was chosen, which is an

open-source embedded system specific benchmark suit. The

BasicMath application is a part of automotive and industrial

control suite of MiBench. This application performs

mathematical calculations such as cubic function, integer

square root and angle conversions from degrees to radians.

The input data is a fixed set of constants. This application was

particularly chosen because of it relevance to a wide range of

automotive, industrial and sensor data processing

applications.

As discussed earlier, UCLA’s AVRORA [15] was used to

extract code profile information. However this tool does not

give instruction level code profile so that instructions

particular to memory access could be separated. To overcome

this problem a software named Essex AVR Code Profiler (see

Figure 1) was created, that gives an in-depth instruction level

profile of a particular application, which is vital for the

presented models based cache analysis. The software uses

coarse-grained code profile output of the AVRORA simulator

along with the object dump file to generate a fine-grained

instruction level profile of the code (see Figure 2). The Object

Dump utility is a part of AVR-gnu tool chain. Figure 2, shows

a detailed distribution of instructions into several classes like

Calls and Returns (CR), Push/Pop (PP), data memory store

(DMS), program memory store (PMS), data memory load

(DML), program memory load (PML), branch (BRN), Jumps

(JMP) and miscellaneous instructions (Misc.) based on the

MiBench benchmark suite. As per focus of this study on data

cache, instructions regarding to data memory access can

easily be identified. The Branch and Jump information

present in the output data could be used to identify potential

stalls, for pipeline and I-cache operations if introduced.

Figure 2: Instruction usage in percentage of cycles for

BasicMath application.

Now using CACTI cache modeler [8], information regarding

to cache access time and read/write energy consumption per

access for a direct mapped cache, was recorded. The

parameters given in Table 1 were used to simulate the cache

structure.

A simplified single block direct mapped cache was selected

for the experiment due to its highest potential throughput and

lowest energy consumption per access. However it is

important to note that a direct mapped cache has a lowest hit

rate compared to other cache configurations [17]. The cache

size was chosen 512 bytes to be at realistic ratio with

ATmega128 on-chip memory i.e. 4K bytes. The fabrication

technology was chosen to be 0.35µm, in line with technology

the ATmega128 is manufactured [18].

5 Results

The cache model given to CACTI resulted in access time of

2.12nS, a total dynamic read and write energy of

0.0795701nJ, and 0.0246899nJ respectively. Due to the

absence of ATmega128 memory access energy consumption

data, the cache to memory access energy () was

conservatively assumed to be equal to per cycle energy

consumption of the controller i.e. 3.75nJ at 3V and 4MHz

[14]. The cache miss penalty was assumed to be 10 cycles.

The results from Essex AVR Code Profiler, showed that the

BasicMath application comprises a total of 91087797

memory read, 46282571 memory write operations; assuming

all program memory load (PMLoad) operations as data

memory load operations. This assumption is made keeping in

view of practical aspect where the constants used in the

benchmark application would be replaced by variables in the

data memory.

Based on these models of energy and throughput it was found

that for miss rates less than 20% a significant increase in

throughput with less energy consumption can be observed

(see Figure 3). It is interesting to note that the overall power

consumption of the device remains higher than the actual

power consumption (for a non-cache ATmega128) i.e.

15 mW. The power consumption tends to decrease with the

increase in miss rate, and for miss rate beyond 40%, it drops

even lower than the actual power consumption (see Figure 4).

The power consumption statistics may mislead to a

conclusion that higher miss rates result in greater power

efficiency. It must be noted that, power consumption is a ratio

of energy consumption to the time. If the time overhead is

increased with same amount of energy, power consumption

tends to decrease. That is why Performance/Watt (e.g.

0

10

20

30

40

50

60

70

80

90

100

Misc. JMP BRN PML DML PMS DMS PP CR

P
er

ce
n

ta
g

e
o

f
In

st
ru

ct
io

n
 C

y
cl

es
 [

%
]

Basic Math

Table 1: CACTI 4.2 Input Parameters

Cache Parameter Value

Number of banks 1
Total cache Size(bytes) 512
Size in bytes of a bank 512
Number of sets per bank 64
Associativity direct mapped
Block Size (bytes) 8
Read/Write Ports 1
Read Ports 0
Write Ports 0
Technology Size 0.35µm
Vdd 2.6V

MIPS/Watt) is typically used as a metric to evaluate power

efficiency of a processor. Thus in this case, for analyzing

cache feasibility, energy and throughput statistics should be

considered alone. The results show viability of the cache for

an AVR microcontroller, if the miss rate is kept below 20%

for BasicMath application.

It is also important to recognize that improved cache

structures, such as those proposed in [19, 20], could result in

higher throughput at the cost of even lower energy

consumption; making cache a good choice for an optimized

code.

Figure 3: Cache overhead analysis:

Energy and Time overhead vs. miss rate

Figure 4: Cache Power consumption analysis

6 Conclusion

The energy model presented here does not take account of

static power consumption due to non-availability of leakage

data at 0.35µm technology in the used simulator; which is an

important factor in memory hierarchies. However these

simple models with fewer input parameters can give an earlier

estimate of energy and throughput improvements for a

reconfigurable or non-cache system. In future the models are

to be evaluated for a reconfigurable processor along with

some miss rate prediction techniques, so that a fair estimate

could be made about their accuracy.

Acknowledgements

This research is part supported by the UK Engineering and

Physical Sciences Research Council (EPSRC) under Grants

EP/C005686/1, EP/C014790/1 and EP/C54630X/1.

The support of Mr. Hemal S Gujarathi for the review of cache

architectures and related technologies is gratefully

acknowledged.

References

[1] Buccini, M., MSP430F21x1 Architecture Summary.

2004, Texas Instruments.

[2] Turley, J., Atmel AVR Brings RISC to 8-Bit World, in

Microprocessor Report. 1997.

[3] 8-bit PIC® Microcontrollers. [cited 2008 May 1st];

Available from: www.microchip.com.

[4] MAXQ Microcontrollers. [cited 2008 May 1st,];

Available from: http://www.maxim-ic.com.

[5] Chuanjun, Z., V. Frank, and N. Walid, A highly

configurable cache architecture for embedded systems.

SIGARCH Comput. Archit. News, 2003. 31(2): p. 136-

146.

[6] Afzal, M., M. Bill, and C. Dan, A low power unified

cache architecture providing power and performance

flexibility (poster session), in Proceedings of the 2000

international symposium on Low power electronics and

design. 2000, ACM: Rapallo, Italy.

[7] Segars, S., Low power design techniques for

microprocessors, in Int. Solid-State Circuits Conf.

Tutorial,. 2001.

[8] Tarjan, D., S. Thoziyoor, and N.P. Jouppi, CACTI 4.0.

2006, HP Laboratories Palo Alto.

[9] Xipeng, S. and S. Ahren, Miss Rate Prediction Across

Program Inputs and Cache Configurations. IEEE Trans.

Comput., 2007. 56(3): p. 328-343.

[10] Beyls, K. and E. D'Hollander, Platform-Independent

Cache Optimization by Pinpointing Low-Locality Reuse.

Lecture Notes in Computer Science. Vol. 3038/2004.

2004: Springer.

[11] Beyls, K., E. D'Hollander, and F. Vandeputte, RDVIS: A

Tool that Visualizes the Causes of Low Locality and

Hints Program Optimizations. Lecture Notes in

Computer Science. Vol. 3515. 2005: Springer.

[12] Milind, B.K. and G. Kanad, Analytical energy

dissipation models for low-power caches, in Proceedings

of the 1997 international symposium on Low power

electronics and design. 1997, ACM: Monterey,

California, United States.

[13] Wen-Tsong, S. and C. Chaitali, Memory exploration for

low power, embedded systems, in Proceedings of the

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

0 10 20 30 40 50 60 70 80 90 100

O
ve

rh
e

ad

Miss Rate [%]

Energy Overhead

Time Overhead

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

0 10 20 30 40 50 60 70 80 90 100

P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 [
W

]

Miss Rate

Power Consumption with cache [W]
Power Consumption without cache [W]

http://www.microchip.com/
http://www.maxim-ic.com/

36th ACM/IEEE conference on Design automation.

1999, ACM: New Orleans, Louisiana, United States.

[14] ATmega128(L) Datasheet. [cited 2008 May 1st,];

Available from: www.atmel.com.

[15] Ben, L.T., K.L. Daniel, and P. Jens, Avrora: scalable

sensor network simulation with precise timing, in

Proceedings of the 4th international symposium on

Information processing in sensor networks. 2005, IEEE

Press: Los Angeles, California.

[16] Guthaus, M.R., et al., MiBench: A free, commercially

representative embedded benchmark suite, in

Proceedings of the Workload Characterization, 2001.

WWC-4. 2001 IEEE International Workshop. 2001,

IEEE Computer Society.

[17] Steven J.E. Wilton, N.P.J., An Enhanced Access and

Cycle Time Model for On-Chip Caches, in WRL

Research Report 93/5. 1994, Western Research

Laboratory.

[18] ATMega128 Reliability Qualification Report. [cited

2008 May 1st,]; Available from: www.atmel.com.

[19] Koji, I., I. Tohru, and M. Kazuaki, Way-predicting set-

associative cache for high performance and low energy

consumption, in Proceedings of the 1999 international

symposium on Low power electronics and design. 1999,

ACM: San Diego, California, United States.

[20] Song, J. and Z. Xiaodong, LIRS: an efficient low inter-

reference recency set replacement policy to improve

buffer cache performance. SIGMETRICS Perform.

Eval. Rev., 2002. 30(1): p. 31-42.

http://www.atmel.com/
http://www.atmel.com/

