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Abstract 

Embedded processors are often characterized by limited 

resources and are optimized for specific applications. A rising 

number of battery powered applications has driven a trend 

towards increased energy efficiency sometimes even traded 

with performance. Particularly, lower power and low 

specification embedded processors lack on-chip cache 

memories. This is mainly in order to avoid the higher energy 

overhead a cache structure would pose in an embedded 

processor. This paper proposes energy and throughput models 

which can be used to analyze energy and time overhead for a 

particular application due to introduction of a data cache 

architecture in a previously non-cached system or 

alternatively can be used in reconfigurable systems for cache 

overhead analysis. 

 1 Introduction 

With the growing interest in mobile communication devices, 

battery operated systems and wireless sensor networks in 

particular, there is an increasing focus on power efficient 

processor architectures that provide a greater throughput to 

power consumption ratio. Most low power / low specification 

8 and 16 bit embedded processors such as the MSP430 [1], 

AVR [2], PIC [3], and MAXQ [4], typically lack dedicated 

on-chip cache memories. This is mainly due to higher energy 

overhead a cache structure poses on an embedded processor. 

Related research has shown that caches may consume up to 

50% of a microprocessors’ total energy [5-7]. This paper 

presents energy and throughput models which can be used to 

analyze energy and time overhead due to introduction of a 

data cache architecture in a previously non-cache system. The 

model can also be used in reconfigurable processors to 

appraise the cache overheads. The models analyze the cache 

overhead based on a particular application running on the 

system, in that way it is possible to identify if adding a data 

cache is feasible for a particular application or not. This is 

particularly important for embedded systems which have to 

run a single (or a few) application(s) for its life duration. The 

models are independent of the specific cache configuration 

used; however they do utilize inputs that may vary according 

to cache configurations.  

The remainder of this paper is divided into five chapters. 

After the review of related work in the next chapter, the cache 

energy and throughput models are presented. In chapter 4, 

experimental setup is detailed and in the remaining two 

chapters results are discussed and a conclusion is made. 

2 Related Work 

CACTI [8] is an open-source tool that has been widely used 

for cache energy and timing analysis. It provides estimates 

that are within 10% accuracy of the more detailed HSpice 

results for the circuits chosen, and is computationally simpler 

and faster than HSpice itself. However, it does not take 

account of hit rate information as it is not a trace driven 

simulator. Xipeng et al. [9] provide a framework to predict 

miss rate based on particular software and cache 

configurations. This model has shown accuracy within           

2 percent of the hit rate for set associative caches on a set of 

floating-point and integer programs, using array and pointer-

based data structures. This model can be utilized at an 

advanced level to provide accurate hit rate information as an 

input to the cache overhead models presented in this paper. 

Based on the same principles a tool named RDVIS [10, 11] 

was developed to analyze a program by plotting temporal 

locality or reuse distance information. It utilizes cluster 

analysis of basic block vectors to hint the user to optimize the 

code. This tool is particularly useful to profile a piece of code 

to minimize miss rate for a given size of cache. Chuanjun     

et al. [5] have presented the idea of a configurable cache. 

They also have presented an energy model of cache that gives 

dynamic and static energy consumption in the cache system. 

Milind et al. [12] have also presented a very detailed model of 

cache energy consumption. Their analytical models use the 

inputs such as hit/miss counts, fraction of read/write requests 

and assume stochastical distributions for signal values. As per 

their claim, the analytical models for conventional caches 

were found to be accurate within 2% error. However, their 

analytical models over–predict the dissipations of low–power 

caches by as much as 30%. Wen-Tsong et al.  [13] present 

algorithms to find optimal memory configuration based on 

cache size, the number of processor cycles and the energy 

consumption.  
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Most of the cache energy models presented in the work 

discussed earlier require more accurate information of energy 

consumed in a hit and miss. However, the cache energy 

model presented in this paper provides estimates of energy for 

a cache organization using per cycle energy consumption 

values on a complete application which is more useful to 

analyze the overall impact of cache in terms of energy and 

throughput. 

3 Cache energy and throughput models 

As discussed above, the models that are presented here 

estimate the energy consumption and throughput of a 

complete application; which in fact would be helpful to 

analyze the overhead caused by a data cache. The overhead 

can be calculated as a ratio of energy or throughput in a cache 

based architecture to the one in a non-cache architecture. The 

two models are presented below. 

3.1 Energy Model 

The energy model takes into account the total energy 

consumed by the cache structure for all the cache read and 

write accesses, and cache to memory accesses along with the 

energy consumption as cache miss penalty. Here the total 

energy consumption is calculated as the sum of all the earlier 

mentioned energy components with the energy consumed in 

non-memory access instructions.  

 (1) 

where  

 = Total energy consumption of the code [J], 

 = Energy consumed by cache read accesses [J], 

= Energy consumed by cache write accesses [J], 

 = Energy consumed by cache to memory accesses [J], 

 = Energy miss penalty [J] and 

 = Energy consumed by other instructions (which do not 

require memory access) [J]. 

The individual components, are further defined as  

, (2) 

, (3) 

, (4) 

, (5) 

where  

 = Total number of read accesses, 

 = Total number of write accesses, 

 = Energy consumed per read access [J], 

 = Energy consumed per write access [J], 

= Energy consumed per data memory access [J], 

= Per cycle idle mode energy consumption of the 

processor [J], 

 = Miss ratio (in percentage) and 

= Miss penalty (in number of stall cycles). 

3.2 Throughput Model 

Although throughput is often defined in MIPS; equation (6) 

can be used to find the amount of time an application will 

take to execute. Assuming cache to memory access time is 

overlapping the cache access time (due to concurrent nature 

of the two processes); it is possible to express that 

 (6) 

where 

 = Total time taken by an application [Sec], 

 = Time taken for cache operations [Sec], 

 = Time saved from memory operations [Sec], 

 = Time miss penalty [Sec] and 

 = Time taken while executing other instructions (which 

do not require memory access) [Sec]. 

Furthermore 

 and 

 
(7) 

 (8) 

where 

 = Time taken per cache access [Sec] and 

= Cycle time [Sec]. 

 

 

Figure 1: Essex AVR Code Profiler output 

4 Experimental Setup 

To analyze the proposed models, a simulation environment 

was created that uses an AVR core (ATmega128 [14]) to 

implement the models for a non-cache microcontroller, 

AVRORA [15] was used to get the coarse-grained code 

profile and cycle counts, and a cache modeler (CACTI 4.2   

[8]) was used to obtain data for cache access time and energy 

per access information. As the proposed models give the 

information per application basis, a benchmark application 

(i.e. BasicMath) from MiBench [16] was chosen, which is an 

open-source embedded system specific benchmark suit. The 

BasicMath application is a part of automotive and industrial 

control suite of MiBench. This application performs 

mathematical calculations such as cubic function, integer 



square root and angle conversions from degrees to radians. 

The input data is a fixed set of constants. This application was 

particularly chosen because of it relevance to a wide range of 

automotive, industrial and sensor data processing 

applications.  

As discussed earlier, UCLA’s AVRORA [15] was used to 

extract code profile information. However this tool does not 

give instruction level code profile so that instructions 

particular to memory access could be separated. To overcome 

this problem a software named Essex AVR Code Profiler (see 

Figure 1) was created, that gives an in-depth instruction level 

profile of a particular application, which is vital for the 

presented models based cache analysis.  The software uses 

coarse-grained code profile output of the AVRORA simulator 

along with the object dump file to generate a fine-grained 

instruction level profile of the code (see Figure 2). The Object 

Dump utility is a part of AVR-gnu tool chain. Figure 2, shows 

a detailed distribution of instructions into several classes like 

Calls and Returns (CR), Push/Pop (PP), data memory store 

(DMS), program memory store (PMS), data memory load 

(DML), program memory load (PML), branch (BRN), Jumps 

(JMP) and miscellaneous instructions (Misc.) based on the 

MiBench benchmark suite. As per focus of this study on data 

cache, instructions regarding to data memory access can 

easily be identified. The Branch and Jump information 

present in the output data could be used to identify potential 

stalls, for pipeline and I-cache operations if introduced.  

 

Figure 2: Instruction usage in percentage of cycles for 

BasicMath application. 

Now using CACTI cache modeler [8], information regarding 

to cache access time and read/write energy consumption per 

access for a direct mapped cache, was recorded. The 

parameters given in Table 1 were used to simulate the cache 

structure. 

A simplified single block direct mapped cache was selected 

for the experiment due to its highest potential throughput and 

lowest energy consumption per access. However it is 

important to note that a direct mapped cache has a lowest hit 

rate compared to other cache configurations [17]. The cache 

size was chosen 512 bytes to be at realistic ratio with 

ATmega128 on-chip memory i.e. 4K bytes. The fabrication 

technology was chosen to be 0.35µm, in line with technology 

the ATmega128 is manufactured [18]. 

 

5 Results 

The cache model given to CACTI resulted in access time of 

2.12nS, a total dynamic read and write energy of 

0.0795701nJ, and 0.0246899nJ respectively. Due to the 

absence of ATmega128 memory access energy consumption 

data, the cache to memory access energy ( ) was 

conservatively assumed to be equal to per cycle energy 

consumption of the controller i.e. 3.75nJ at 3V and 4MHz 

[14]. The cache miss penalty was assumed to be 10 cycles. 

The results from Essex AVR Code Profiler, showed that the 

BasicMath application comprises a total of 91087797 

memory read, 46282571 memory write operations; assuming 

all program memory load (PMLoad) operations as data 

memory load operations. This assumption is made keeping in 

view of practical aspect where the constants used in the 

benchmark application would be replaced by variables in the 

data memory.  

Based on these models of energy and throughput it was found 

that for miss rates less than 20% a significant increase in 

throughput with less energy consumption can be observed 

(see Figure 3). It is interesting to note that the overall power 

consumption of the device remains higher than the actual 

power consumption (for a non-cache ATmega128) i.e.         

15 mW. The power consumption tends to decrease with the 

increase in miss rate, and for miss rate beyond 40%, it drops 

even lower than the actual power consumption (see Figure 4). 

The power consumption statistics may mislead to a 

conclusion that higher miss rates result in greater power 

efficiency. It must be noted that, power consumption is a ratio 

of energy consumption to the time. If the time overhead is 

increased with same amount of energy, power consumption 

tends to decrease. That is why Performance/Watt (e.g. 
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Table 1: CACTI 4.2 Input Parameters 

Cache Parameter Value 

Number of banks 1 
Total cache Size(bytes) 512 
Size in bytes of a bank 512 
Number of sets per bank 64 
Associativity direct mapped 
Block Size (bytes) 8 
Read/Write Ports 1 
Read Ports   0 
Write Ports 0 
Technology Size 0.35µm 
Vdd 2.6V 



MIPS/Watt) is typically used as a metric to evaluate power 

efficiency of a processor. Thus in this case, for analyzing 

cache feasibility, energy and throughput statistics should be 

considered alone. The results show viability of the cache for 

an AVR microcontroller, if the miss rate is kept below 20% 

for BasicMath application.  

It is also important to recognize that improved cache 

structures, such as those proposed in [19, 20], could result in 

higher throughput at the cost of even lower energy 

consumption; making cache a good choice for an optimized 

code. 

 

Figure 3: Cache overhead analysis:                                  

Energy and Time overhead vs. miss rate 

 

Figure 4: Cache Power consumption analysis 

6 Conclusion 

The energy model presented here does not take account of 

static power consumption due to non-availability of leakage 

data at 0.35µm technology in the used simulator; which is an 

important factor in memory hierarchies. However these 

simple models with fewer input parameters can give an earlier 

estimate of energy and throughput improvements for a 

reconfigurable or non-cache system. In future the models are 

to be evaluated for a reconfigurable processor along with 

some miss rate prediction techniques, so that a fair estimate 

could be made about their accuracy.  
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