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Abstract

Hyper-heuristics are high level heuristics which coordinate lower level
ones to solve a given problem. Low level heuristics, however, are not all
as competent/good as each other at solving the given problem and some
do not work together as well as others. Hence the idea of measuring how
good they are (competence) at solving the problem and how well they work
together, (their affinity.) Models of the affinity and competence properties
are suggested and evaluated using previous information on the performance
of the simple low level heuristics. The resulting model values are used to
improve the performance of the hyper-heuristic by tailoring it not only to
the specific problem but the specific instance being solved. The test case
is a hard combinatorial problem, namely the Hybrid Flow Shop scheduling
problem. Numerical results on randomly generated as well as real-world
instances are included.

1 Introduction

A special type of heuristics called Hyper-Heuristics (HH) which “coordinate” other
heuristics, is now a well established set of tools for the solution of optimisation
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problems, [1]. HH are high level heuristics that receive as input a set of low
level heuristics and a problem. At decision points in the solution process, the
HH selects a low level heuristic from a set H and applies it to the current state
of the solution. Many such low level heuristics, therefore, may be called during
the solution process and the sequence of their appearances is important. HH are
particularly suitable for real problems where, “soon-enough”, “good-enough” and
“cheap-enough” solutions are preferred to optimal but expensive (to obtain) ones
[2], and those that are unattainable in the available time. Recent developments in
HH can be found in [3, 4].

1.1 Classes of hyper-heuristics

We shall differentiate between two types of hyper-heuristics: improving hyper-
heuristics (IHH) and constructive hyper-heuristics (CHH).

1.1.1 Improving hyper-heuristics

In IHH, an initial solution, so, is part of the input; the low level heuristics are
applied to it in order to improve it. Examples of these are given in [1] and [5].
According to [2], provided a set of improving low level heuristics for the problem
in hand is available, the following algorithmic framework (Algorithm 1) is, most
of the time, successful.

Algorithm 1 Improving hyper-heuristics

Input: so, H

While stopping condition not satisfied do
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

select hi ∈ H

s∗ ← hi(s
o)

If a certain condition is satisfied then
∣
∣ so ← s∗

End If

End While

Return s∗

Different mechanisms to select low level heuristics from H , such as the choice
function, [1], tabu search, [5], GA, [6] and other meta-heuristics, [7], have been
proposed. In the same way, different conditions for the acceptance of new solutions
have been proposed. These include the acceptance of all improving solutions, [1],
simulated annealing, and other similar stochastic based settings, [8].
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1.1.2 Constructive hyper-heuristics

In CHH the low level heuristics are used to build solutions from scratch. Each low
level heuristic hi ∈ H is constructive, i.e. it can be applied on its own to build a
solution. There are two types of CHH. In the first, [9, 10], a set of good solutions for
different instances of a problem are used to train a machine learning system (case
based reasoning). This system selects and records relevant instances with their
corresponding “good” combination of low level heuristics. When a new instance is
given, the “closest” instance in memory is retrieved and its corresponding heuristics
applied to the new instance.

The second type of CHH uses an on-the-fly learning process. These methods use
meta-heuristics such as GA, [11, 12, 13], and Tabu Search, [14], to the sequence
H = {h1, . . . , ht} , where hi ∈ H , of low level heuristics to be applied in that
order to build a solution. They test several such H sequences within an iterative
improving process until they reach a satisfactory solution or satisfy a stopping
criterion. In the remaining of this paper, the focus is on CHH.

1.2 Motivation

The limitations of the first type of CHH are that (i) when facing a new problem it is
not easy to decide which is the adequate case in memory to retrieve, and (ii) their
effectiveness is limited since they do not use information on the specific instance
being solved. But, they do have a strength which is that, after training, they are
efficient at providing “acceptable” solutions. The second type of CHH is easier to
implement and has been relatively more successful, [6], [12]. However, it has been
observed that its performance can be improved by using information regarding
the effectiveness of the low level heuristics on their own and working with others,
[15]. In this paper two functions are suggested to capture such information: the
“competence” function, that measures the individual performance of the low level
heuristics and the “affinity” function which measures how good pairs of heuristics
are at working together. The main thrust of this paper is to combine in a single
method the strength of the two kinds of CHH. The proposed method uses GA to
search for a combination of low level heuristics aided by the information provided
by the affinity and competence functions. In this way, the overall CHH is effectively
tailored to the problem instance being solved.

1.3 Organisation of the paper

Section 2 suggests a GA-based CHH (GA-CHH) and presents the affinity and
competence functions. The case study, which is the Hybrid Flow Shop (HFS)
scheduling problem, is described and briefly reviewed in Section 3. The same
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section explains how to adapt the proposed GA-CHH to solve it. In Section 4
two variants of GA-CHH are used to solve a large set of randomly generated HFS
instances. The first variant is as described in Subsection 2.1, the second adds to
the first one information obtained with the competence and the affinity functions.
The two variants are then tested on a set of real-world HFS problems along with a
number of well established algorithms namely h1GA, RKGA [16], GAH [17], and
EDD-W [15]; all will be briefly presented later. Section 5 concludes the paper and
points out issues which merit further work.

2 Methodology

2.1 A GA-based constructive hyper-heuristic

A GA-based CHH similar to those found in [12] and [13] is suggested here. Let
H = {h1, . . . , hN} be the set of low level heuristics. An individual from the
population of the GA-CHH is a combination of low level heuristics in the form
H ={h1, . . . , ht}, where hi ∈ H . Note that the elements in H may be repeated. In
order to translate a given H into a solution to the problem in hand, the low level
heuristics are invoked in the order h1, h2, . . . , ht they appear in H, as in Algorithm
2 below.

Algorithm 2 Individual evaluation of GA-CHH

input: H
For i = 1, . . . , t do
∣
∣ apply hi ∈ H to the current solution state;
End for

End

The genetic operators and selection mechanism used are as in many other GA
applications; a two point crossover, random generation of a given gene as the
mutation operator, and tournament selection as the selection mechanism, see [18]
and [19] for details. The encoding of individuals and GA parameters must be
adapted to the specific application in hand. Subsection 3.1 provides the necessary
details for a complex scheduling problem such as HFS.

2.2 The competence and the affinity functions

Knowing how effective are low level heuristics when working individually and com-
bined with others may prove a useful approach to problem solving in general. The
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way this information is captured here is through the competence and affinity func-
tions. Intuitively, if there are heuristics that contribute more than others to the
solution of a problem, they are expected to be found more frequently than others
in good solutions. In the same way, if there are pairs of heuristics with strong
affinity, it is expected to find them together, i.e. they are invoked one after the
other, or at a relatively close distance from each other in the sequence H. These
ideas are explored and formalised here.

Given a set of good combinations of heuristics Θ∗, the competence, C(hA ∈ H),
of heuristic hA is defined as:

C(hA ∈ H) =
∑

H∈Θ∗

t∑

i=1

count(hA, hi ∈ H), (1)

where

count(hA, hi) =

{
1 if hi = hA
0 otherwise

,

t is the number of heuristics in the solution representation. Expression (1) com-
putes the frequency with which hA ∈ H is found in the set of good solutions
Θ∗ .

Let the affinity of two heuristics hA and hB, Aff(hA, hB), represent the fre-
quency of hA and hB being in the same solution weighted in proportion to how
close they are:

Aff(hA, hB) =
∑

H∈Θ∗

t−1∑

i=1

t∑

j=i+1

count 2(hA, hB, hi ∈ H, hj ∈ H), (2)

where

count 2(hA, hB, hi, hj) =

{
1
j−i

if hi = hA and hj = hB

0 otherwise
.

Note that given a combination of heuristics H = {h1, . . . , ht}, we define the dis-
tance between two of its elements hi and hj , j > i, simply as j − i. In expression
(2), the maximum affinity is achieved when 1

j−i
= 1, which happens when hA and

hB are adjacent (called one after the other). The value of 1
j−i

decreases as the two
heuristics are found far apart; it is null when the heuristics do not appear in the
same solution at all. Let AAff be the affinity matrix, i.e. the affinity measures
between all heuristics in H :

AAff =






Aff(h1, h1) . . . Aff(h1, h|H|)
...

. . .
...

Aff(h|H|, h1) . . . Aff(h|H|, h|H|)




 .
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The affinity of a heuristic with itself, i.e. Aff(hi, hi), measures how profitable it
is to make consecutive calls to it.

The competence and affinity functions may be used to sample for combinations
of heuristics as follows. Let the probability P (h) of assigning heuristic h ∈ H to
h1 (i.e. to the first decision) be:

P (h) =
C(h)

∑

hi∈H

C(hi)
. (3)

This means that the choice is biased toward heuristics that are good for the prob-
lem. But, if we have already made a choice to fill the previous place in H, (decision
block d(i−1), for example), then it makes sense to look for one that has great affinity
with it. Therefore, one can also devise a probability based on the affinitiy function
as follows. The probability P (h) of assigning heuristic h ∈ H to hi, is calculated
with the following formula:

P (h) =
Aff(h∗, h)

∑

hi∈H

Aff(h∗, hi)
, (4)

where h∗ is the heuristic that was assigned to the previous decision block, d(i−1).
Which formula is used is determined by a parameter 0 ≤ α ≤ 1; Formula 4 with
probability α and Formula 3 with probability 1 − α. This parameter must be
tuned for the specific application depending on whether we have any preference
for one function or the other. In the following α takes value 0.5. The procedure
for choosing heuristics to build up solutions for HHS is given as Algorithm 3.

3 Case study: the Hybrid Flow Shop scheduling

problem

A HFS is a manufacturing environment in which a set of n jobs are to be processed
in a series of m stages. There are many variations to this environment, all of which
have the following in common:

1. the number of processing stages m is at least 2,

2. each stage k has mk ≥ 1 machine in parallel and in at least one of the stages
mk > 1,

3. all jobs are processed following the same production flow: stage 1, stage
2,. . . , stage m. A job can skip any number of stages provided it is processed
in at least one of them.
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Algorithm 3 Generating new solutions using the information provided by the
competence and the affinity functions

input:
t = n×m, where n is the number of jobs, and m the number of stages.
α = 0.5.
H , the set of low level heuristics.

h1 ←select h ∈ H with probability C(h)∑

hj∈H

C(hj)
.

h∗ ← h1

For i = 2, . . . , t do
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

If (rand() ≤ α) then
∣
∣
∣
∣
∣

hi ←select h ∈ H with probability Aff(h∗,h)∑

hj∈H

Aff(h∗,hj)

else
∣
∣
∣
∣
∣

hi ←select h ∈ H with probability C(h)∑

hj∈H

C(hj)

End If

h∗ ← hi

End For

H ← {h1, . . . , ht}
return H
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In the case considered here, any machine can process at most one job at a time
and any job is processed on at most one machine at a time. Furthermore, every job
is processed on at most one machine in any stage. Preemptions are not allowed.
The problem is to find a schedule which minimises some objective function.

In most cases, HFS is NP-hard, [20], [21]. It is found in all kinds of real world
scenarios such as the electronics, [22], paper, [23], textile, [24], and concrete, [25],
industries. Examples are also found in the manufacturing of photographic film,
[26], internet services architectures, [27], container handling systems, [28], and
others, [29]. Recent solution approaches can be found in [30].

When searching in the set of semi-active schedules, or schedules for which an
operation cannot start earlier without changing the order of processing in any one
of the machines, [31], then the following formulation is appropriate. Let Akl be a
set of operations ojk assigned to machine l in stage k. Let Skl be a sequence of
the elements in Akl representing the order in which they are to be processed. Let
Sk = ∪mk

l=1S
kl where mk is the number of machines at stage k, and S = ∪mk=1S

k.
As Sk represents the set of sequences to be followed by the jobs when in stage k,
S is a schedule. For it to be feasible, the following must hold.

mk⋃

l=1

Akl = Ok, ∀k (5)

mk⋂

l=1

Akl = ∅, ∀k (6)

Constraints 5 and 6 guarantee that all operations to be processed in stage k, Ok,
are assigned for processing strictly once.

Given that S is easily translated into a unique schedule, no difference is assumed
between S and the schedule it represents and hereafter S will be referred to as a
schedule, Sk as a schedule for stage k, and Skl as a schedule for machine l in stage
k.

Let π be a HFS problem instance and Ωπ the set of all schedules that satisfy
restrictions 5 and 6 for π. The problem can now be formulated as:

min
S∈Ωπ

fi(S)

which means, given a problem instance π, find a schedule S ∈ Ωπ that minimises
a cost function fi(S). fi(S) is anyone of the following objective functions.

• f1 = maxj Cj , the makespan or maximum completion time;

• f2 =
∑

j Cj, the sum of completion times;

• f3 = maxj Tj , where Tj = max{0, Cj − dj}, the maximum tardiness;
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• f4 =
∑

j ωjTj , the total weighted tardiness;

• f5 =
∑

j ωjUj , the weighted number of tardy jobs;

• f6 =
∑

j ωjWj , where Wj = Cj−startj1,is the total weighted time that job j

spends in the system after its start time in stage 1. Note that Wj is different
from Fj = Cj − rj1 in that the former does not take into consideration the
waiting time in the queue previous to stage 1, i.e. f6 = Fj − (rj1 − startj1).
startj1 is the start time of job j in stage 1.

• f7 = maxk

{

maxCmax

time=0

{
∑

j ωjxjkt

}}

, where time ∈ Z+ is the time,

xjkt ∈ {1, 0}, (it is 1 if rjk ≤ time and vjk ≥ time, it is 0 otherwise); f7 is
the maximum weighted number of jobs waiting for processing at the same
time in the same stage;

• f8 =
∑

j ωjEj +
∑

j ωjTj , is the sum of the weighted earliness and tardiness.

Functions f1 and f2 are the most widely studied in the literature of HFS. f1,
or maximum completion time, optimises the use of machines in the shop. f2, or
total weighted tardiness, is a good metric of the quality of the service provided.
f3 is the maximum tardiness, f4 the sum of completion times and f5 the weighted
sum of tardy jobs. f3 and f5 are concerned with the quality of the service to
the client, while f4 is concerned with how fast the jobs are completed. f6 is the
sum of weighted waiting times, i.e. it measures the total time that the jobs spend
on the shop floor from the moment they start processing in the first stage, until
completion. f7 is the maximum wighted number of jobs that are in a stage waiting
for processing at the same time. f6 and f7 can be associated with the inventory
of products in process. f8 is the weighted earliness and tardiness. It is relevant in
Just In Time manufacturing systems where delays to meet demand and delivery
are penalised.

The 13 low level heuristics used here are described in Table 1.

3.1 A constructive hyper-heuristic to solve HFS

A GA-CHH as described in Subsection 2.1, was implemented for the HFS problem.
We refer to it as the Hyper-Heuristic Scheduler (HHS). In HHS, H is a set of 13
low level heuristics, otherwise known as dispatching rules of the type First In First
Out (FIFO), Shortest Processing Time (SPT) and so on, [31], [32]. A solution is
a set H = {h1, . . . , ht}, where t = n×m. In this application, the first n elements
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Table 1: Low level heuristics

Name Description: select ojk ∈ Ok with
h1 smallest rjk value; rjk is the release time of ojk operation;
h2 smallest pjk value; pjk is the processing time of operation ojk;
h3 largest pjk value;
h4 smallest (vjk − dj) value; vjk is work remaining for job j in stage k;
h5 largest (vjk − dj) value; dj is the due date of job j;
h6 smallest vjk value;
h7 largest vjk value;
h8 smallest ωjpjk value; ωj is the weight of job j;
h9 largest ωjpjk value;
h10 smallest ωj(vjk − dj) value;
h11 largest ωj(vjk − dj) value;
h12 smallest ωjvjk value;
h13 largest ωjvjk value;

in H are used to schedule stage 1, from hn+1 to h2n for stage 2, and so on:

H
︷ ︸︸ ︷

h1, . . . , hn
︸ ︷︷ ︸

stage 1,

, hn+1, . . . , h2n

︸ ︷︷ ︸

stage 2,

, . . . ,
︸︷︷︸

...,

ht−n, . . . , ht
︸ ︷︷ ︸

stage m

.

Every low level heuristic acts as follows: given a set of not yet scheduled
operations, Ok, select operation o ∈ Ok, that best satisfies a certain condition.
For instance, SPT selects an o that requires the shortest processing time. The
operation is assigned to the machine that allows it to be completed in the fastest
(completion) time. It is then removed from Ok. To build a full solution the process
is repeated until Ok is empty (n×m times). See Algorithm 4.

After a pre-experimental tuning stage, the following parameter setting was
found to be adequate: a crossover probability of 0.9, a mutation probability of 0.1,
a tournament selection with 2 participants, a population size of 100 individuals
and applying elitism, i.e. the best individual found so far is always kept.

4 Computational experience

Two sets of experiments have been carried out. The first concerns establishing that
that HHSCA, the HHS aided with the information provided by the competence and
the affinity functions, is superior to the pure HHS. The second establishes that
HHSCA is superior to a number of well established algorithms for the problem and
this on real-world instances.
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Algorithm 4 Procedure called by HHS to evaluate individuals

input: H = {h1, . . . , ht}
For k ← 1, . . . , m do // for every stage
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Let Ok be the set of operations to be scheduled in stage k

i← 1
While Ok 6= ∅∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u← (k − 1)× n + i

Select an operation o ∈ Ok according to hu;
Assign o to the machine in stage k that

will complete it in the fastest (completion) time;
Ok ← Ok\{o}
i← i + 1

End While

End For

4.1 HHSCA versus HHS on randomly generated HFS prob-

lem instances

In order to do this, HHS was run 5 times, each time for a 100 generations, on each
of a set of 1024 randomly generated HFS instances, [32]. The best results of the
5 runs were recorded. HHS was run again, but this time, using the information of
the competence and the affinity functions as follows: HHS is run once as normal,
the last population of this first run is used to calculate the competence and the
affinity functions. This information is then used to create the new population for
the second run of HHS. Each individual is created with Algorithm 3. In the same
way, the competence and affinity functions are calculated after the second run and
used to initialise the third one. This process is repeated in the remaining runs.

Details on how the HFS instances were generated can be found in [32]. It is
important to say, however, that the test set contains an equal number of instances
with n ∈ {20, 40, 60, 80}. Eight objective functions, f1, . . . , f8, are considered (one
at a time). All 1024 instances were considered with each of such functions. The
mean result of the best solutions found by HHS and HHSCA for every instance,
with the instances grouped according to the number of jobs, n, and the objective
function they consider are given in Table 2.

Looking at the results recorded in Table 2, it is clear that HHSCA is superior to
HHS. However, for a solid conclusion, Friedman’s non-parametric statistical test,
[33], to compare the results of HHS vs HHSCA has been performed on each set of
instances. The hypothesis tested was that the effect on the quality of solutions
due to HHS and HHSCA is the same. If this is the case, then there is no difference.
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Table 2: Mean fi results

method n f1 × 10−3 f2 × 10−5 f3 × 10−5 f4 × 10−5 f5 × 10−2 f6 × 10−5 f7 × 10−3 f8

HHS 20 52.24 17.32 43.67 42.52 66.51 31.66 37.48 920
HHSCA 52.20 17.22 42.34 41.41 64.98 31.02 37.35 860

HHS 40 50.70 16.93 34.52 31.71 51.78 31.11 30.01 946
HHSCA 50.66 16.83 32.54 30.47 49.62 30.57 30.01 899

HHS 60 49.73 15.39 40.94 39.20 62.51 26.74 35.70 610
HHSCA 49.48 14.93 38.04 36.80 59.47 25.90 35.24 529

HHS 80 45.69 14.33 32.07 29.07 51.18 26.22 27.64 545
HHSCA 45.33 13.94 29.23 26.75 46.90 25.69 27.24 501

Table 3: p values of the Friedman’s non parametric statistical test

f1 f2 f3 f4 f5 f6 f7 f8

n = 20 0.8348 0.0 0.0 0.0 0.0 0.0007 0.0025 0.0002
n = 40 0.8185 0.0 0.0 0.0 0.0 0.0001 0.8348 0.0013
n = 60 0.0186 0.0 0.0 0.0 0.0 0.0000 0.0011 0.0011
n = 80 0.0588 0.0 0.0 0.0 0.0 0.0004 0.2393 0.5316

If, on the other hand, there is no evidence to sustain such a conclusion, then the
result favours HHSCA given that its mean was consistently superior to that of HHS
(as it can be appreciated from Table 2). The p values of every test are presented
in Table 3. Whenever p < 0.05 the effects due to HHS and HHSCA are different.
Note that in most cases the hypothesis that both algorithms have similar effects is
rejected in favour of HHSCA. Since the only difference between HHS and HHSCA is
in the use or otherwise of the competence and affinity information, this is evidence
that the inclusion of this information does have a positive effect on the solution
quality observed in the solutions produced by HHSCA.

4.2 A comparison of HHSCA against established algorithms

We consider a number of solution approaches to HFS on real-world instances of
the problem described in [15]. Beside HHS, we consider h1GA which schedules
stage 1 using GA and stages 2, ..., m using h1; RKGA, the Random Keys Genetic
Algorithm, [16], which uses a special representation of GA, Random Keys, to
schedule stage 1 of the flowshop and h1 to schedule the rest of the stages; GAH,
the Ruiz and Moroto’s Genetic Algorithm, [17], and EDD-W, the Earliest Due Date
and Weights (EDD-W) first, dispatching rule, [15], which is a simple dispatching
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Table 4: Mean fi results, 1
10

∑10
ψ=1 fi(a(ψ))

method n f1 × 10−3 f2 × 10−4 f3 × 10−2 f4 × 10−3 f5 f6 f7 × 10−4 f8 × 10−3

HHS 30 23.62 26.22 82.77 101.08 3.40 12.80 46.27 101.08
HHSCA 23.28 25.72 82.27 69.77 3.00 7.60 44.92 69.48
h1GA 23.18 25.75 82.83 70.20 3.00 7.40 45.02 70.20
RKGA 23.32 26.18 84.48 73.90 3.80 8.60 45.79 73.90
GAH 23.43 26.58 83.27 77.18 0.00 8.20 45.08 77.18
EDD-W 31.20 36.60 149.30 138.54 16.40 24.40 58.46 138.54

HHS 60 44.50 80.20 193.87 407.08 7.20 33.00 107.50 407.08
HHSCA 41.84 78.17 164.42 231.16 6.80 16.50 103.48 234.59
h1GA 42.27 78.17 171.34 229.60 6.80 16.10 103.81 229.60
RKGA 43.34 81.31 189.99 285.64 8.60 23.30 108.91 285.64
GAH 43.05 84.08 183.62 301.35 2.70 21.20 101.90 301.35
EDD-W 53.53 139.40 268.08 1095.78 58.90 117.20 219.53 1095.78

HHS 90 59.28 158.93 254.01 1012.89 16.90 59.10 205.06 1012.89
HHSCA 55.51 151.13 212.43 441.62 10.50 25.70 170.68 437.55
h1GA 56.46 151.29 225.56 449.66 10.40 26.50 171.44 449.66
RKGA 57.45 160.62 247.92 588.06 15.20 37.20 182.48 588.06
GAH 56.82 167.67 238.02 647.22 4.60 36.50 160.85 647.22
EDD-W 66.28 285.41 300.43 2503.65 90.20 180.70 421.45 2503.65

HHS 120 80.86 283.39 344.06 1522.10 26.40 75.00 317.97 1522.10
HHSCA 77.46 262.26 280.27 530.13 13.40 26.70 242.20 547.70
h1GA 78.45 263.31 307.68 551.07 13.50 27.40 244.88 551.07
RKGA 79.39 284.98 339.62 788.96 23.80 49.90 275.91 788.96
GAH 78.78 298.24 322.32 880.72 6.70 44.80 214.92 880.72
EDD-W 88.56 513.81 374.75 3771.84 123.20 228.50 724.44 3771.84

fi(a(ψ)) : fi value of the solution provided by a to problem instance ψ; a ∈ {HHS, . . . , EDD-W}

rule used in the practical situation which provided the test problems. The rule
says “whenever a machine is free, the released job with the shortest due date is
assigned to it. Ties are broken by preferring more important jobs, i.e. jobs with
the highest weights.”

Four types of problems with 30, 60, 90 and 120 jobs (10 of each) were solved.
Details on the way the problems have been generated from the real data can be
found in [15].

The results recorded in Table 4 show a clear superiority of HHSCA over the rest
of the algorithms on most problems. GAH seems to do a bit better on f5 and f7,
otherwise RKGA, GAH as well as HHS and EDD-W, the dispatching rule used in
practice by the company that supplied the data, are outperformed everywhere by
HHSCA. h1GA also performed well in the few cases of f1 and f6 for n = 30 and
f4 and f6 for n = 60. Again, it is otherwise surpassed by HHSCA everywhere else
too. So, there is no doubt that HHSCA is superior to all algorithms considered.
The superiority is so clear that there is no real need for any statistical analysis.
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5 Conclusion and further work

The paper considered the case of enhancing hyper-heuristics that use GA as the co-
ordinating meta-heuristic by incorporating in their solutions, which are sequences
of low level heuristics, information related to these low level heuristics. This in-
formation concerns

• how good individual low level heuristics are at solving a given problem (com-
petence);

• how good they are at working together to solve the problem (affinity).

Models of the competence and affinity are devised and then shown how they
can be implemented to improve the quality of solutions to the problem. Algorithms
to that effect have been given.

A large number of randomly generated test problems of the notoriously hard
HFS problem have been solved with both the pure HHS, i.e. the HHS that does not
include the competence and affinity information and the HHSCA which includes the
information. Moreover, a set of real-world instances has also been solved with HHS,
HHSCA as well as a host of other well established algorithms such as RKGA, GAH,
h1GA and EDD-W. Results in terms of the quality of the solution obtained have
been recorded. These show beyond any doubt that, indeed competence and affinity
information improves the quality of the solutions of the instances considered. Since
real world problems often have characteristics that randomly generated ones do
not, the rather impressive performance of HHSCA on them compared to the rest
of the algorithms considered, establishes beyond doubt that the idea of including
competence and affinity information when low level heuristics are used is a potent
one.

Note that the approach is reminiscent of the so called memetic and meta-
Lamarckian algorithms, [34, 35]. As such, the idea of competence and affinity
may be extended to full blown algorithms working under a meta-heuristic or a
coordinator algorithm, which is not necessarily a search algorithm in itself, within
a cooperative/competitive framework, [36, 37].
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