Research Repository

Identification of causal effects on binary outcomes using structural mean models

Clarke, PS and Windmeijer, F (2010) 'Identification of causal effects on binary outcomes using structural mean models.' Biostatistics, 11 (4). 756 - 770. ISSN 1465-4644

[img]
Preview
Text
Biostat-2010-Clarke-756-70.pdf - Published Version
Available under License Creative Commons Attribution.

Download (264kB) | Preview

Abstract

Structural mean models (SMMs) were originally formulated to estimate causal effects among those selecting treatment in randomized controlled trials affected by nonignorable noncompliance. It has already been established that SMMs can identify these causal effects in randomized placebo-controlled trials under fairly weak assumptions. SMMs are now being used to analyze other types of study where identification depends on a no effect modification assumption. We highlight how this assumption depends crucially on the unknown causal model that generated the data, and so is difficult to justify. However, we also highlight that, if treatment selection is monotonic, additive and multiplicative SMMs do identify local (or complier) causal effects, but that the double-logistic SMM estimator does not without further assumptions. We clarify the proper interpretation of inferences from SMMs by means of an application and a simulation study. © 2010 The Author.

Item Type: Article
Subjects: H Social Sciences > HA Statistics
Divisions: Faculty of Social Sciences > Institute for Social and Economic Research
Depositing User: Jim Jamieson
Date Deposited: 15 Aug 2013 19:24
Last Modified: 17 Aug 2017 17:58
URI: http://repository.essex.ac.uk/id/eprint/7360

Actions (login required)

View Item View Item