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Abstract
Using a unique data set on criminal profiles of 800 US Mafia members active in the 1950s and

1960s and on their connections within the Cosa Nostra network, we use simple network analysis
techniques to document the structure and composition of the geometry of criminal ties between
mobsters. The use of different network centrality measures allows us to collect evidence in line
with so far only conjectured views on the functioning of the Mafia. In particular, we shed light
on the extent to which family relationships, community roots and ties, legal and illegal activities
predict the criminal ranking of the “men of honor,” suggesting the main characteristics that can
be used to detect criminal leaders. Our results are remarkably in line with the evidence that mafia
organizations tend to be extremely hierarchical.
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1 Introduction

Despite more than 40 years of law enforcement’s success in the fight against
organized crime, the Mafia has continued following many of the same rules,
and is still active in many countries, including the US. According to the FBI1,
in 2005 there were 651 pending investigations related to the Italian-American
Mafia; almost 1,500 mobsters were arrested, and 824 were convicted; of the
roughly 1,000 “made” members of Italian organized crime groups estimated
to be active in the U.S., 200 were in jail. In addition, the Italian Mafia no
longer holds full control of racketeering. With the end of the Cold War and
the advent of globalization, “transnational” organized crime organizations are
on the rise—mainly the Russian Mafia, the African enterprises, the Chinese
tongs, South American drug cartels, the Japanese Yakuza, and the, so called,
Balkan Organized Crime groups—and their proceeds, by the most conservative
estimates, comprise around 5 percent of the world’s gross domestic product
(Schneider and Enste, 2000, Wagley, 2006). Williams (2001) discusses how
networks within and across these organizations facilitate their fortunes.

Notwithstanding the magnitude of these numbers, the illicit nature of or-
ganized crime activities has precluded empirical analysis and the literature has
overwhelmingly been anecdotal or theoretical (Reuter, 1994, Williams, 2001).2

In this paper, we exploit individual level data on 800 Mafia members that
were active just before the 1961 crackdown to study the factors underlying
criminal connections and hierarchies, ranking mobsters based on the number
and the quality of their connections. The data source are the Federal Bureau
of Narcotics (FBN) files on American Mafia members that were active and
alive in 1960 (MAF, 2007).3

Recent papers on social networks show that an individual’s position within

1The source is www.fbi.gov.
2Levitt and Venkatesh (2000) use detailed financial activities of a drug-selling street gang

to analyze gang behavior. But most gangs do not appear to engage in crimes motivated and
organized according to formal-rational criteria (Decker et al., 1998).

3At the end of the 1950s the FBN, which later merged with the Bureau of Drug Abuse
Control to form the Bureau of Narcotics and Dangerous Drugs, was the main authority in
the fight against the Mafia (Critchley, 2009). In New York the FBI had just four agents,
mainly working in office, assigned to the area, while in the same office more than 400 agents
were fighting domestic communists (Maas, 1968).
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a network is indeed crucial in explaining her or his level of activity (Ballester et al.,
2006). If individual decisions are related to the structure of social contacts each
individual chooses (or is trapped in), understanding the formation of network
structure is crucial for anti-crime policies. Given the complexity of social re-
lationships, evidence documenting patterns of association between agents is
a first priority, partly because it can inform the theoretical literature looking
at network formation processes. Several models of network formation have
recently been proposed. Most rely on some form of pairwise regressions (see,
for example, Bramoullé and Fortin, 2010). Given the hierarchical nature of
the network at hand (the Mafia), in this study we focus on the factors that are
related to the centrality of mobsters rather than on those determining single
connections.

Empirical evidence along this line is helpful to understand organizational
rules of the Mafia, as well as to identify the “key players.” We seek to answer
questions such as: to what extend is the Mafia a randomly generated net-
work? Do criminals connect to other criminals that are similar to them, and
similar with respect to what? What characteristics are associated with the
most central agents in the network? The U.S. experience with Cosa Nostra
and the wealth of individual-level information of our data may offer clues to
promising control techniques in countries where organized crime is on the rise
(Jacobs and Gouldin, 1999).

The Mafia network is probably the best example of real-world network
where the geometry of connections are crucial for understanding the activ-
ity of the network as these connections are the building blocks of the entire
Mafia, and more generally of organized crime even today. Valachi’s 1963 tes-
timony and documents found during the 2007 arrest of Salvatore Lo Piccolo,
a Sicilian Mafia boss, show that the first rule in the Mafia decalogue stays
unchallenged: “No one can present himself directly to another of our friends.
There must be a third person to do it” (Maas, 1968).4 Connections are thus

4The remaining 9 rules are: never look at the wives of friends, never be seen with cops,
don’t go to pubs and clubs, always being available for Cosa Nostra is a duty - even if one’s
wife is going through labor, appointments must be strictly respected, wives must be treated
with respect, only truthful answers must be given when asked for information by another
member, money cannot be appropriated if it belongs to others or to other families, certain
types of people can’t be part of Cosa Nostra (including anyone who has a close relative in
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necessary for a criminal career within the Mafia. Moreover, leadership posi-
tions aren’t simply inherited; soldiers elect their bosses using secret ballots
(Falcone and Padovani, 1991, pg. 101).

Francisco Costiglia, alias Frank Costello, a Mafia boss connected to 34
mobsters, would say “he is connected” to describe someone’s affiliation to the
Mafia (Wolf and DiMona, 1974). In 1970 the Organized Crime Control Act
defined organized crime as “The unlawful activities of ... a highly organized,
disciplined association....” The purpose of this research is to shed light on
these associations and their organizational structure. The structure has its
roots in a world characterized by the absence of legally enforceable contracts.
These criminals need to trust each other, and the purpose of this study is to
understand how and where this trust emerges. To the best of our knowledge,
this is the first study to use network analysis tools on such a detailed set of
information on individual Mafia members to study the emergence of networks:
ranging from their business to their family structure.

Several measures on how central and important members are within the
network are employed. A mobster might exert power because he is either
connected to a large number of members or connected to a few high caliber
figures like Lucky Luciano, Frank Costello, or Joe Bonanno. Mobsters might
also be central because they represent bridges that connect different clusters of
a network. One of the advantages of indices that measure importance based on
network-based connections over indices that rely on rank in the organizational
hierarchy is that they measure importance in a continuous manner—Mafia
bosses are not all equally powerful, and capiregime often differ in their level
of importance—, and are more robust to classification errors (Klerks, 2003).

We evaluate the relative importance of legal and illegal businesses, family
ties, and community ties in shaping these networks, contrasting the economic
with the social view of Cosa Nostra.

Criminals are more likely to be associated with criminals who operate sim-
ilar illegal businesses if they try to build cartels. Or they may try to diversify
the risk of detection by keeping a lower profile and thus associate themselves
with criminals who operate different kinds of businesses. Carefully chosen mar-
riages might help to establish robust criminal ties. These marriages may thus

the police, anyone with a two-timing relative in the family, anyone who behaves badly and
does not posses moral values).
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have the same function as alliances among European royalty: providing new
protectors. Children may also prove important, both because of strategic en-
dogamy and because male descendants represent trusted potential associates.5

Another way children or, more generally, relatives might increase the trust
towards a member is because they represent potential targets for retaliatory
action. Trust, or better, blind obedience, and the vow of silence, called omertà,
are indeed essential for a Mafia clan’s survival. Mafia clans, called “Families”
(as in Bonanno (1983) we use uppercase to distinguish them from the nu-
clear family), represent societies where social capital produces public “bads”
(Portes, 1998). A Family protects its members and guarantees their monopoly
power in exchange for part of their revenues. Large clans will therefore be
more powerful but also more exposed.

Some of these economic insights are present in early theoretical analysis of
criminal behavior. But most studies have focused on a market structure view
of organized crime, where the Mafia generates monopoly power in legal (for a
fee) and illegal markets. Among others, such a view is present in the collection
of papers in Fiorentini and Peltzman (1997), and in Reuter (1983), Abadinsky
(1990), Gambetta (1996), and Kumar and Skaperdas (2009). Only two the-
oretical papers have focused on the internal organization of organized crime
groups. Garoupa (2007) looks at the optimal size of these organizations, while
Baccara and Bar-Isaac (2008) look at the optimal internal structure (cells ver-
sus hierarchies). Sparrow (1991) and later Coles (2001) propose the use of
network analysis to study criminal networks. Morselli (2003) follows their
proposal analyzing connections within a single New York based family (the
Gambino family), Krebs (2002) analyzes connections among the September
2001 hijackers’ terrorist cells, Baker and Faulkner (1993) study the social or-
ganization of three well-known price-fixing conspiracies in the heavy electrical
equipment industry, Natarajan (2000, 2006) analyzes wiretap conversations
among drug dealers, McGloin (2005) analyzes the connections among gang
members in Newark (NJ), Sarnecki (1990, 2001) uses network analysis to study
co-offending behavior among Swedish teenagers. These studies highlight the
importance of deep ties, but have little or no background information on the

5Another instrument for building bonds is the “comparatico,” a spiritual parentage a la
“The Godfather”. Unfortunately the data do not contain information about these kind of
links (Ianni and Reuss-Ianni, 1972).
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individuals.
Our work is also related to the growing literature on trust, family val-

ues, and family businesses. Guiso et al. (2006) present an introduction to
the importance of culture, defined as “customary beliefs and values that eth-
nic, religious, and social groups transmit fairly unchanged from generation to
generation,” on economic behavior. We will argue that the same applies to
criminal behavior. Bertrand and Schoar (2006) present a macro-type analysis
about the importance of family values for economic growth, and conclude with
the comment that more research is needed to understand how family values
shape the organization of businesses and their efficiency.

2 The Invisible Hand of the Mafia

The Mafia, and more generally networks of criminals or gangs have tremen-
dous influence on crime. They amplify delinquent behavior. In the sociological
literature, this is referred as the social facilitation model, where gang members
are intrinsically no different from no-gang members in terms of delinquency
propensity. If they do join a gang, however, the normative structure and
group processes of the gang (network) are likely to bring about higher rates
of delinquency. Gang membership is thus viewed as a major cause of deviant
behavior (see, e.g. Thornberry et al., 1993).6 Moreover, crimes like racketeer-
ing, drug trafficking, gambling, bootlegging, etc require a group to be properly
“organized.”7

Empirical evidence on the relationship between crime and typically un-
observed criminal organizations is, however, scarce, to say the least.8 The
information provided in our data allows us to collect evidence on the pres-
ence of Cosa Nostra across cities. We investigate to what extent the presence
and the density of the Mafia is correlated with local levels of violent (murder,
rape, robbery, and assault) and non-violent (burglary, larceny, and auto theft)

6In his very influential theory of differential associations, (Sutherland, 1947) emphasizes
that the role of gangs is to facilitate the learning of crime technology.

7See Alexander (1997) for an economic analysis of racketeering with collusion.
8Among the few exceptions, Bandiera (2003) analyzes the origins of the Sicilian Mafia,

highlighting how land fragmentation, absence of rule of law, and predatory behavior gener-
ated a demand for private protection.

5

Mastrobuoni and Patacchini: Organized Crime Networks

Published by De Gruyter, 2012

Brought to you by | Princeton University Library
Authenticated | 128.112.203.193

Download Date | 10/18/12 3:54 PM



crimes. Crime rates are based on city-level uniform crime reports.9.
Table 1 shows that the cities included in our data set, i.e. those where the

Mafia operates, (“Mafia cities,” hereafter) are the US cities where more violent
crimes are committed. The variance of these crimes are higher in Mafia cities
which is indicative of the modus operandi of the Mafia organization where pe-
riods of relative “peace” among different families alternate with “Mafia wars,”
with peak crime levels. Most of these cities are also cited by Valachi to be the
ones where Families were active (Maas, 1968).

Table 1: Summary statistics

Variable Mean Std. Dev. N
Cities with the Mafia

Violent crimes 1489.415 699.841 410
Murders 24.941 12.136 410
Rapes 73.215 29.544 410
Robberies 767.827 377.486 410
Assaults 642.239 394.551 410

Cities without the Mafia
Violent crimes 1015.653 626.481 932
Murders 16.041 11.19 932
Rapes 66.253 31.78 932
Robberies 464.084 338.572 932
Assaults 469.275 318.857 932

Notes: Violent (murder, rape, robbery, and assault) crime
rates are based on uniform crime reports between 1970 and
1992. Cities with the Mafia are cities where Families
seemed to be active in 1960 according to our criminal
records.

Among the Mafia cities the top panels of Figure 1 shows the raw correlation
between the number of Mafia members per 100,000 inhabitants and local levels

9We use the same data constructed by Levitt (1997), which consist of a panel of roughly
60 US cities, with observations running from 1970 to 1992. The data are freely downloadable
from the Internet at http://emlab.berkeley.edu/replications/mccrary/index.html
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of violent and non-violent crimes, and in the bottom panel the one between
the Mafia network structure and again violent and non-violent crimes. The
network structure is measured by the average eigenvector centrality of the
Mafia members that live in the city.10 It appears that while the estimated
correlations between Mafia indicators and crimes are only mild for non-violent
crimes, they are clearly strong and positive for violent crimes.

Even though we are comparing the presence of the Mafia in 1960 with the
average crime levels between 1970 and 1992, with persistent crime rates such
correlation would also emerge if Families would systematically choose to re-
side in cities that were more appropriate for racketeering and that happened
to have higher crime rates. In Figure 2 we address the selection issue plotting
the city fixed effects within a typical crime regression that controls for stan-
dard determinants of the local crime rates (including income per capita and
growth, police force, percentage of blacks, government spending in education
and welfare, population age structure) on the presence and the density of the
Mafia. The positive correlation between the Mafia structure and violent crime
rates persists, while non-violent crimes do not seem to be positively related to
the Mafia.

While we cannot claim that selection is not part of the story (city fixed
effects, for example, cannot be fixed over time), it is unlikely to be the only
part. Cracking down on Mafia and its violent culture is likely to lower violent
crime rates. This happened in the US once the government started to severely
prosecute mobsters, and might still happen in the Southern parts of Italy
where the Mafia is still very active. In the next sections of this paper, we
present an analysis of the network structure within Cosa Nostra that can help
prosecutors to understand how Cosa Nostra works and how to best fight it.

10This index will be used in our analysis (Sections 4 and 5). The eigenvector centrality
index assigns larger scores to nodes that are linked to high-scoring nodes than to nodes
that are linked to low-scoring nodes. In appendix A we discuss this index in more detail.
Google’s page rank is a variant of the eigenvector centrality index (Bonacich, 1987).
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Figure 1: Violent and Non-Violent Crime Rates by Mafia Density

Notes: Mafia structure is measured by the average eigenvector index of the city. Violent
(murder, rape, robbery, and assault) and non-violent (burglary, larceny, and auto theft)
crime rates are based on uniform crime reports.
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Figure 2: Violent and Non-Violent Crimes Rate Residuals by Mafia Density

Notes: Mafia structure is measured by to the average eigenvector index. Violent (murder,
rape, robbery, and assault) and non-violent (burglary, larceny, and auto theft) crime rates
are based on uniform crime reports. The city fixed effects are based on typical crime
regression that controls for several time-varying city characteristics.
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3 Data and Descriptive Evidence

The criminal files come from an exact facsimile of a huge Federal Bureau of
Narcotics report of which fifty copies were circulated within the Bureau start-
ing in the 1950s. These files come from more than 20 years of investigations,
and contain detailed information on about 800 mafia members (McWilliams,
1990). Given that in the U.S. there were an estimated 5,000 members active
during those years the list represents a clearly non-random sample of Cosa
Nostra members. More active and more connected mobsters were certainly
more likely to be noticed and tracked, which is probably why most, if not all,
big bosses that were alive at the time have a file. We will address the issue
about the non-random nature of our sample in Section 6.

Let us begin our investigation by describing the information contained in
the criminal records on mafia members. Let us first date the data. Given that
the distribution of the year of first arrest has basically full support within the
range 1908-1960 (the only year without a first arrest is 1910) one can infer
that the data refers to what the authorities knew in 1960.11 The records do
not report any deaths, thus don’t include big bosses that were killed before
1960, i.e. Albert Anastasia boss of one of the 5 New York City families,
the Gambino family.12 Table 2 shows that the average age is 52 years, with
the oldest mobster being 81 years old, and the youngest one 23. Half of the
mobsters reside in either New York, or in New Jersey, and probably entered the
U.S. through Ellis Island. Indeed, 29 percent were born in Sicily and another
10 percent in other regions of Italy.

Most remaining mobsters were born in the United States but were of Italian
origin as this was a prerequisite to become a member. 73 percent of members
are married, but only 60 percent of these are reported to have children. The
overall average number of children is 1 and is 2.14 among members with chil-
dren, equally divided between sons and daughters. 18 percent of members are
married to someone who shares her maiden name with some other member

11Additional evidence is the following description in Michael Russo’s file: “Recently (1960)
perjured himself before a Grand Jury in an attempt to protect another Mafia member and
narcotic trafficker.”

12His brother Anthony “Tough Tony,” instead, was killed in 1963 and is in the records.
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Table 2: Summary Statistics of Individual Characteristics

Mean Std. Dev. Min Max Obs

Variables related to the PERSON
Born in the U.S. 0.59 0.49 0 1 801
Born in Italy (except Sicily) 0.19 0.39 0 1 801
Born in Sicily 0.29 0.45 0 1 801
Age 52.17 10.04 23 81 801
Height in feet 5.61 0.20 5 6.25 790
Weight in pounds 176 27 95 365 790

Variables related to the FAMILY
Interaction index 2.67 5.83 0 53.91 801
Married 0.73 0.44 0 1 801
Divorced 0.05 0.22 0 1 801
Connected wife 0.18 0.38 0 1 801
Number of children 1.02 1.44 0 8 801
Fraction of daughters 0.49 0.37 0 1 352
Siblings 1.97 2.11 0 11 801
Extended family members 1.62 1.05 1 6 801

Variables related to the ACTIVITIES
Resides in NY 0.43 0.50 0 1 801
Resides in NJ 0.06 0.24 0 1 801
Violent crimes 0.63 0.48 0 1 801
Age of first arrest 25.02 9.06 8 67 688
Never arrested 0.16 0.37 0 1 801
Types of crimes committed 2.58 1.70 0 9 801
Types of businesses 1.07 0.97 0 5 801
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(Connected wife). These marriages are presumably endogamous within the
Mafia. 13 The FBN reports an average of 1.97 siblings per member, while the
average number of recorded members that share the same surname is 1.62.

The average height is 5.6 feet, the average weight is 176 pounds.14 Mob-
sters’ criminal career starts early. They are on average 25 years old when they
end up in jail for the first time, and the majority has committed some violent
crime. Only 16 percent do not have an arrest record. Although we do not
know the total number of crimes committed by the mobsters, we know in how
many different types of crime they have apparently been involved. This num-
ber varies between 0 and 9 and the average is 2.58. We also know the number
of different legal businesses they have interest in. This number varies between
0 and 5 and is on average equal to 1.

Another variable summarized in Table 2 is the interaction index. The
index measures the exposure to what Bonanno (1983) calls, in uppercase,
“Tradition” or Hess (1973) calls, in lowercase, “mafia,” or “mafia culture”
to distinguish it from “Mafia” the organization. Looking at Figure 3 helps
explaining the index. It shows the current distribution at the zip code level of
the members’ surnames in Italy’s phone directory.15 Each circle is proportional
to the number of surnames present within each zip code. Not surprisingly
many surnames show up in Sicily, in Naples, and in Calabria. Many of these
surnames appear also in large cities that were subject to migratory flows from
the south, like Milan, Rome, and Turin. For each members’ surname we
computed the probability that it shares a randomly chosen zip code located
in the South of Italy with other surnames from the list. To be more precise,
the index for member i is equal to 100,000 times the sum across zip codes j of
the fraction of surnames of member i present in zip codes j times the fraction
of surnames of the other members (−i) in the same zip code:

interactioni = 100, 000
∑
j

#surnamei,j∑
j #surnamei,j

#surname−i,j∑
j #surname−i,j

.

13Observe that we are probably understating the percentage of marriages within the Mafia
as some Mafia surnames might be missing in the data. While it is also possible that some
women might have a Mafia surname without being linked to any Mafia family, this is very
unlikely conditional on being married to a Mafia associate.

14As a note, 18 percent of the mobsters are obese and 58 percent overweight.
15Unfortunately we could not find the distribution of surnames in 1960.
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Figure 3: Geographical Distribution of Mafia Surnames.

Notes: Each circle represents a zip code. The size of the circles is
proportional to the number of US Mafiamembers’ surnames found in
today’s Italian phone directory. The plot shows only 20 percent of the
distribution of surnames.

The advantage of this index is that we can compute it for all surnames,
while information about the Italian community of origin would only be avail-
able for those born in Italy. The average index is equal to 2.67 per 100,000,
though it’s lower when weighting the data (2.01). Ten percent of the times the
index is zero, either because the zip codes do not overlap or because the sur-
name is not in the phone directory. Such an index will be used in our analysis
to measure the importance of community roots and ties, the so-called “mafia
culture.”

Tables 3 and 4 show the list of legal and illegal activities that at least 5
percent of members were involved in. Most mobsters owned restaurants, drug-
stores or were otherwise involved with the supply of food. Real estate, casi-
nos, car dealerships, and import-export were also common businesses. Drug
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Table 3: Summary Statistics of Le-
gal Businesses

Mean Std. Dev.

Drugstores 0.18 0.38
Restaurants 0.09 0.31
Food companies 0.09 0.28
Manual laborer 0.07 0.26
Casinos 0.07 0.25
Real estate 0.05 0.23
Import export 0.05 0.22
Car dealer 0.05 0.22

Table 4: Summary Statistics of
Crimes

Mean Std. Dev.

Drug offenses 0.43 0.50
Robbery 0.26 0.44
Murder 0.23 0.42
Weapon offenses 0.22 0.42
Simple assault 0.21 0.41
Larceny 0.20 0.40
Burglary 0.13 0.34
Gambling 0.13 0.33
Liquor offenses 0.13 0.34
Extortion 0.07 0.25
Counterfeiting 0.07 0.25

trafficking is the most common of the illegal activities (43 percent), perhaps
partly because the information was gathered by the FBN. Twenty-six percent
of members were involved in robberies and 23 percent in murders. Weapon
offences and assaults are also quite common. Some crimes that are typically
associated with organized crime, like gambling, extortions, and liquor offences
(during prohibition) are highly represented as well.

4 Network-based Measures of Importance

For our purposes, the most valuable information of these data is that each
criminal record contains a list of criminal associates.

We define two mobsters to be connected whenever at least one mobster lists
the other mobster’s last name in his record. In other words, we construct a
(symmetric) undirected network of connections, assuming that if one mobster
nominate (or is nominated by) another mobster interactions are at work even
though the nominations are not reciprocal. Indeed, the list of associates is
restricted to at most eight names.
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There is no evidence about how the FBN established such associations, but
it seems apparent that each profile lists its highest associates. Notice that the
mere keeping track of connections shows that even the FBN understood how
important these connections were.16 Figure 4 indicates, for example, that Joe
Bonanno was associated with Luciano, Costello, Profaci, Corallo, Lucchese,
and Galante. Indirect connections are clearly more numerous, as mobsters
can be listed as associates in several records.

Figure 4: Record Number One: Joe Bonanno

The number of direct connections, called degree in network analysis, is the
easiest way to measure the importance of members.

Evidence on its validity as an indicator of importance within the mafia
organization can be found in Table 5.

16We will address issues related to the direct nature of our data and to the bounded
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Table 5: List of Criminals with the Highest and the Lowest Degree

Lastname Name Degree Top High Apalachin
Criminals with the highest 15 degrees

Lucania Salvatore 71 1 1 0
Ormento John 71 0 2 1
Accardo Settimo 64 1 2 0
Accardo Antonio 64 0 1 0
Genovese Vito 55 1 0 1
Genovese Michael 55 0 1 1
Coppola Michael 54 2 1 0
Coppola Frank 54 0 5 0
Coppola Stephen 54 0 1 0
Strollo Antonio 47 2 2 0
Profaci Frank 44 1 1 0
Profaci Joseph 44 1 2 1
Santoro Salvatore 42 0 0 0
Vitale Vito 40 1 1 0
Vitale Salvatore 40 1 0 0

Criminals with the lowest 15 degrees
Castorina Vincent 1 0 0 0
Kornhauser Max 1 0 2 0
Bibbo Nicholas 1 0 0 0
Virusso Santo 1 0 1 0
Mandala Nicholas 1 0 0 0
Roberto Dominick 1 0 1 0
Simoni Pierre 1 0 0 0
Candelmo John 1 0 1 0
Colombo Frank 1 0 0 0
Bongiorno Frank 1 0 1 0
Amari Philip 1 0 1 0
Peloso Antonio 1 0 0 0
Labarbara Joseph 1 0 0 0
Pine Grace 1 1 1 0
Valle Alarico 1 1 0 0
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Table 5 shows the list of members with the 10 highest and 10 lowest num-
ber of direct connections.17 For each member, the table also reports quali-
tative information on their importance within the organization. Indeed, for
each mobster the FBN records contain a paragraph about his activities within
Cosa Nostra. The variable Top counts the number of times the words “boss,”
“highest,” “most,” “head,” and “top” are cited and High the number of times
“high,” “influential,” “important,” “leader,” “leading,” “powerful,” and “rep-
resenting” are cited. The Apalachin variable indicates whether the mobster
attended the important 1957 Mafia meeting in Upstate New York. Table 5
reveals that criminals with many connections are more likely to be recognized
as high-ranked members, and more likely to have attended the 1957 meet-
ing. Several members in the top distribution of the number of connections are
bosses, i.e. Salvatore Lucania, alias Lucky Luciano, Vito Genovese, Antoni
Accardo, Joe and Joseph Profaci. Salvatore Santoro and Salvatore Vitale were
instead underbosses of the Lucchese and Bonanno Family. Criminals with the
lowest degrees, instead, are mostly soldiers.

Although the number of direct connections (degree) is a simple (and valid)
indicator of the importance of network members, in recent years social network
studies have proposed different centrality measures to account for the variabil-
ity in network location across agents, and there is no systematic criterium to
pick up the “right” centrality measure for each particular situation (Borgatti,
2003, Wasserman and Faust, 1994).18

Unlike degree, which weights every contact equally, the eigenvector index
weights contacts according to their centralities. The index takes direct as well
as indirect connections (and thus the whole network) into account.19 The
closeness index represents the inverse of the average distance between a node
(a member) and all the other nodes, and is a good measure for how isolated
members are. The betweenness index measures the number of times a node

nature of the nomination number in Section 6.
17Since connection are based on surnames members with the same surname will share the

same degree. This introduces some noise but dealing with the large variation in first names,
i.e. Antonio/Tony/Anthony, would introduce even more noise in graphing the network.

18See also Sparrow (1991) for a discussion on centrality indices in criminal networks.
19As first noted by Granovetter (1973), weak ties (i.e. friends of friends) are important

source of information. See Patacchini and Zenou (2008) for the role of weak ties in explaining
criminal activities.
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is on the shortest path between two randomly chosen nodes, and is a good
measure for the member’s capacity to act like a bridge between clusters of
members. A detailed exposition of these indicators can be found in Appendix
A.

These measures of individual centrality allow us to consider different nu-
ances in the definition of a Mafia leader. We also construct a qualitative indi-
cator of importance equal to the sum of the citations Top and High discussed
above (Top Ranked Citations), and another one which is simply a dummy
equal to one when Top Ranked Citations is positive, called Top Ranked.

Table 6 collects descriptive statistics about various indicators of impor-
tance.20 Fifty-five percent of the mobsters appear to be high-ranked (Table
6), meaning that their descriptions includes at least a word that implies lead-
ership.

Table 6: Summary Statistics of Network-related Variables

Variable Mean Std. Dev.

Degree 11.14 9.55
Degree (std.) 14.49 13.64
Centrality (std.) 12.57 14.16
Closeness (std.) 52.53 15.25
Betweenness (std.) 5.10 9.46
Top ranked 0.55 0.50
Top rank citations 0.85 1.02

Figure 5 illustrate the empirical distribution of the network indices in our
sample. Figure 5 shows that the density of degree is positively skewed. The
eigenvector index (centrality) has a density that is very similar to that of de-
gree, while the density of closeness is more symmetrically distributed, meaning
that most mobsters are neither too isolated nor too close within the network.
The density of betweenness, instead, shows that very few mobsters represent
bridges between subsets of the network, most likely Families. Different mea-
sures of centrality thus seem to capture different roles within the criminal
organization.
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Figure 5: Densities of Centrality Indices
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Figure 6 shows that all centrality measures grow steadily with age until
age 60 and later start decreasing. Like typical earning profiles there is an in-
verse U-shaped relationship between centrality and age, but while for earnings
profiles the peak is typically around 45 or 50, in the Mafia it is at least 10
years later. This finding confirms Ianni and Reuss-Ianni (1972, pg.130)’s an-
thropologic results about the importance of age in determining the leadership
positions. The difference between the minimum age (23) and age (60) doubles
the degree, and the eigenvector index, and triplicates betweenness. Closeness,
instead, shows a very steep increase up to age 30 and then flattens out, but
the overall increase is more modest.

Figure 7 presents how the interaction index, the continuous proxy for
“mafia culture” influences centrality. The overall patterns are less clear than
for age, but when interactions are very high all centrality measures appear to
increase as well.

The evidence collected so far is thus in line with some conjectured organiza-
tional rules of the Mafia, it shows that network centrality indicators adequately
capture the importance of mafia leader (with different nuances) and, most im-
portantly, it clearly documents that links are not random. As pointed out by
Jackson and Rogers (2007), the distribution of degree in a socially generated
network is more unequal than in random networks. In random networks the
log-frequency is linear in log-degree. Figure 8 reveals that, in fact, this is not
true for the Mafia network. The interesting question is then: what are the
forces shaping the associations between criminals? Are criminals more likely
to be associated with criminals who established similar illegal businesses or do
they prefer to diversify the risk of detection keeping a lower profile and thus
associate themselves with criminals who operate different kinds of businesses?

Our data show that criminals tend, indeed, to associate with like-types
both in illegal and legal activities. Table 7 shows the extent to which crimi-
nals associate with other criminals in similar kind of business, in illegal and
legal activities. The table shows positive and significant correlation, called

20The individual centrality measures have been normalized to be between 1 and 100
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Figure 6: Centrality and Age

Notes: The figures show Kernel-weighted local linear regression and the corresponding 95
percent confidence interval.
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Notes: The figures show Kernel-weighted local linear regression and the corresponding 95
percent confidence interval. The interaction index has been truncated at the 95th
percentile.
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assortativity, for almost all crimes and legal businesses detailed in our data.

Table 7: Positive Assortativity Among Crime and Business Types

Crimes Businesses

β̂ SD(β̂) β̂ SD(β̂)
Murder 0.440 0.083 Restaurants 0.158 0.095
Robbery 0.478 0.091 Drugstores 0.184 0.098
Simple assault 0.339 0.087 Food companies 0.447 0.111
Burglary 0.232 0.099 Real estate 0.310 0.134
Larceny 0.068 0.094 Import export 0.403 0.155
Counterfeiting 0.361 0.148 Manual laborer 0.215 0.129
Drug offenses 0.939 0.053 Casinos 0.348 0.111
Gambling 0.608 0.117
Liquor offenses -0.001 0.072
Weapons offenses 0.160 0.086
Extortion 0.403 0.135

Notes: Estimated coefficients and clustered standard errors by surnames from a regression
of crime type dummies on the fraction of associates who perpetrated the same crime type.
I restrict the data to businesses held and crimes perpetrated by at least five percent of the
sample.

The next section is going to describe mobsters depending on their central-
ity.

5 Who is a mafia leader?

We investigate the characteristics that correlate with our indicators of leader-
ship using a simple linear relationship between the k-th index of importance cki
of individual i and his observable characteristics Xi: c

k
i = β ′Xi+ei, k = 1, ..., 4,

where ei denotes the random error term.
Each model controls for the number of mobsters that in the data share the

same surname. We call this variable “Extended family members” despite the
possibility that some of these mobsters might not be related to each other.
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Given that the connections are based on surnames, we add this variable to
control for the mechanical effect that an increase in the number of mobsters
might have on the centrality measures.

The Eigenvector Index
We start our simple regression analysis using the eigenvector index as de-

pendent variable, as it depends both on the number and the quality of each
mobster’s connections (i.e. it takes into account both direct and indirect con-
nections).

The first column of Table 8 contains the estimation results when using
a parsimonious set of explanatory variables. Age enters quadratically. Peak
centrality is reached at age 59 and both terms are significant. The finding of
a peak late in life is consistent with Ianni and Reuss-Ianni (1972)’s account of
hierarchies based on generations (though it might also reflect that more able
mobsters are more likely to be alive). Another variable that has a significant
positive influence on centrality is being born in Sicily (a 20 percent increase).

This means that not only is the American Mafia an Italian enterprise, it
values direct links with Sicilians more than with people from other parts of
Italy. Sicilian kin-centered social system, with its code of honor and vow of
silence, forms the building block for the Mafia. Bonanno would write that
among Italians he felt safe only around Sicilians. Moreover, nativity does not
fully capture adherence to the mafia code of law as 60 percent of the mobsters
were born in the U.S. This is why we use the interaction index, which depends
on the geographical distribution of last names, to proxy for community ties
and exposure to the “Tradition.” The index has a positive and significant effect
on network centrality. Members from Sicily and those with stronger ties to the
Mafia culture are likely to be trusted more, as they are more likely to adhere
to the omertà. Body weight of the mobster does not influence his status.

In column 2 we control for additional factors, like the nuclear family struc-
ture of the mobster, that might in part be endogenous. The purpose is thus
merely descriptive, and useful for predictive purposes. Each additional child
increases the eigenvector index by 0.8. Children thus seem to be more valu-
able for higher ranked mobsters. It doesn’t matter whether the child is male
or female. This finding challenges the criminological view that within the
Mafia male children are more valuable than female ones because they repre-
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Table 8: Correlates of the Eigenvector Index

(1) (2)
Eigenvector index

Extended family members 4.672*** 5.041***
(0.905) (0.764)

Born in Italy (except Sicily) -1.042 -0.599
(1.128) (1.056)

Born in Sicily 2.578* 3.387**
(1.466) (1.381)

Age 0.899*** 0.909***
(0.304) (0.315)

Age squared/100 -0.765** -0.768**
(0.300) (0.311)

Interaction index 2.512* 2.388*
(1.407) (1.316)

Height in feet 2.049 2.534
(2.580) (2.423)

Weight in pounds 0.001 -0.004
(0.020) (0.018)

Married -0.737
(1.057)

Divorced -0.507
(2.369)

Connected wife 4.505***
(1.546)

Number of children 0.808**
(0.347)

Fraction of daughters 1.778
(1.903)

Siblings -0.115
(0.218)

Resides in NY 5.297***
(1.123)

Resides in NJ 2.734*
(1.650)

Violent crimes 1.337
(0.931)

Age at first arrest -0.057*
(0.034)

Never arrested -2.176*
(1.199)

Types of crime committed 0.773**
(0.299)

Types of businesses 1.915***
(0.527)

Observations 801 801
R-squared 0.195 0.287

Mean value: 12.57 12.57

Notes: The regressions include also missing dummies for year of birth, height, and weight.
Clustered (by family) standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1.
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sents potential “workforce.” The leading explanation for this finding is that
in a male only society like the Mafia “connected” girls (probably in excess
demand) could be married strategically. The number of siblings, and being
married or divorced does not influence the centrality index. This is in line
with Falcone and Padovani (1991, pg. 113)’s view that unlike the Mafia in
Italy the American Mafia adopted a more liberal view towards divorce. Be-
ing married to a wife who is connected, instead, is associated to an almost
50 percent increase in the index. These findings, again, seem to suggest that
having more trusted links is associated with an higher number of connections.
However, we cannot rule out the possibility that more connected mobsters are
also more likely to find, or be given, a connected wife. While these alternative
interpretations do not matter when the only purpose is to discover the leading
figures within the Mafia, one has to be careful in giving a causal interpretation
to these findings. The leading mobsters are active in New York and New Jer-
sey. The remaining two variables measure how many different types of crime
and different types of businesses the mobster was involved in. Both variables
are positive. This is consistent with more able criminals being more able to
diversify risk. But the number of business types (+16 percent) are a better
predictor for “key players” than the number of crime types (+4 percent). The
combined regressors explain almost 30 percent of the variability of the eigen-
vector index. Criminals who were known to have committed violent crimes
have a larger index, but the effect is not significant. An arrest increases the
importance, but reverse causality might imply that higher ranked individuals
are more likely to be arrested. Age at first arrest is negative, showing that
not only age, but also experience increases the level of centrality in the net-
work (young members are often recruited in jail; Ianni and Reuss-Ianni, 1972,
pg. 45), but this effect is also not significant once we control for all the other
factors.

Other Network Centrality Indices
As mentioned before, eigenvector centrality represents only one way to

measure centrality in the network. Other indices capture different nuances of
centrality. In Table 9 we look at different measures of centrality and impor-
tance using the same specification used in the last column of Table 8.

In order to highlight how different measures are able to capture different
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Table 9: Correlates of Other Centrality Measures

(1) (2) (3) (4) (5) (6) (7)
Eigenvector Closeness Betweenness

Degree Total Residual Total Residual Total Residual

Extended family members 5.631*** 5.041*** -0.152 6.524*** 2.844*** 1.616*** -0.009
(0.873) (0.764) (0.494) (0.751) (0.585) (0.590) (0.037)

Born in Italy (except Sicily) -0.363 -0.599 -0.265 -2.216* -0.407 -1.900** 0.039
(0.993) (1.056) (0.621) (1.259) (0.615) (0.956) (0.093)

Born in Sicily 2.592** 3.387** 0.996 4.099*** 1.642* 1.840* 0.153
(1.318) (1.381) (0.682) (1.346) (0.887) (0.961) (0.099)

Age 1.123*** 0.909*** -0.126 1.386*** 0.804*** 0.407 0.015
(0.312) (0.315) (0.190) (0.368) (0.226) (0.305) (0.027)

Age squared/100 -1.010*** -0.768** 0.163 -1.244*** -0.763*** -0.364 -0.002
(0.307) (0.311) (0.185) (0.362) (0.224) (0.299) (0.026)

Interaction index 2.783** 2.388* -0.179 2.428*** 3.582*** 0.002 -0.056
(1.278) (1.316) (0.797) (0.907) (0.841) (0.820) (0.058)

Height in feet 3.180 2.534 -0.399 5.166* 1.258 2.395 -0.104
(2.359) (2.423) (1.230) (2.677) (1.615) (1.818) (0.206)

Weight in pounds 0.003 -0.004 -0.007 -0.007 0.001 -0.009 0.001
(0.018) (0.018) (0.008) (0.021) (0.013) (0.016) (0.001)

Married 0.028 -0.737 -0.763 0.423 -0.535 0.399 -0.051
(1.006) (1.057) (0.538) (1.126) (0.728) (0.823) (0.087)

Divorced -1.423 -0.507 0.805 -1.264 -0.511 -0.024 0.083
(1.973) (2.369) (1.135) (2.693) (1.182) (1.984) (0.163)

Connected wife 4.388*** 4.505*** 0.457 3.236** 1.916** -0.589 0.107
(1.418) (1.546) (0.734) (1.315) (0.910) (0.937) (0.104)

Number of children 0.826** 0.808** 0.046 0.810** 0.531** 0.090 0.012
(0.336) (0.347) (0.178) (0.326) (0.255) (0.239) (0.029)

Fraction of daughters 0.552 1.778 1.269 0.944 -0.366 0.463 0.167
(1.604) (1.903) (0.959) (1.745) (1.091) (1.265) (0.142)

Siblings 0.113 -0.115 -0.219* 0.224 0.184 0.126 0.037*
(0.196) (0.218) (0.113) (0.219) (0.136) (0.157) (0.019)

Resides in NY 2.186** 5.297*** 3.281*** 7.412*** 0.379 5.507*** 0.166**
(0.963) (1.123) (0.612) (1.064) (0.645) (0.761) (0.084)

Resides in NJ 0.554 2.734* 2.223** 8.119*** 1.839 7.637*** 0.323*
(1.916) (1.650) (0.914) (2.016) (1.836) (1.633) (0.189)

Violent crimes 0.733 1.337 0.662 0.602 0.561 -0.036 0.084
(0.874) (0.931) (0.526) (0.929) (0.629) (0.708) (0.082)

Age at first arrest -0.014 -0.057* -0.043* -0.016 -0.007 -0.003 -0.002
(0.032) (0.034) (0.022) (0.041) (0.021) (0.033) (0.003)

Never arrested -1.704 -2.176* -0.604 -1.312 -0.868 0.173 -0.053
(1.141) (1.199) (0.692) (1.470) (0.763) (1.098) (0.112)

Types of crime committed 0.668** 0.773** 0.157 0.568 0.259 -0.014 0.014
(0.270) (0.299) (0.145) (0.350) (0.164) (0.230) (0.024)

Types of businesses 1.406*** 1.915*** 0.619*** 1.849*** 0.796** 0.623* 0.087**
(0.475) (0.527) (0.236) (0.511) (0.323) (0.348) (0.040)

Observations 801 801 801 801 801 801 801
R-squared 0.323 0.287 0.091 0.367 0.266 0.136 0.071

Notes: The regressions include also missing dummies height and weight. The leader
variable counts the number of words that describe mobsters as leaders. Clustered (by
family) standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1
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characteristics of the network, and since there is no systematic way to decom-
pose the different centrality measures based on the importance of direct and
indirect links, we use a simple statistical way to accomplish the same goal:
we simply consider as a dependent variable the residual (εji ) of a linear pro-
jection of the alternative measures of centrality (cji ; j �= 1) on degree (c1i ):
cji = α + βc1i + εji ; j �= 1. The coefficients on the residuals of a particular
centrality index measure the nuances captured by that particular index with
respect to a simple count of direct connections. Column 2 replicates the last
column of Table 8 to ease the comparison with the other measures. Compar-
ing columns 1 and 2 shows that the coefficients are not very different when
degree is used to proxy for leadership. The only coefficients that seem to be
smaller are the ones on residing in New York or New Jersey, and the one on
the types of businesses. A simple test for the significance of these differences
that looks at the residuals confirms that these differences are significant. This
means that living in New York and New Jersey, and the number of businesses
increase the eigenvector centrality not only through the direct links but also
through the indirect links, while for all the other variables that are significant
in column 2 but not in column 3 only direct links matter (connected wife, age,
and the interaction index).

Closeness, an inverse measure of the average distance from the other mem-
bers, and Betweenness, the ability to build bridges, capture instead different
aspects in the definition of individual importance or power within a network.
Column 4 shows that Closeness is more than any other index dependent on
kinship. The “Sicily” coefficient, the interaction index coefficient, and the
“Connected” wife coefficient are all highly significant. Moreover, column 5
shows that a large part of these effects is driven by the indirect links (cannot
be explained by degree alone).

Results that use betweenness as a dependent variable shown in column 6
present a very interesting findings: there is no evidence that bridges are build
through marriages. The coefficient on the Connected wife dummy is precisely
estimated to be close to zero. Strategic marriages are thus confined to hap-
pen within “friendly” clans, and not across clans that wouldn’t otherwise be
connected. The number of different crimes committed also have no bridging
capacity, while businesses do. Experience and age, instead, influence between-
ness beyond the increase in degree. And so does being Sicilian, residing in
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New York or New Jersey, and being active in several businesses.
Qualitative Measures of Importance
In column 2 of Table 10 we exploit the qualitative information on the

mobsters contained in the records. In particular, we use the same specification
as before but using Top Ranked Citations defined in Section 4 as the dependent
variable. Overall the results confirm the importance of directly migrating
from Sicily, being old and experienced, residing in New Jersey or New York,
being active in many types of businesses, and using violence. But marrying a
connected wife, having children, having strong community ties (interactions),
and the number of crimes committed are no longer significantly related to
leadership. This lack of significance leads to a lower R-squared (8 versus 28
percent). While there might be superior ways to extract the information known
by the FBN (we did try several qualitative measures), network based measures
seem to capture additional attributes of leadership.

6 Robustness checks

Table 11 shows three types of robustness checks. In the first (columns 1 and
2), instead of using undirected links we exploit the directed nature of the
nominations, meaning that we define mobster i to be connected to mobster j if
i appears as an associate in the criminal profiles of j. We thus use here only the
indegree, i.e. the number of times someone appears as an associate in criminal
profiles of other mobsters (standardized to lie between 0 and 100). Given that
outdegree is somehow bounded, it is not surprising that the coefficients are
driven by indegree, and thus are very close to the ones based on undirected
connections shown in the first column of Table 9. The second robustness check
relates to the truncation of the sample. Since we have information 800 out
of an estimated 5,000 “made” men across the U.S., our sample is truncated.
We attempt to simulate the possible bias of our results that a truncation
might generate (see Borgatti et al., 2006, for a similar simulation). Columns
3 and 4 show the mean and the median coefficients obtained in regressions
based on 500 different samples where we randomly truncated 50 percent of
the observations. Truncation tends to reduce the size of the coefficient on the
dummy “connected wife,” which is reasonable given that smaller samples lead
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Table 10: Correlates of the Qualitative Importance Indica-
tors

(1) (2)
Eigenvector Top Ranked

Extended family members 5.041*** -0.009
Born in Italy (except Sicily) -0.599 0.039
Born in Sicily 3.387** 0.153
Age 0.909*** 0.015
Age squared/100 -0.768** -0.002
Interaction index 2.388* -0.056
Height in feet 2.534 -0.104
Weight in pounds -0.004 0.001
Married -0.737 -0.051
Divorced -0.507 0.083
Connected wife 4.505*** 0.107
Number of children 0.808** 0.012
Fraction of daughters 1.778 0.167
Siblings -0.115 0.037*
Resides in NY 5.297*** 0.166**
Resides in NJ 2.734* 0.323*
Violent crimes 1.337 0.084
Age at first arrest -0.057* -0.002
Never arrested -2.176* -0.053
Types of crime committed 0.773** 0.014
Types of businesses 1.915*** 0.087**
Observations 801 801
R-squared 0.287 0.071

Notes: The dependent variable “Leadership” counts the number of
times the words “boss,” “highest,” “most,” “head,” ‘top,” “high,”
“influential,” “important,” “leader,” “leading,” “powerful,” and
“representing” are cited. The regressions include also missing
dummies for height and weight. Clustered (by family) standard
errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1.
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to an increase in misclassification error of that particular variable. The other
coefficients tend to be quite stable.

Table 11: Robustness Checks

β se(beta) simulated β se(beta)
average median MC weighted

Extended family members 5.541*** 0.861 6.031 5.916 3.991*** 0.737
Born in Italy (except Sicily) -0.437 0.975 -0.294 -0.262 -0.264 0.663
Born in Sicily 2.577** 1.293 2.968 3.082 2.183*** 0.814
Age 1.111*** 0.308 1.148 1.139 0.315* 0.178
Age squared/100 -0.999*** 0.302 -1.03 -1.023 -0.243 0.177
Interaction index 2.766** 1.262 3.023 2.764 2.363** 1.099
Height in feet 3.094 2.326 3.066 3.24 2.137 1.483
Weight in pounds 0.003 0.018 0.005 0.005 0.004 0.009
Married 0.041 0.988 0.628 0.539 0.288 0.596
Divorced -1.54 1.955 -0.578 -0.602 -1.137 1.4
Connected wife 4.777*** 1.5 4.277 4.018 2.925*** 0.861
Number of children 0.810** 0.332 0.821 0.802 0.15 0.212
Fraction of daughters 0.531 1.576 0.408 0.453 1.022 1.087
Siblings 0.124 0.194 0.088 0.095 -0.093 0.132
Resides in NY 2.114** 0.947 2.532 2.563 3.485*** 0.626
Resides in NJ 0.69 1.893 0.71 0.651 2.376* 1.346
Violent crimes 0.692 0.861 0.631 0.558 -0.036 0.492
Age at first arrest -0.018 0.031 -0.023 -0.023 -0.032 0.023
Never arrested -1.703 1.123 -1.779 -1.696 -0.741 0.794
Types of crime committed 0.645** 0.267 0.673 0.671 0.219 0.203
Types of businesses 1.344*** 0.466 1.481 1.518 0.666** 0.283

Notes: The first two columns show the coefficients and the standard errors based on the
whole sample. Columns 3 and 4 show the mean and the median coefficients of 500
regressions based on randomly truncated samples.

In the third robustness check we address more in detail the non-random
nature of our data by assigning to each observation a weight that is propor-
tional to the probability of being included in the sample. The more a mobster
is connected, the more he becomes exposed, and likely to be monitored and,
thus recorded in our data files. The adjacency matrix of a network G keeps
track of the direct connections, the kth power Gk = G(k times)... G of this ad-
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jacency matrix then keeps track of indirect connections. Such matrices can
be used to detect the probability that, given an initial sample of network
members, each other member is going to be detected. This approach resem-
bles a sampling procedure that has been called Respondent-Driven-Sampling
(RDS) (Heckathorn, 1997). Indeed, there are no exact records about how the
FBN followed mobsters and constructed the network, though with the use of
surveillance posts, undercover agents, etc. agents were probably discovering
previously unknown mobsters following known ones.

If one starts with an initial fraction of P mobsters that are observed which
probabilities p0, that is a 1 × N vector of zeros and ones (if observed) row
normalized, called the seed, after k steps the likelihood of observing a mobsters
is

p0G
k = pk

where the row-normalized G in this context indicates the transition matrix.
The solution of such a system,21 i.e. the stationary distribution p, does not
depend on the seed and represents the the likelihood that a mobsters has been
observed after several steps.

The corresponding resampling weights are going to be simply w0
i =

1
pi
, with

0 < pi < 1, where pi is the generic element of the eigenvector associated to the
largest eigenvalue of G which is equal to 1 if the matrix is row standardized.

The last two columns of Table 11 contain our regression results ( 9) with
weighted observations. The weighting scheme lowers the average of the eigen-
vector centrality index from 12.57 to 6.93. With this qualification in mind, it
appears that the results remain basically unchanged, i.e. the relative variation
with respect to the sample means is unaffected by the weighting scheme.

7 Concluding remarks

This paper presents the first through micro-level analysis of the US Mafia
network. A network-based analysis of this structure allows us to find empirical
support of sociological and historical views about the functioning of these
criminal networks, with notable qualifications. Unlike economic organizations
hierarchies depend crucially on kinship. We document that variables that

21The Perron-Frobenius theorem ensures that such a vector exists and is unique.
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lower the risk of defection – family ties, violence, and mafia culture among
others – increase the number of connections. In particular, we find signs of
strategic endogamy. Our results are consistent with the view that women
are used to foster the Family’s network centrality. However, this is only true
within trusted Families. Indeed, our results reveal that woman are not used
to bridge Families that are not otherwise closely connected. We also find that
trust shapes the network. Where values are shared and the mafia culture is
strong, connections are more stable and thus more numerous. Coherent with
mafia culture, how central members are within the network increases steadily
with age. And more central members have more businesses, legal and illegal
ones.

Mathematical modeling that ties social network structure with the diffu-
sion of economic behavior is expanding at a radical pace. Empirical evidence
on observed social network phenomena can thus be helpful to inform such a
modeling. But our empirical evidence has also an important value per se, for
policy purposes.

If social connections are the driving forces of the phenomenon under con-
sideration and if their structure is non-random, as in our case, a detailed study
of the characteristics of the network reveals some relevant features of social
structure that can guide crime prevention policies. A targeted policy identi-
fying “key players” in a given area may be an effective way to reduce crime
(Ballester et al., 2006, Réka et al., 2000). A necessary condition for designing
such policies is the ability to map and identify a social network structure. De-
tailed information about the hierarchy might even allow enforcement agents
to break the chain of command by arresting sets of mobsters (Farley, 2003).
Only detailed empirical studies on real-world social networks of criminals can
provide guidance in this direction.
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A Centrality Measures

Let N = {1, . . . , n} be a finite set of agents in network g. Let us define G as
the n−square adjacency matrix of the network g , i.e. the matrix that keeps
track of the direct connections in this network, where gij = 1 if i and j are
directly linked, and gij = 0, otherwise.

The simplest index of connectivity is the number of direct links stemming
from each agent i in the network, i.e. degree centrality:

c1i =

n∑
j=1

gij .

This definition of centrality is thus based on the number of direct links
only. A variant of simple degree is eigenvector centrality, which also takes into
consideration indirect links:

c2i = λ−1
n∑

j=1

gijc
2
j

where λ is the highest eigenvalue of the matrix G. The formula implies (re-
cursively) that the centrality of individual i is proportional to the sum of
centralities of the individuals she/he is connected to. It thus can be high even
if she/he has low degree.

The standard measure of closeness centrality of individual i is given by:

c3i =
1∑n

j=1 dij

where dij is the geodesic distance (length of the shortest path) between indi-
viduals i and j.22 As a result, the closeness centrality of individual i is the
inverse of the sum of geodesic distances from i to the n − 1 other individu-
als and can be regarded as a measure of how long it will take information to
spread from a given member to other members in the network. Betweenness

22The length of a shortest path is the smallest k such that there is at least one path of
length k from i to j. I can identify such a length by computing G, G2, G3, ..., until I find
the first k such that the (i, j)th entry of Gk is not zero.
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indexes derive from the number of optimal paths across (or from) every node.
It can be defined as:

c4i =

n∑
j,l

ajl,i
ajl

where j and l denote two given agents in g, ajl,i is the number of shortest paths
between j and l through i, and ajl is the number of shortest paths between j
and l.
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