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Abstract

Much politico-economic research on individuals’ preferences is cross-sectional and does

not model dynamic aspects of preference or attitude formation. I present a Bayesian dynamic

panel model, which facilitates analysis of repeated preferences using individual-level panel

data. My model deals with three problems. First, I explicitly include feedback from previous

preferences taking into account that available survey measures of preferences are categorical.

Second, I model individuals’ initial conditions when entering the panel as resulting from

observed and unobserved individual attributes. �ird, I capture unobserved individual prefer-

ence heterogeneity, both via standard parametric random e�ects, and via a robust alternative

based on Bayesian nonparametric density estimation. I use this model to analyze the impact of

income and wealth on preferences for government intervention using the British Household

Panel Study from 1991–2007.

1I am indebted to Je� Gill, Michael Malecki, Michael Becher, Tom Snijders, Simon Jackman,�omas Gschwend,

Vera Troeger, Adam Ziegfeld, Jeroen Vermunt, Martyn Plummer, as well conference and seminar participants

in Chicago, Berlin, Cologne, Oxford, and Tilburg for helpful comments and criticisms. Equal thanks is due

to my reviewers and the editors. Furthermore, I thank the Oxford Supercomputing Centre for resources and

support.



1. INTRODUCTION

Individuals’ political and economic preferences typically exhibit patterns of both stability and

change (e.g. Wlezien 1995). On the one hand, preferences are o�en very highly correlated

over time. But, on the other hand, preferences can change in response to external events, such

as income shocks, becoming unemployed, or experiencing an economic crisis. To capture

the dynamics of preferences – their stability and their change – an appropriate modeling

strategy involves the use of individual-level panel data and dynamic panel models, in which

past preferences in�uence current preferences via a �rst-order Markov process. Panel data are

increasingly being used in political science, both in the form of long-term household panels,

such as the British Household Panel Survey, and election panels, such as the Cooperative

Campaign Analysis Project. Linear dynamic panel models are also well known in political

science (for an introduction see Wawro 2002 in this journal). However, the application of

these models to modeling dynamic preferences is not straightforward.

�ree central issues arise when modeling preference dynamics: categorical preference

measures, endogenous initial observations, and individual heterogeneity. First, although

political scientists conceive of preferences as continuous, available survey data on preferences

is usually ordered-categorical, o�en using rather coarse categories. �e nonlinear nature of

preference measures prohibits direct application of established linear dynamic panel models

(e.g. Arellano and Bond 1991; Blundell and Bond 1998) and instead requires a dynamic model

for categorical data for both the dependent variable and the feedback process. Second, because

initial conditions – an individuals’ preference states when entering the panel – are endogenous

to the preference formation process under study, one should explicitly model initial conditions

in nonlinear panel models (Heckman 1981b; Nerlove et al. 2008). �ird, unobserved individual

heterogeneity must also be modeled explicitly in order to capture unobserved or unmeasured

e�ects of individual characteristics such asmotivation or ability. Whenmodeling heterogeneity

via Gaussian random e�ects – as is standard in virtually all hierarchical models in political

science – inferences can be sensitive to this speci�c distributional assumption and should

be checked using a more �exible model speci�cation.2 Standard �xed e�ects estimation

strategies are unavailable due to the presence of a lagged dependent (endogenous) variable in

the nonlinear model (see, e.g. Nickell 1981; Heckman 1981b; Arellano and Carrasco 2003).

I present a Bayesian robust latent dynamic ordered probit model, which tackles these three

problems. First, it captures the categorical nature of survey-based preferencemeasures by using

2Dynamic panel models for ordinal data are not widely developed in political science. �eoretical work and

applications exist in biostatistics, medicine, and �nance (e.g. Lunn et al. 2001; Hasegawa 2009; Varin and

Czado 2010; Czado et al. 2011; Müller and Czado 2005), but are developed with long time-series in mind, and

are not concerned with initial conditions in short panels of individuals (note that the start of medical studies

o�en does coincide with the start of the data generating process). Pang (2010) presents a model for repeated

categorical data using correlated residuals. However, extending the model to include dynamic feedback is not

straightforward due to the special status of initial conditions (cf. appendix A). Pudney (2006, 2008) presents

a model for dynamic ordinal data using Gaussian random e�ects in a maximum likelihood framework.
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an ordered probit speci�cation, in which a continuous latent preference variable generates

observed survey responses. Most existing categorical dynamic panel models specify the lagged

dependent variable as categorical, which implies the unrealistic assumption that current

continuous preferences are in�uenced by past categorical survey responses. In contrast, I specify

feedback from previous preferences to current ones as also arising from latent preferences, thus

appropriately distinguishing between continuous concept and categorical survey items. Second,

I model initial conditions using a simultaneous equation speci�cation, in which individuals’

initial observations depend on observed covariates, background information, such as parents’

education, and unobserved individual speci�c e�ects. �ird, I present robust speci�cations

for the distribution of unobserved heterogeneity. I specify hierarchical or multilevel models

with both Gaussian and t-distributed random e�ects. To relax these parametric assumptions, I

employBayesian nonparametric density estimation for �exible estimation of the randome�ects

distribution using Dirichlet process priors (for recent applications of Bayesian nonparametrics

in political science see Imai et al. 2008; Gill and Casella 2009; Grimmer 2010; Spirling and

Quinn 2010).

�e paper proceeds as follows. In the next section I set up the hierarchical latent dynamic

panel model, discuss my treatment of initial conditions, the speci�cation of priors, and pos-

sible model extensions. Next, I present robust random e�ects speci�cations using Dirichlet

process priors. I illustrate the model by an example from the political economy of redistri-

bution preferences – where studies are usually cross-sectional and ignore both unobserved

heterogeneity and dynamics. I analyze the impact of income and wealth on preferences for

government intervention using the British Household Panel Study from 1991–2007, which

repeatedly measures individual preferences for nearly 2000 individuals. I discuss results

arising from the model speci�cation using standard Gaussian random e�ects and illustrate

how to conduct robustness tests using the �exible Dirichlet process random e�ects model.

�e last section concludes the paper.

2. LATENT DYNAMIC MODEL

A dynamic analysis of individual behavior or preferences has three features not present in

cross-sectional studies. First, individual preferences show a certain degree of persistence.

While cross-sectional studies provide a snapshot of individuals in time, modeling the dynamics

of preferences using panel data provides an explicit model of how preferences change over

time (Bartels 1999). A straightforward theoretical speci�cation posits that preferences are

persistent, which creates correlated observations within the same individual. In other words,

“[...] preferences remain unchanged unless something happens to change them [...]” (Wlezien

1995: 989). �us a dynamic model of preferences should include a persistence parameter

capturing this correlation.

Second, some individual characteristics, such as intelligence or motivation, can have

a strong in�uence on preferences or attitudes, but are unobserved or unobservable to the
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researcher. �is individual heterogeneity is captured via individual constants, which I specify

as random e�ects (I discuss robustness of distributional assumptions in section 3). It is well

known that if heterogeneity is present in the true data generating process but ignored in the es-

timatedmodel, the degree of preference persistence will be overestimated (see Heckman 1981a).

Conversely, ignoring persistence leads researchers to overstate the extent of heterogeneity.

�us, a completely speci�ed model of dynamic preferences has to include both components.3

�ird, a sample of individuals, be it cross-sectional or a panel, provides only a time-

limited observation window. Individuals started forming their beliefs and preferences a

long time before one starts observing them. �e fact that individuals do not enter a study

with an ‘empty mind’, i.e. the problem of initial conditions, has to be included in the model.

�ose three features are important, when interpreting the e�ect of shocks (such as becoming

unemployed) on preferences. Estimating the e�ect of such shocks from cross-sectional data,

ignoring preference persistence as well as individual heterogeneity, might lead to erroneous

conclusions.

2.1. Modeling dynamics

Concepts like preferences and attitudes are not inherently discrete. �e fact that oneworkswith

categorical variables is usually simply due to methodological limitations in data collection and

measurement (McKelvey and Zavoina 1975). Consequently, preferences should be speci�ed

as a latent variable zt which represents the underlying continuous concept that generates

observed categorical scores yt (e.g. Greene and Hensher 2010). Since from the conceptual

perspective of preferences there is no reason to expect that current continuous preferences

depend on past preference categories, we also need the latent variable to appear on the right

hand side of our dynamic panel model (Heckman 1978; Müller and Czado 2005; Pudney 2008).

In other words, feedback from past preferences to current ones, should be speci�ed as arising

from zt−1 not yt−1.4

�us, following Albert and Chib (1993), I model observed responses in category c (c =
1, . . . ,C) of observed variable yit (i = 1, . . . ,N ; t = 0, . . . , T) as being generated by an underly-
ing continuous latent variable zit and a vector of threshold parameters τ such that

yit = c if zit ∈ (τc−1, τc]. (1)

3�e importance of distinguishing persistence (or state dependence) and heterogeneity has beenwell established

in economics (e.g. Heckman 1981a; Keane 1997; Vella and Verbeek 1998; Arulampalam 2000). For recent

discussions of its relevance to political science, see Wawro (2002) and Bartels et al. (2011).
4One of my reviewers rightly pointed out that other mechanisms could introduce dependence on past prefer-

ences, for example when individuals ‘adapt’ to repeatedly presented categories. If the objective of an analysis is

to study these survey-method e�ects, the model can be extended, for example by including dummy response

categories in addition to the latent variable (see Heckman 1978 for a detailed discussion of continuous and

categorical lagged dependent variables).
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To capture the ordinal nature of observed preference scores, threshold parameters are con-

strained to be monotonically increasing,

−∞ = τ0 < τ1 = 0 < τ2 < ⋅ ⋅ ⋅ < τC−1 < τC = ∞; (2)

and τ1 = 0 to identify the model (assuming that an overall constant will be included in the
model; see Albert and Chib 1993; Johnson and Albert 1999).

Now, the dynamic model for latent preferences zit can be written as:

zit = ϕzit−1 + β′xit + ξi + єit , t = 1, . . . , T (3)

where ϕ captures the degree of preference persistence, i.e. the extent to which current pref-

erences depend on previous ones. β is a vector of regression parameters for matrix xit of
possibly time-varying covariates and an overall constant. Errors are decomposed into an

individual-speci�c time constant random e�ect ξi and stochastic disturbances єit , which vary

over individuals and survey waves. For identi�cation, the variance of the stochastic errors,

distributed єit ∼ N(0, σ 2є ) has to be �xed. I set σ 2є = 1, yielding an ordered probit speci�cation.5
Unobserved individual heterogeneity is modeled via random e�ects, which are drawn

from a normal distribution centered at zero with estimated variance σ 2
ξ
:

ξi ∼ N(0, σ 2ξ). (4)

�e model can be seen as a multilevel or hierarchical model, with responses nested within

individuals. �e presence of random e�ects induces correlations between responses of the

same individual over time (Rabe-Hesketh and Skrondal 2008).6 �e proportion of total

variance that is due to individual random e�ects, a�er accounting for preference persistence,

can be estimated by

ρ =
σ 2

ξ

(1 + σ 2
ξ
)
. (5)

�is provides a useful indicator of the relevance of unobserved individual di�erences, ignored

in cross sectional analyses.

5As usual, errors are assumed independent, Cov(є i s , є i t) = 0∀s ≠ t, and uncorrelated with covariates,

Cov(є i t , x i t) = 0.
6I employ standard assumptions of normal random e�ects, i.e. they are assumed to be independent of stochastic

errors: Cov(ξ i , є i t) = 0, and independent of x i t : Cov(ξ i , x i t) = 0. �e latter assumption is principally
unveri�able. �us Pudney (2008) suggests to regard this as a normalization and interpret e�ects of covariates

x∗i (those covariates in x i t which are time-constant) as combination of the true e�ect of x
∗

i and the part of

the random e�ect ξ i that can be proxied by a linear function of x∗i . �e estimated random e�ects variance
σ 2

ξ
is then interpreted as variation not predicted by x∗i . Alternatively, the model might be extended to allow

for correlated random e�ects (Mundlak 1978; Wooldridge 2002).
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2.2. Modeling initial observations

�e previous discussion indicates that one generally assumes preference or attitude formation

to be a continuous ongoing process. However, panel data provide only a limited window into

this process. Clearly, the �rst panel observation of an individual does not coincide with the

�rst time he or she has ever formed a preference. To the contrary, most researchers would

argue that individuals start forming preferences at a very young age, and are in�uenced by

parental characteristics, such as education, and by both observed and unobserved individ-

ual characteristics.7 �us, modeling initial observations has special relevance in a (short)

dynamic panel model, as one’s “assumption about the initial observations plays a crucial role

in interpreting the model” (Anderson and Hsiao 1981: 598).8

Nerlove et al. (2008: 11-12) argue that initial observations should be modeled by a speci�-

cation similar to the one a�ecting the remaining observations – i.e., as depending on observed

individual characteristics in xi , while possibly including additional background variables vi ,
such as parental education or the region of upbringing. Furthermore, to capture the depen-

dence of the initial observation on unobserved individual characteristics, one should specify

an arbitrary correlation with the individual speci�c e�ect ξi (Nerlove et al. 2008; Harris et al.

2008). In specifying an explicit model for endogenous initial observations, I follow Heckman

(1981a, b), who speci�es an approximation for the �st (latent) observation zi0∣xit , ξi as:

zi0 = δ′wi + λξi + єi0 (6)

where wi = (xi0, vi) is a vector of initial observation covariates comprised of an individual’s
covariate values at sample entry xi0 and additional background information vi . As noted
above, initial observations are already shaped by unobserved individual characteristics, which

Heckman’s speci�cation captures by including the individual speci�c e�ect ξi with a scale

factor λ that allows for a di�erent e�ect magnitude of unobserved characteristics on initial

preferences.9 Finally, єi0 is a random disturbance term at the initial condition assumed

uncorrelated with other errors, i.e. Cov(єi0, єit) = 0, ∀t > 0. Monte Carlo evidence indicates

7Models which ignore this problem and specify initial conditions as exogenous can lead to severely biased

estimates of the most central parameters of a dynamic panel model, namely individual random e�ects and

preference persistence (e.g. Heckman 1981b; Fotouhi 2005; Arulampalam and Stewart 2009).
8As Anderson and Hsiao (1981: 598) note, this is a problem speci�c the short dynamic panels (such as household

or election panels), since on cannot credible assume that T →∞.
9It facilitates a simple speci�cation test of the appropriateness of assuming independence of initial conditions

and unobserved individual e�ects: this assumption is rejected if λ ≠ 0. �is parametrization is sometimes

called a factor-analytic formulation of random e�ects (e.g Skrondal and Rabe-Hesketh 2004). Alternatively,

one could introduce a second set of random e�ects with �xed variance in (6), and estimate the covariance

between them and those in equation (3). �e present formulation is somewhat more intuitive and allows for

a more straightforward test of exogeneity by testing the parameter λ instead of a covariance.
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that this approximation works well in short panels (Heckman 1981a; Akay 2011).10 A somewhat

more detailed discussion can be found in [online] appendix A.

Jointly estimating (1) – (4) and (6) yields a model that deals with four of the �ve central

problems outlined in the introduction. �e dynamic model is supposed to capture serial

correlation of responses given at di�erent points in time by the same individual (e.g. Beck and

Katz 1996). An estimate of this correlation is given by ρ de�ned in equation (5). To test for

remaining autocorrelation, latent residuals (Albert and Chib 1995) can be used. I calculate

remaining residual correlation as:

r̂ = ∑
N
i=1∑T

t=2 µitµit−1

∑N
i=1∑T

t=2 µ
2
it

(7)

where µit stands for the linear predictor used in (3). If the speci�cation succeeds in modeling

individuals’ correlated responses over time, r̂ should be close to zero.

2.3. Prior speci�cations

Model speci�cation is completed by assigning (hyper-) priors to all parameters.11 Priors for

intercept and parameters of individual characteristics, in both dynamics and initial condition

equations are di�use with mean zero and large variance to yield regression-type estimates:

β, δ ∼ N(0, 100). (8)

I use a normal distributed prior for ϕ, the parameter capturing persistence of preferences.

I set a prior mean of 0.5 indicating an a priori expectation that persistence is not zero, but use

a very large variance to yield a di�use prior:

ϕ ∼ N(0.5, 100). (9)

More informative priors might be preferable in some applications, e.g. by restricting ϕ using

an uniform prior on U(−1, 1, ).
My hyperprior for the variance of individual random e�ects is uniform on the standard

10Alternative approximations, such asWooldridge (2005), would specify the distribution of ξ i ∣y i0 , x i t , i.e. simply
include the �rst panel observation among the regressors. �is approximation is computationally easier to

implement than Heckman’s solution, which explains its predominance in applied research. However, if

one speci�es preferences as latent constructs, the variable one would need for conditioning on (z i0) is not

observable (Pudney 2006: 8). As another disadvantage, this approximation usually works less well in short

panels (Akay 2011).
11Note that, as in every Bayesian analysis, sensitivity analyses for values of the hyperparameters should be

carried out. For an overview of robustness check strategies see Gill (2008a: 199f.). Basic regression-type

priors can be checked by using di�erent variances, For more speci�c or complex priors, I describe sensitivity

check strategies in the text.
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deviation, bounded between zero and 10. Gelman (2006) recommends this prior over the

more commonly used inverse Gamma speci�cation (Spiegelhalter et al. 1997).

√
σ 2

ξ
∼ U(0, 10). (10)

However, this prior has the disadvantage of assigning equal probability to unrealistically large

random e�ect variances. While this can be seen as representing very little a-priori knowledge,

some researchers might prefer a more informed speci�cation using inverse gamma priors

σ−2ξ ∼ Γ(a0, b0) (11)

with values for a0 and b0 chosen using knowledge or expectations of the variation of the

individual speci�c e�ects. I provide examples of such an analysis in [online] appendix D.

An uninformative prior for the random e�ect scale-factor in the initial condition equation

(6) is a normal distribution centered at zero and with large variance:

λ ∼ N(0, 100). (12)

To ensure that thresholds follow the monotonicity constraint given in (2), I specify thresh-

olds recursively ensuring that each subsequent threshold is larger than the previous one by

adding a positive value υτ. �is is achieved by drawing υτ from a distribution with positive

support such as an exponential distribution (cf. Jackman 2009).12 �e �rst threshold is nor-

malized to zero for identi�cation; in a model without overall intercept it can be drawn from a

normal distribution centered at zero with large variance.

τ1 = 0 (13)

τc = τc−1 + υτ , c = 2, . . . ,C − 1 (14)

υτ ∼ Exp(1). (15)

2.4. Model extensions

Given its hierarchical nature, the model can be extended straightforwardly to capture higher

order nesting by adding random e�ects for the relevant grouping factor. For example, individ-

uals nested within families (e.g. Winkelmann 2005) or regions j ( j = 1, . . . , J) can be modeled
by extending (3) to

zi jt = ϕzi jt−1 + β′xi jt + ξi + ψ j + єi jt

12Here I use an exponential distribution with rate one, but other parametrization are possible depending on

one’s a priori expected distance between thresholds. My speci�cation expects a distance of one, which is

close to the di�erence observed in a simple ordered probit regression. An alternative strategy for an ordering

constraint is to order thresholds at each step of the MCMC sampler.
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where ξi is the individual speci�c e�ect, and ψ j represents the regional random e�ect. Initial

conditions are still modeled via (6). �is is now a three level model with responses nested in

individuals nested in regions. Region random e�ects are distributed ψ j ∼ N(0, σ 2ψ) with an
appropriate hyperprior such as σψ ∼ U(0, c).

3. ROBUST RANDOM EFFECTS

�e discussion in the previous section assumed normally distributed random e�ects. �is

assumption goes almost unnoticed as it is standard in the vast majority of random e�ects

or ‘multilevel’ models in the social sciences. However, assumptions about the distribution

of individual random e�ects ξi are not innocuous and can have important substantive impli-

cations for panel data analysis.13 When using a normal distribution as random e�ects prior,

the well-known shrinkage property of hierarchical models (Gill 2008a: 183; Robert 2007:

ch.10) pulls individuals with extreme ξi values towards one commonmean. Multi-modality or

interesting patterns of random e�ects might be obscured. Checks of the normality assumption

can not be carried out using the already shrunken residuals (Kyung et al. 2010).

In this section I describe two strategies for a more robust estimation of individual het-

erogeneity: (1) accommodating more extreme individual random e�ects by specifying a

distribution with heavier tails, such as a t-distribution with small degrees of freedom (Lange

et al. 1989); (2) estimating the random e�ects distribution nonparametrically using Dirichlet

process priors (e.g. Gill and Casella 2009).

3.1. t-distributed random e�ects

As an alternative to the normal distribution, a t distribution can be used as robust prior

for random e�ects. A t distribution with small degrees of freedom has heavier tails and

accommodates more extreme random e�ect values (cf. Lange et al. 1989; Gelman et al. 2004:

ch.17). �us, changing the distributional speci�cation in (4) to

ξi ∼ t(0, σ 2ξ , df) (16)

yields a model with t-distributed random e�ects. However, estimating the degrees of freedom

from the data – e.g. by assigning a uniform prior – is o�en rather di�cult. For my goal of

checking the robustness of the normal random e�ects assumption, choosing a small value,

such as 4 degrees of freedom, is more appropriate (Gelman et al. 2004: 446).

13For a similar argument in the context of marketing models see Rossi et al. (2005: ch. 5); see Navarro et al.

(2006) for experimental psychology.
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3.2. Dirichlet process random e�ects

Amore �exible alternative to assuming normally distributed random e�ects consists in estimat-

ing the random e�ects distribution non- or semi-parametrically. In the simpler linear dynamic

panel case, a �xed e�ects approach can be employed without distributional assumptions –

however this is unavailable for the current model (e.g. Nickell 1981; Heckman 1981b). �us,

when random e�ects have to be used, Arellano and Carrasco (2003) argue that (p. 126) “a

semi-parametric random e�ects speci�cation may represent a useful compromise” between

the two.

In a frequentist framework, nonparametric estimation can be accomplished by using �nite

mixtures of normals or by approximating the random e�ects distribution by a �nite number

of mass points (e.g. Heckman and Singer 1984; Lindsay 1995; Aitkin 1999; Eckstein andWolpin

1999; Vermunt 2004). When applied to substantive research questions, a central problem

consists in how to choose the number of mixtures or mass points (Laird 1978; Follmann and

Lambert 1989; Vermunt et al. 2008; Skrondal and Rabe-Hesketh 2004: 181f.).

In a fully Bayesian analysis, instead of assuming a distribution G for the random e�ects,

one can place a Dirichlet process prior (Ferguson 1973, 1974) onG itself to indicate uncertainty

about its shape (e.g. Kleinman and Ibrahim 1998; Gill and Casella 2009):

ξi ∼ G (17)

G ∼ DP(α,G0) (18)

A Dirichlet process is characterized by two components. �e base distribution G0 is the

expectation of G – the distribution one would have used in a non-DP model (Escobar 1995:

98). In my current application this is the zero-centered normal distribution with estimated

variance. �e precision or dispersion parameter α determines the dispersion of the prior

for G over its mean G0 (Müller and Quintana 2004). �us, using a Dirichlet process prior,

each set of individual random e�ects {ξ1, . . . , ξN} drawn from G lies in a set of K distinct

values or ‘subclusters’ (with K ≤ N) sampled from G0: {ζ1, . . . , ζK}.14 For each number of
realized subclusters at any particular step of an MCMC sampler, random e�ects ξi are drawn

from the set {ζ1, . . . , ζK} via multinomial sampling. De�ne subcluster membership indicators
S = {s1, . . . , sN} which are si = k if ξi = ζk; and mk = #{si = k} as the number of random
e�ects which share the same value ζk (i.e. they belong to the same subcluster k).15

To illustrate the working of the Dirichlet process, I describe the assignment of ran-

dom e�ect ξi of a particular individual to a subcluster k, conditional on all remaining ran-

14�e term “subcluster” is used to indicate that clustering is done nonparametrically and not based on substantive

criteria (cf. Kyung et al. 2010)
15�us, using a Dirichlet process prior provides discrete realizations from the in�nite space of prior distributions

with probability one (Ghosh and Ramamoorthi 2003;Müller andQuintana 2004). Amore detailed discussion

can be found in [online] appendix B.
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dom e�ects ξ[i] = {ξ1, . . . , ξi−1, ξi+1, . . . , ξN} being already assigned. Denote by S[i] the spe-
ci�c con�guration of N − 1 random e�ects into K[i] subclusters existing at this point, with

m[i],k = #{si = k, k ≠ i} giving the number of individuals sharing a common value ζ[i],k . �e

conditional prior for ξi is (see Hanson et al. 2005 or Dunson et al. 2007 for details):

[ξi ∣ξ[i],K[i], S[i], α] ∼
α

α + N − 1
G0 +

1

α + N − 1∑k≠i
δ(ξk) (19)

∼ α

α + N − 1
G0 +

1

α + N − 1

K[i]

∑
k=1

m[i],kδ(ζ[i],k) (20)

where δ(⋅) now represents the Dirac delta function yielding a single value at its argument.
In other words, ξi forms a new subcluster with probability α/α + N − 1, in which case it is
drawn from G0. Else, it gets value ζ[i],k of an existing subcluster with multinomial probability

according to N[i],k/α + N − 1. If one imagines a stream of individual random e�ects to
be assigned, this leads to a preferential attachment clustering structure: as the number of

individuals grows, the probability that a new individual is assigned to an already existing

subcluster is proportional to the subcluster’s size. �e probability that a new individual forms

a new subcluster of the Dirichlet Process is proportional to α, and if that happens, values for

ξi are generated according to the base distribution G0 (Müller et al. 2007).

�e realized numbers of subclusters K is stochastic and is governed by α, which can be

itself estimated from the data (see below). �e role of α can be visualized by inspecting its

relationship with the expected number of subclusters (Hanson et al. 2005), which can be

approximated as (Antoniak 1974; Escobar 1995):

E(k∣α, n) ≈ α log[(α + N)/α]. (21)

Figure 1 plots the expected number of subclusters as a function of the number of individuals

for di�erent values of α. �is nicely illustrates the logarithmic nature of the preferential

attachment property of the Dirichlet process and conforms to intuitions about the relationship

between the number of di�erent subclusters and the number of individuals: As more and

more individuals are observed, the chance of observing new and unexpected random e�ect

values increases, but at a decreasing rate.

In the dynamic panel model with random e�ects, considered here, the set of parameters

in the base distribution is simply G0 = {p(σ 2
ξ
)} with a uniform hyperprior σξ ∼ U(0, 10) as

before. �us the marginal distribution – averaging over all possible G – yields a mixture of

normal distributions with the number of subclusters K randomly varying between 1 and N

(see Kleinman and Ibrahim 1998 for a similar setup).16 �e individual speci�c random e�ect

variance parameters are either selected from the K[i] existing values ζk = σ 2
ξ,k
drawn from G0,

16In practical implementations using a Truncated Dirichlet process, the number of subclusters is restricted to

some truncation value T ≪ N . See appendix B for details.
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Figure 1: Expected number of subclusters as function of sample size and Dirichlet process
precision parameter α

or created via a fresh draw from G0. A more detailed technical discussion of the Dirichlet

process and its implementation is available in [online] appendix B.

Estimating dispersion parameter α from the data

�e dispersion parameter, α, is a central parameter of the model. Higher values of α increase

not only the number of expected subclusters, but also the rate with which new ones are created

by the Dirichlet Process. Given the absence of clear prior expectations about values of α, its

value can be determined by the data yielding a mixture of Dirichlet processes (Antoniak 1974).

In a fully Bayesian context this is achieved by assigning it a hyperprior:

α ∼ Γ(a0, b0). (22)

�e gamma distribution is a common choice for this problem (Escobar and West 1998; Jara

et al. 2007), however its parameters do not allow for an intuitive prediction of its e�ect on the

model.17 Kottas et al. (2005) provide an approximation to the relationship between Γ-prior

parameters and expectation and variance of the number of subclusters K, which can be used

to choose semi-informed prior values (for more details see appendix C). I select parameters

for the gamma hyperprior so that they yield 8 a priori expected clusters with a standard

deviation of 4, which yields parameters a0 = 5.16 and b0 = 4.54 for the gamma prior. To

17Specifying an essentially �at prior for computational reasons is common in political science applications

(Jackman 2000; but see Jackman and Western 1994), but is of somewhat questionable value here. Even

medium-sized values of α lead to a large number of clusters, which in the limiting case creates one cluster

per individual – essentially defying the purpose of the hierarchical setup. �erefore, I argue to use a semi-

informed prior speci�cation (Gill and Casella 2009: 3) for the DP precision parameter. Kyung et al. (2010)

provide alternative strategies of sampling the concentration parameter.
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check the sensitivity of this speci�cation, I also used values which lead to a prior expectation

of half the number of clusters (a0 = 0.921 and b0 = 1.435). In an alternative strategy (and
robustness test), one can forgo estimation of α and instead �x it to a set of pre-speci�ed values,

e.g. α = {0.5, 1, 2, 10}, in order to determine the robustness of one’s estimates to increasingly
larger numbers of random e�ects subclusters. �e approximations given in equation (21) and

Figure 1 can serve as guidelines relating values of α to expected subclustering and one’s sample

size.

4. APPLICATION: DYNAMIC PREFERENCES FOR REDISTRIBUTION

A recent wave of research in (comparative) political economy has augmented macro-level

studies of redistribution by concentrating on individual-level factors in�uencing redistribu-

tion preferences (see, among many, Moene andWallerstein 2001; Iversen and Soskice 2001;

Alesina and La Ferrara 2005; Alesina and Angeletos 2005; Cusack et al. 2005; Scheve and

Stasavage 2006; Shayo 2009; Rehm 2011; Rehm et al. 2012). Studies examining preferences for

redistribution and government intervention in the economy are usually cross-sectional and

ignore dynamic aspects of preference formation.18 As a consequence, estimates of key variables,

such as the e�ect of job loss (as in Cusack et al. 2008) might be in�uenced by unobserved

factors, such as ability and motivation, as well as by persistent preferences.19

In this section, I present a short study of the dynamics of individual redistribution pref-

erences, by applying the model outlined before to repeated measurements of individuals’

preferred level of government intervention. More speci�cally, I examine individual responses

to the question if government has the obligation to provide jobs. �is survey item correlates

highly with other widely used measure of general redistribution preferences.20 I examine the

e�ects of income and wealth and of ‘socio-economic shocks’ such as becoming unemployed

or getting divorced. For a recent summary of the theoretical relevance of these factors see

Alesina and Giuliano (2011).

4.1. Data and variables

I use data from the British Household Panel Survey, conducted between 1991 and 2008, which

provides measurements of my dependent variable on 7 occasions. I use the original (‘Essex’)

sample and create a balanced panel using individuals who provide responses to all seven

waves.21 �is provides me with data on 1958 individuals observed over a span of 17 years.

18But see recent research based on experimental evidence, e.g. Margalit (2011), Neustadt (2010).
19�is should not be read as a critique of this particular paper, given that the authors’ interest lies in a comparative

analysis (where panel data is unavailable).
20Its correlation with a latent preference measure of several redistribution items (following the methodology of

Stegmueller 2011) using data for the UK from the International Social Survey Programme is 0.64.
21Items are available in waves A, C, E, G, J, N, and Q. Estimating the model using multiple imputation for

missing values provides results that are substantively similar to the ones presented here, as does an analysis
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Responses to the item “It is the government’s responsibility to provide a job for everyone who

wants one” are captured using the usual 5 point strongly agree – strongly disagree scale.22

Since both extreme ends of the response categories are rather sparsely populated, I combine

categories to yield a clear three-category response vector, which indicates if preferred levels

government activity should stay the same (0), or should be increased (1) or decreased (−1).23
�us, the relationship between observed responses and the latent preference variable is given

by:

yit =
⎧⎪⎪⎨⎪⎪⎩

−1 if zit < τ1 = 0
0 if τ1 = 0 < zit < τ2
1 if τ2 < zit .

Income is captured by both household income, and the share of a respondent’s income

of total household income. I measure income as real equivalent household income, i.e., it is

de�ated using the consumer price index with base year 2005 and adjusted for household size

using the modi�ed OECD equivalence scale (Hagenaars et al. 1994). I decompose income into

a time varying and a time constant part. �us, I estimate both a level and a shock e�ect, which

mirrors the theoretical idea of permanent and transient income components (Friedman 1957).

More precisely, observed incomewit is decomposed aswit = w̄i +(wit − w̄i)with appropriately
speci�ed regression weights for both terms. Household wealth is captured by the estimated

value of a respondent’s house. De�nitions and descriptive statistics of all other independent

variables used in the analysis can be found in Table 1. Following Gelman (2008), in all models

estimated below I centered and scaled all continuous variables by dividing by two standard

deviations (which makes them roughly comparable to binary covariates).

4.2. Results

First, I describe results obtained from estimating the model described in section 2 assuming

normally distributed random e�ects. I use a 66 subsample of individuals from the full

sample. Results are obtained by MCMC sampling using two chains run for 500,000 iterations

thinned by a factor of 25. 200,000 previous iterations are discarded as burn-in. �e model is

implemented using JAGS (version 3.1.0) with a truncation threshold of 20 (see the discussion

of the Truncated Dirichlet Process in appendix B).24 Diagnostics suggested by Brooks and

Roberts (1998) and Gelman and Rubin (1992) do not show signs of absence of ‘convergence’.25

which uses an unbalanced panel of respondents who participated in at least three waves.
22Categories are labeled strongly agree; agree; neither agree nor disagree; disagree; strongly disagree.
23Note that in single index models, such as this one, consistency of the estimates is not hampered by combining

categories. See Franses and Cramer (2010) for a further discussion on combining categories in ordered

response models. Furthermore, this dependent variable clearly represents a situation where linear models

are not appropriate.
24A second run with a truncation value of 40 yields a maximum posterior sampled value for K of 17, which

indicates that a truncation level of T = 20 was appropriate (see [online] appendix B).
25�e posterior samples converge early, but I ran the sampler for longer, providing more draws for the thresholds

in order to avoid non-convergence in this part of the model (cf. Gill 2008b). I conducted an “insurance run”
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Table :Descriptive statistics of independent variables

Name Description mean sd

Income Equivalent household income (in , )

Permanent Permanent income component . .

Transitory Transitory income component . .

Income share R’s share of total HH income . .

House value Estimated house value (in , ) . .

Owner House owned outright or with mortgage . .

Unemployed Unemployed . .

Union member Union member . .

Divorced Divorced . .

HH size Size of Household . .

N kids Number of kids in HH . .

Female Gender: female . .

Age Age in years . .

Nonwhite† Ethnic group non-white . .

Educationb,†

Degree University degree . .

A-levels A level or higher national diploma . .

O-levels O level or GCSE . .

London† R grew up in greater London area . .

Parents’ jobsc,† Parents’ job status

unskilled Blue collar, unskilled jobs . .

skilled Blue collar, skilled jobs . .

white-collar White collar . .

self-employed Self-employed . .

N rows 

N individuals 

† Variables are time constant
a Equivalized using OECD scale; de�ated using consumer price index,  prices
b Reference category: no or primary education
c Reference category: Managers, Salariat; dominance coding
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Resulting estimates are shown in Table 2, where I provide posterior means and standard

deviations as well as 95 highest posterior density regions. Concentrating on central dynamic

parameters, I �nd a signi�cant amount of preference persistence: ϕ is estimated as 0.23 with a

small posterior standard deviation. An estimated random e�ect variance, σ 2
ξ
, of 0.83±0.09

underscores the importance of controlling for unobserved individual heterogeneity. �e

proportion of the total variance that is due to unobserved individual factors, ρ, is estimated as

45±3. �us, almost half of the di�erence in preferences between individuals is due to unob-
served factors such as ability or motivation (which remains hidden in cross-sectional studies).

Clearly, more research is needed to capture such unobserved individual characteristics.

As described in section 2, a speci�cation test for the independence of initial conditions and

unobserved individual e�ects is obtained by testing if λ is equal to zero. �is is clearly rejected

by an estimate of 1.19 and a HPD region far away from zero. In other words, initial conditions

should be modeled as endogenous to individual (observed an unobserved) characteristics.

Relevant covariates in the initial conditions equation are age, income, and notably education,

as well as pre-sample information on parental background. For example, individuals who grew

up in a working class household already have substantively higher preferences for government

intervention at the start of the panel.

(Gill 2008b: 173): running the sampler for twice as many iterations. Estimates for all key model parameters

are virtually identical; with the largest di�erence being 0.0019. All code and diagnostics are available in the

author’s dataverse.
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In a dynamic panel model a central quantity of interest are long-run or steady-state

relationships between z and x taking preference persistence into account. Since I �xed the
scale of the error variance to 1, steady-state e�ects are calculated as β/(1 − ϕ). Using 5000
draws from the relevant parameters’ posterior distributions, I calculate posterior means and

standard deviations of steady-state e�ects, displayed in Table 3. For easier interpretation, I

provide them both in the metric of the latent dependent variable z, and calculated as �rst

di�erences in predicted probabilities of preferring more government intervention resulting

from a unit-change in a covariate. For discrete variables this re�ects a change from 0 to 1; for

continuous variables this represents a change of 2 standard deviations (cf. Gelman 2008).

Long-run estimates of wealth captured by permanent income and house value show

a strong and negative relationship with preferences for government intervention. All else

equal, a unit-change of permanent income reduces an individual’s probability to opt for more

government intervention by 17±3 percentage points. It is noteworthy that income shocks
have little e�ect on preferences and are statistically indistinguishable from zero. I �nd the

same for the estimated long-run e�ect of becoming unemployed, which is large but has a

posterior density that includes zero. �is also holds for its parameter estimates displayed in

Table 2. Excluding all income e�ects from the model does not change this �nding. �is points

to the relevance of including preference persistence and (especially) unobserved individual

heterogeneity in studies of individual preferences. It is this speci�cation of unobserved

heterogeneity which I turn to next.

4.3. Robust random e�ects results

To check the robustness of my random e�ects speci�cation, I re-estimated my model using

the strategies outlined in section 3. A model with t-distributed random e�ects with 4 degrees

of freedom produces a lower estimate of the random e�ects variance, σ 2
ξ
, of 0.77 with a 95

HPD region ranging from 0.68 to 0.86. However, all other model parameters, including the

preference persistence parameter ϕ, are estimated at virtually the same values (at 2 sf.). When

using a more �exible density estimate of the random e�ects distribution using a Dirichlet

process prior, more di�erences emerge.26

Figure 2 plots a kernel density estimate of the distribution of random e�ect estimates (more

precisely their posterior expectation) from the Dirichlet process hierarchical model. Clearly

the distribution of random e�ects di�ers from the traditionally made normal assumption,

being slightly skewed and more peaked. However, there is no clear evidence of multi-modality

or the existence of extreme random e�ects in the tails of the distribution. �is suggest that

central model parameters might not be too strongly a�ected by di�erences in random e�ect

estimates.

To illustrate di�erences in parameter estimates that emerge when using di�erent random

26A full table of parameter estimates for the DP prior model is given in appendix E.
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Table : Steady-state e�ects. Calculated on the scale of
the latent variable z and as predicted probability of re-

sponding in the highest category. Posterior means and

standard deviations.

z-metric P(yi = )

Mean SD Mean SD

Permanent income −. . −. .

Transitory income −. . −. .

R’s Income share −. . −. .

House value −. . −. .

House owner −. . −. .

Household size . . . .

N kids in HH −. . −. .

Union member . . . .

Age −. . −. .

Female . . . .

Divorced . . . .

Unemployed . . . .

Non-white . . . .

Degree −. . −. .

A-levels −. . −. .

O-levels −. . −. .

Note: Calculated using  simulated values. Predicted probabili-

ties represent unit-change in variable holding all else constant.
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Figure 2:Distribution of random e�ects using a Dirichlet process prior. Density estimate of
posterior means of random e�ects ξi evaluated over grid of 200 points. Normal distribution (-

- -) shown for comparison.
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Figure 3: Consequences of di�erent random e�ect prior speci�cations. Posterior distributions
of selected parameters obtained using a normal distribution; a t distribution with 4 df.; and

mixture of Dirichlet processes as prior.
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Table : Steady state estimates from Dirichlet random e�ects model. Panel (A) shows esti-
mated steady state e�ects. Panel (B) shows di�erence to normal random e�ects model. Pos-

terior means and standard deviations.

(A) Estimates (B) Di�erence to normal RE

z-metric P(yi = ) z-metric P(yi = )

Permanent inc. −. . −. . . .† −. .†

Transitory inc. −. . −. . −. .† −. .†

Income share −. . −. . . .† −. .†

House value −. . −. . . .† −. .†

House owner −. . −. . . .† . .†

Household size . . . . . .† . .†

N kids in HH −. . −. . −. .† −. .†

Union member . . . . . .† . .†

Age −. . −. . −. .† −. .†

Female . . . . . .† . .†

Divorced . . . . . .† . .†

Unemployed . . . . . .† . .†

Non-white . . . . −. .† −. .†

Degree −. . −. . . .† −. .†

A-levels −. . −. . −. .† −. .†

O-levels −. . −. . −. .† −. .†

Note: Calculated using  simulated values. Predicted probabilities represent unit-change in vari-

able holding all else constant. Di�erences in panel (B) calculated as DP random e�ects estimates

− normal random e�ects estimates. Di�erence estimates whose  HPD interval includes zero

are marked by †.

e�ect prior speci�cations, I plot posterior distributions of some selected parameters in Figure 3.

It shows posterior distributions of the initial condition random e�ects scale factor λ, preference

persistence ϕ, and estimates of age and being female obtained using normal, t, and DP

random e�ects. Estimates of the scale factor and preference persistence are indistinguishable

between normal and t-distributed random e�ects. However, they are larger under the DP

prior speci�cation, especially for preference persistence. Results for substantive covariates

also di�er when using a �exible DP prior speci�cation. My estimate for the in�uence of age

on preferences for government intervention becomes smaller, while the posterior distribution

of being female is clearly shi�ed to the right, indicating an even stronger e�ect. Nonetheless,

the magnitude of these di�erences is limited and other covariate estimates are somewhat less

a�ected than the ones shown here.

To assess if these di�erences change one’s substantive results, it is advisable to focus again

on steady state estimates calculated from the model. In Table 4, panel (A), I provide steady

state e�ects from the DP random e�ects model. As before, I calculate them in the metric of
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the latent variable and as predicted probabilities of preferring more government involvement.

In panel (B) I calculate the di�erence to the steady state estimates based on normal random

e�ects, shown in Table 3, andmark di�erence estimates whose 95HPD interval contains zero

by †. I �nd that di�erences are especially marked for estimates of time-constants covariates.

�e di�erence between the estimated e�ect of holding an advanced degree is almost three

percentage points, while the e�ect of being non-white di�ers by 5 percentage points. However,

when taking uncertainties of my estimates into account, these di�erences appear to not be

statistically relevant: in each and every case the 95 highest posterior density interval of the

di�erence contains zero. �us, in this particular application, one can conclude that substantive

results obtained with a ‘simple’ gaussian random e�ects speci�cation are robust to violations

of the distributional assumption of unobserved individual heterogeneity.

5. CONCLUSION

Central aim of this paper is to present a modeling strategy for analyzing the dynamics of

individual preferences or attitudes using panel data. I employ the idea of an underlying latent

continuous variable, which generates observed categorical preference measures. �e dynamics

of the model are also speci�ed on the level of the latent variable, since it should be one’s latent

past preference – not observed survey scores – providing feedback to current preferences. Fur-

thermore, I explicitly model initial conditions, following the approach suggested by Heckman

(1981a, b). I capture unobserved individual heterogeneity using random e�ects and discuss pos-

sible shortcomings of the usual distributional assumptions. I employ a distinctively ‘Bayesian’

solution to this problem, which is to specify a prior over possible random e�ect distributions,

in order to capture uncertainty about its true form. �is yields �exible nonparametric density

estimation of random e�ects, which I use to assess the robustness of my �ndings.

Applying the model to data on individuals’ preferences for government intervention over

a span of 17 years, clearly shows the necessity of employing a Hierarchical dynamic panel

modeling approach. First, I �nd a signi�cant level of preference persistence. In other words,

individuals’ preferences are ‘sticky’, and covariate estimates will be biased when ignoring

this fact. Second, initial conditions matter. Individuals enter the panel study with prefer-

ences already shaped by pre-sample variables and observed and unobserved characteristics.

�ird, nearly half of the total variation in preferences is due to unobserved individual factors,

such as motivation or ability. Using both parametric and semi-parametric random e�ects

speci�cations, I show that these �ndings are robust to distributional assumptions.

Existing political science research on individual preferences and attitudes using cross-

sectional data should be augmented into the time domain to explicitly study dynamic im-

plications of theories. Using panel data and an appropriate dynamic model provides the

tools to generate new insights into how individual preferences evolve over time, how they are

shaped by observed and unobserved individual characteristics, and how individuals adjust

their preferences in reaction to socio-economic shocks.
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APPENDICES

A. INITIAL OBSERVATIONS

To explicate the role of initial observations, rewrite the dynamic model

zit = ϕzit−1 + xitβ + ξi + єit , t = 1, . . . , T

in its explicit distributed lag representation by successive backward substitution (e.g., following

Harris et al. 2008: 251):

zit = ϕtzi0 +
t−1
∑
j=0
ϕ jxit− jβ +

1 − ϕt

1 − ϕ
ξi + ηit (23)

with ηit = ϕηit−1 + єit with ηi0 = 0.
�is makes obvious that each observation of zi can be expressed as the sum of several

factors. �e �rst part of equation (23), ϕtzi0 depends on the initial observation of the panel,

while the second part depends on current and past covariate values. �e third part
1−ϕt
1−ϕ ξi

indicates proportional dependence on unobserved individual speci�c e�ects.

Direct estimation of (23) would require su�ciently large T and that ϕt decays su�ciently

rapidly with t. Alternatively, one can specify an empirical approximation of zi0 (Pudney 2008:

27). Heckman’s (1981b) approximation for zi0∣xit , ξi ,

zi0 = δ′wi + λξi + єi0, (24)

as given in the main text, is obtained by �rst writing

zi0 = δ′wi + ηi (25)

where wi = (xi0, vi) is a vector of initial condition covariates comprised of covariate values
at sample entry xi0 and additional background information vi . ηi is an individual error
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component at the initial condition. Next, decompose ηi into an individual speci�c (time-

constant) random e�ect and a stochastic disturbance at t = 0. Instead of introducing a second
individual random e�ect, Heckman employs the orthogonal projection

ηi = λξi + єi0 (26)

which speci�es ηi as resulting from random disturbance єi0 and individual speci�c e�ect ξi .

�e random disturbance term at the initial condition єi0 is now uncorrelated with ξi by design,

and assumed uncorrelated with other errors, i.e. Cov(єi0, єit) = 0, ∀t > 0. �e individual
speci�c random e�ects ξi are allowed to have a di�erent scaling in the initial conditions

equations by including a scale factor λ. Substituting (26) into (25) yields the reduced form

equation (24) for initial observations used in the main text.

B. DIRICHLET PROCESS

In this appendix I describe the Dirichlet process in more detail.27 A Dirichlet process random

e�ects model can be understood as a (countably) in�nitemixture of points. �us I start from

specifying a �nitemixture of points model for random e�ects and set up the Dirichlet process

model from there by letting the number of points K →∞.

A�nite nonparametric random e�ects prior Start by specifying some �exible distribution

G for the random e�ects:

ξi ∼ G(ϕ) (27)

with hyperparameters ϕ. G can be approximated arbitrarily close by specifying a �nite sum of
K point masses and weights πk,

G(π, ζ) =
K

∑
k=1

πkδζk (28)

with∑K
k=1 πk = 1 and where δζk is the Dirac delta function yielding a point mass at ζk. Here,

ϕ = (ζ , π) and random e�ects ξi are sampled from this distribution and are equal to one of

the ζk.

In a Bayesian setup (e.g. Lo 1984), one has to specify priors for the weights, such as:

ζk ∼ G0 (29)

π ∼ Dirichlet(α) (30)

where each of K discrete locations ζk are sampled from some base distribution G0. �e prior

27�is section builds on the excellent presentation in Navarro et al. (2006).
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over weights is a Dirichlet distribution of dimension K with parameters α = (α1, . . . , αK):

p(π∣α) = L(α)−1 (
K

∏
k=1

π
αk−1
k

) 1(π) (31)

where 1(π) is an indicator function equal to one if weights sum to one and zero otherwise. L
is a normalizing function given by:28

L(α) = ∫ (
K

∏
k=1

π
αk−1
k

) 1(π) dπ = ∏
K
k=1 Γ(αk)

Γ (∑K
k=1 αk)

(32)

�e Dirichlet prior for the weights π is taken to be symmetric, i.e. we use a parameter vector
of length K with (α/K , . . . , α/K), thus ensuring that the sum of the parameter vector will
always be α (e.g. Ishwaran and Zarepour 2002).

Moving to the in�nite case Having speci�ed a prior for the �nite case, we elicit a prior

speci�cation for the in�nite point mixture case by letting K →∞.
First, to make the clustering structure of the model explicit, de�ne membership indicators

si , which indicate to which subcluster the ith random e�ect is assigned. For a random e�ect

of individual i the probability of belonging to subcluster k is given by the weight πk , and thus

p(si = k∣π) = πk . (33)

Using membership indicators, the prior in (29)–(30) becomes:

ζk ∼ G0 (34)

π ∼ Dirichlet(α/K) (35)

si ∼Multinomial(π) (36)

where membership indicators are sampled from a multinomial with size one.

Second, we integrate out the subcluster weights π to get the conditional subcluster
assignment probability when having already observed N − 1 random e�ects assignments
S[i] = {s1, . . . , sN−1}:

p(si = k∣S[i], α,K) = ∫ p(si = k∣π)p(π∣S[i], α,K)dπ (37)

To solve the integral, note that the �rst term of the integrand is πk (cf. equation (33)). �e

28See, e.g. Gill (2008a: 180). Γ is the gamma function, which is a generalization of the factorial function: for a

non-negative integer n, Γ(n) = (n − 1)!.

30



second term is the posterior probability

p(π∣S[i], α,K) ∝ p(S[i]∣π)p(π∣α,K), (38)

i.e. the product of a multinomial and Dirichlet distribution, which implies that the posterior

distribution is also a Dirichlet (i.e. conjugacy of the resulting posterior).

Denote by mk = #{ξ1 = ζk} the number of random e�ects assigned to subcluster k, and
let m = (m1, . . . ,mK) be a ‘member size’ vector giving the number of individuals in each
subcluster. �e posterior probability p(π∣s/i , α,K) is distributed Dirichlet with parameter
vector s + α/K. �us

p(si = k∣s/i , α,K) (39)

= L(m + α/K)−1∫ πk (∏
l

π
m l+α/K−1
l

) 1(π)dπ (40)

= L(m + α/K + 1(k))
L(m + α/K)

(41)

= mk + α/K
N − 1 + α

(42)

where 1(k) is an indicator vector (with length K) with a 1 at position k and zero otherwise.
Having integrated out the weights, consider now the limiting probability that random

e�ect ξi gets assigned value(s) ζk of an existing subcluster k with mk ≥ 1:

p(si = k∣S[i], α) = lim
K→∞

(mk + α/K
N − 1 + α

) (43)

= mk

N − 1 + α
(44)

Conversely, consider the limit probability that ξi gets assigned values from a new subcluster.

Let K/i be the realized number of subclusters when N − 1 random e�ects have already been
assigned. Denote by S the set of subclusters with mk = 0 (i.e. the K − K[i] empty subclusters).

�e assignment probability for the ith random e�ect is then

p(si ∈ S∣S[i], α) = lim
K→∞

(∑
l∈S

ml + α/K
N − 1 + α

) (45)

= α

N − 1 + α
lim
K→∞

(
K − K[i]

K
) (46)

= α

N − 1 + α
(47)

Integrating out subcluster assignment indicator variables si yields the prior distribution

for assigning a value to random e�ect ξi given that all other random e�ects ξ[i] have already
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been assigned. �is distribution is a mixture of the base distribution G0 and the empirical

distribution of N − 1 previously assigned random e�ect values:

ξi ∣ξ[i], α,G0 ∼
α

N − 1 + α
G0 +

K[i]

∑
k=1

mk

N − 1 + α
δζk . (48)

Drawing a sequence of random e�ects assignments from (48) yields a Polya urn scheme

with parameters α and G0 (Blackwell and MacQueen 1973). Using this scheme allows us to

choose a prior for the random e�ects distribution G. We require that the marginal prior over

parameters (ζ1, . . . , ζ∞) follows a Polya urn scheme. Blackwell and MacQueen (1973) show

that the Dirichlet process does, and we can thus specify the Dirichlet process as nonparametric

random e�ects prior:

ξi ∼ G (49)

G ∼ DP(α,G0) (50)

Dirichlet process �e Dirichlet process is a stochastic process (a distribution over function

spaces) whose sample paths (i.e. random functions draws) are probability measures with

probability 1 (Ferguson 1973, 1974). Intuitively, it is a distribution over distributions, where

each draw yields a Dirichlet distribution. More formally, let (Σ,B) be a (measurable) space,
and let G0 be a random probability measure over it, and let α be a positive real number.

A Dirichlet Process is a distribution G over (Σ,B) such that for every (�nite measurable)
partition (B1, . . . , BN):

(G(B1), . . . ,G(BN)) ∼ Dirichlet(αG0(B1), . . . , αG0(BN)). (51)

G0 can be interpreted as mean of the process, since for any measurable B, E(G(B)) = G0(B).
�e ‘dispersion’, ‘strength’ or ‘prior mass’ parameter α can be understood as inverse variance,

since V(G(B)) = G0(B)/(α + 1), so that larger values of α imply a tighter concentration of

the DP around G0.

�e posterior process for a drawing G from the DP and a subsequent random e�ect draw

ξ1 from G is a standard Dirichlet update (see Schervish 1995):

G∣ξ1 ∼ DP (αG0 + δξ1) . (52)

Iterating the updating yields

G∣ξ1, . . . , ξN ∼ DP (αG0 +
N

∑
i=1

δξ i) . (53)

To see the connection to the in�nite mixture model consider the predictive distribution for a
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new ξN+1 given previous random e�ect realizations ξ, with G marginalized out. For any B ⊂ Σ
we again get the Polya/Blackwell MacQueen (1973) urn scheme (cf. equation 48):

E(G(B)∣ξ1, . . . , ξN) =
αG0(B) +∑N

i=1 δξ i(B)
α + N

(54)

→
∞
∑
k=1

πk δζk(B) (55)

with πk = limN→∞mk/N , and where ζk represents one unique random e�ect value, and

mk = #{ξi = ζk} in the sequence (ξ1, . . . , ξN). A countably in�nite mixture of the above form,
which ful�ls the de�nition of the Dirichlet Process, can be constructed by the stick-breaking

random measure, as shown by Sethuraman (1994).

Stick breaking construction It is used to construct the in�nite number of weights in (55).

Let

νk ∼ Beta(1, α), k = 1, 2, . . . (56)

be an in�nite sequence of beta distributed random variables. Set π1 = ν1 and construct the

remaining πk via

πk = νk

k−1
∏
l=1

(1 − νl), k = 2, 3, . . . . (57)

Let ζk ∼ G0 and G = ∑∞
k=1 πkδ(ζk); then G ∼ DP(α,G0). �is constructive scheme implies

that, just as the �nite case in (28)–(30), G has now a clear de�nition as a random measure,

since
∞
∑
k=1

πk = 1 wp 1. (58)

To see this note that

1 −
K

∑
k=1

= 1 − ν1 − ν2(1 − ν1) − ν3(1 − ν2)(1 − ν1) −⋯ (59)

= (1 − ν1)(1 − ν2 − ν3(1 − ν2) −⋯) (60)

=
K

∏
k=1

(1 − νk) (61)

→ 0 wp 1 as K →∞. (62)

Estimation via truncated Dirichlet process �e stick breaking construction suggests an

approximate sampling strategy for posterior DP inference. Choose a truncation value T for K,

and set νT = 1 to ensure that weights do sum to one. �en we have a �nite representation of
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the in�nite mixture of points:

G =
T

∑
k=1

πkδζk , (63)

where πk = 0 for k > T . More details are given by Ishwaran and James (2001) and and Ishwaran

and Zarepour (2002). �is approximation yields good approximations even with low values

for T , and is computationally tractable and can be implemented in available general purpose

Bayesian inference packages such as JAGS, WinBUGS or PyMC. Discussions of other, more

sophisticated sampling strategies (which require tailored code) are given in Escobar and West

(1995), MacEachern and Müller (1998), Neal (2000), and Kyung et al. (2011).

In any ‘real-life’ political science application, one should check if the truncation threshold

T was chosen large enough. A straightforward way is to sample from a model where T is

set at twice the size, and investigate if the posterior samples of K – the sampled number of

subclusters – are larger for this model. Figure 4 shows a histogram of the posterior distribution

of K from just such a model run, where I set T = 40. It indicates that even with a higher
truncation thresholds, the Dirichlet process never created more than 20 subclusters (the

maximum sampled value of K is 17). �us, the truncation level used in the main part of the

paper is a good approximation.29

Posterior number of K
0 10 20 30 40

0.00

0.05

0.10

0.15

0.20

Figure 4: Posterior number of subclusters sampled from TDP(α, G0, T = 40)

C. ELICITATION OF PARAMETERS OF Γ PRIOR FOR α

Kottas et al. (2005) derive an approximation of the mean and variance of the number of

29Furthermore, inspection of parameter estimates reveled no di�erences to a model with T = 20.
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subclusters, which can be used to select semi-informative values for the Gamma prior of α.

�e expected number of subclusters given precision, α, and number of observations, N , is

E(k∣α,N) =
N

∑
i=1

α

α + i − 1
≈ α log(α + N

α
) (64)

with variance

Var (k∣α,N) =
N

∑
i=1

α(i − 1)
(α + i − 1)2

≈ α [log(α + N

α
) − 1] . (65)

As a result of my Gamma prior speci�cation E(α) = a0/b0 and Var(α) = a0/b20. Some algebra
yields the a priori expected mean and variance for the number of subclusters (cf. Kottas et al.

2005; Liu 1996: 916):

E(k) ≈ a0

b0
log(1 + nb0

a0
) (66)

Var(k) ≈ a0

b0
log(1 + nb0

a0
) − nb0

a0
+ [log(1 + nb0

a0
) − nb0

a0 + nb0
]
2
a0

b20
(67)

�is expressions can be evaluated numerically to obtain reasonable values for a0 and b0 given

ones prior expectations of the mean number of subclusters.30

D. INVERSE-GAMMA VARIANCE PRIORS

As mentioned in subsection 2.3 there are good reasons to prefer more informative priors for

the random e�ect variance. In this section, I describe the speci�cation (or ‘elicitation’) of two

sets of hyperprior values.

Usually one speci�es a prior for the inverse variance, or precision. �eGammadistribution

is a popular choice (e.g. Gelman et al. 2004: 579). With given a-priori values for the expected

mean m0 and variance v0 of the random e�ect precision σ−2
ξ
, hyperprior values for Γ(a0, b0)

are given by:31

a0 = m20/v0 (68)

b0 = v0/m0 (69)

Alternatively, when specifying a prior for the variance directly the inverse gamma distribution

30If researchers feel uncomfortable with choosing values based on expectations about K, they can either rely

on priors suggested in the literature such as Γ(1, 1) or Γ(2, 2), which prevent very small and large values

(Ishwaran and Zarepour 2000).
31I use the same notation for shape and scale of the Gamma distribution (a0 , b0) as in subsection 3.2 purely for

notational convenience.
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Figure 5:Distribution of variance prior precision under two Gamma prior speci�cations
(based on 10,000 samples from prior distribution).

can be used. Here hyperprior values for Γ−1(a0, b0) are given by:

a0 = (m20 + 2v0)/v0 (70)

b0 = m0(m20 + v0)/v0 (71)

A simple randome�ects ordered probitmodel �t using a laplace approximation to integrate

out the random e�ects (ignoring the lagged dependent variable, and initial conditions) suggest

a variance of the individual e�ects of ca. 1.392 or a precision of 0.7182. �us, settingm0 = 0.7182
I choose a two di�erently ‘tight’ v0 values: v0 = {1, 0.25}. �is leads to hyperprior values of
a0 = 0.5158, b0 = 1.3924, and a0 = 2.0632, b0 = 0.3481. �e resulting prior distributions are
illustrated in Figure 5 which plots 10,000 draws from the respective prior distributions.

Re-estimating my main model with these two more informative random e�ects variance

prior choices leads to very similar estimated variances of 0.83 (sd=0.09) and 0.84 (sd=0.09),

respectively. Coe�cient estimates are virtually indistinguishable at two signi�cant �gures.

E. DP RANDOM EFFECTS ESTIMATES

Table 5 shows estimated parameters of the model with Dirichlet process random e�ects. α is

the estimated dispersion parameter of the Dirichlet process; K represents the sampled value

of the number of clusters at each MCMC step.
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