Research Repository

A new method to measure local oxygen consumption in human skeletal muscle during dynamic exercise using near-infrared spectroscopy

Binzoni, T and Cooper, CE and Wittekind, AL and Beneke, R and Elwell, CE and Van De Ville, D and Leung, TS (2010) 'A new method to measure local oxygen consumption in human skeletal muscle during dynamic exercise using near-infrared spectroscopy.' Physiological Measurement, 31 (9). 1257 - 1269. ISSN 0967-3334

Full text not available from this repository.

Abstract

Near infrared spectroscopy (NIRS) can readily report on changes in blood volume and oxygenation. However, it has proved more problematic to measure real-time changes in blood flow and oxygen consumption. Here we report the development of a novel method using NIRS to measure local oxygen consumption in human muscle. The method utilizes the blood volume changes induced by the muscle pump during rhythmically contracting exercising skeletal muscle. We found that the saturation of the blood during the contraction phase was lower than that during the relaxation phase. The calculated oxygen drop was then divided by the contraction time to generate a value for the muscle oxygen consumption in the optical region of interest. As a test we measured the muscle oxygen consumption in the human vastus lateralis during exercise on a cycle ergometer by 11 trained male athletes (32 ± 11 years old) at 40% and 110% peak aerobic power. We saw an increase from 13.78 μmol 100 g -1 min -1 to 19.72 μmol 100 g -1 min -1 with the increase in power. The measurements are theoretically exempt from usual NIRS confounders such as myoglobin and adipose tissue and could provide a useful tool for studying human physiology. © 2010 Institute of Physics and Engineering in Medicine.

Item Type: Article
Subjects: Q Science > QH Natural history > QH301 Biology
Divisions: Faculty of Science and Health > Sport, Rehabilitation and Exercise Sciences, School of
Depositing User: Jim Jamieson
Date Deposited: 26 Sep 2011 15:39
Last Modified: 19 Sep 2017 19:15
URI: http://repository.essex.ac.uk/id/eprint/797

Actions (login required)

View Item View Item