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Periodicities of FX Markets in Intrinsic Time

Abstract

This paper utilises advanced methods from Fourier Analysis in order to

describe financial ultra-high frequent transaction data. The Lomb-Scargle

Fourier Transform is used to take into account the irregularity in spacing in

the time-domain. It provides a natural framework for the power spectra of dif-

ferent inhomogeneous time series processes to be easily and quickly estimated,

without significant computational effort, in contrast to the common economet-

ric approaches in the finance literature. An event-based approach (intrinsic

time), which by its own nature is inhomogeneous in time, is employed using

different event thresholds to filter the foreign exchange tick-data leading to

a power-law relationship. The calculated spectral density demonstrates that

the price process in intrinsic time contains different periodic components, es-

pecially in the medium-long term, implying the existence of new stylised facts

of ultra-high frequency data in the frequency domain.

Keywords: Ultra-high frequency transaction data, foreign exchange, ir-

regularly spaced data, Lomb-Scargle Fourier Transforms, spectral density.

JEL Classifications: C22, C46, C63, G17.
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1 Introduction

In financial markets, trading activity tends typically to vary depending on the

time of day, shrinking during lunch time and over weekends, and increasing prior to

major scheduled news announcements (see, for example, Chordia, Roll, and Subrah-

manyam, 2001). These observations are usually measured in physical time. Another

approach that has been recently put forward and which has led to a rich array of

scaling behaviour in FX market is a time scale that is defined via events, i.e. the so

called intrinsic time (see also Glattfelder, Dupuis, and Olsen, 2009; Bisig, Dupuis,

Impagliazzo, and Olsen, 2009).

In particular, the presence of different patterns of trading activity in financial

markets makes the flow of physical time discontinuous, as the number of transactions

tends to increase or decrease at different time intervals (for example, over weekends).

This empirical observation, which led to the definition of “intrinsic trading time”,

coined by Mandelbrot and Taylor (1967), suggests that the concept of physical time

may not be the fundamental time scale and research should additionally focus on

an event-based time scale. Thus, the analysis of price movements investigated in

this paper, focuses on an intrinsic time scale defined by “directional-change” events:

price movements exceeding a given threshold which are independent of the notion

of physical time. Indeed, the recent work of Glattfelder, Dupuis, and Olsen (2009)

has demonstrated a rich landscape of scaling laws in intrinsic time for “ultra-high-

frequency” (UHF) FX data, including a scaling law for the directional-change events

considered in this paper.

In the intrinsic time paradigm, the UHF data are filtered by analysing those

points where there has been a directional-change (the event), consisting of price
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movements away from a local maximum (or minimum), which exceed a given thresh-

old (for a mathematical definition of a directional change duration, see Hautsch,

2004). The newly created time series naturally includes fewer observations, but still

contains significant information about the price evolution via its associated scaling

law and about the temporal structures through its directional-change duration, and

is irregular-spaced in time. Indeed, time series in intrinsic time are fundamentally

unevenly-spaced in time (“inhomogeneous”) and there is no justification in artificially

making them equally-spaced (“homogenous”) (see also Dacorogna, Gençay, Müller,

Olsen, and Pictet, 2001).

The concept of directional change also plays an important role in technical anal-

ysis (Hautsch, 2004), as turning points of fundamental price movements are used by

intraday traders to identify optimal times to buy or sell . For example, point-and-

figure charting techniques, reportedly in use from the late 19th century, track price

changes of fixed thresholds and significant price reversals, and are often employed to

identify price trends, support and resistance levels in intraday trading data (among

the oldest written references are Wyckoff, 1910 and deVilliers, 1933). Additionally,

the so called “directional change frequency”, which estimates the average number of

directional price changes of a given threshold over a data sample, can be interpreted

as an alternative measure of risk (Guillaume, Dacorogna, Davé, Müller, Olsen, and

Pictet, 1997).

The main goal of this study is to detect potential periodic patterns of UHF FX

market data. For example, it is well-known that intraday data have a consistent

diurnal pattern of trading activities over the course of a trading day due to insti-

tutional characteristics of organised financial markets, such as opening and closing

hours or intraday auctions. In particular, FX markets have stronger seasonal pat-
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terns as they are open 24/7 and constantly influenced by re-occurring time-zone

effects.

In particular, this paper employs advanced modelling techniques from Fourier

analysis, which provide a natural framework to analyse inhomogeneous time series

in the frequency domain and also reduce the computational time needed to process

a large amount of transaction data. Fast Fourier transform (FFT) algorithms are

commonly used to analyse homogeneous time series in the frequency domain, but in

their standard form, they require either regular resampling of the unevenly-spaced

data, or interpolating them onto an equally-spaced grid. In fact, any such trans-

formation via regular resampling of unevenly-spaced data or interpolation to an

evenly-spaced grid (in order to calculate the SDF with the simple FFT), has been

demonstrated to introduce artefacts in the data in the frequency domain (and hence

time domain), leading to loss of information and the use of spurious information

(Giampaoli, Ng, and Constantinou, 2009). The Lomb-Scargle Fourier transform

(LSFT), a generalisation of the discrete Fourier transform, is especially designed

for unevenly-spaced data and represents the natural tool to study UHF data in the

frequency domain as it allows the stochastic behaviour of every single process to

be determined without any loss of information. The LSFT, in contrast to exist-

ing autoregressive conditional models (e.g., ACD or ACI models) in the literature,

has also the advantage of greatly reducing the computational effort required when

analysing UHF transaction data sets and of avoiding complex model specifications

or obligatory deseasonalisation.

The paper is structured as follows. Section 2 outlines methods and models

used for the analysis. Section 2.1 delineates the intrinsic-time framework, while in

Section 2.2 the Lomb-Scargle Fourier transform and the estimation of the spectral
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density are characterised. Data and empirical results, with regard to their economic

implications, are presented in Section 3. Section 4 concludes.

2 Methodology

In this paper, an analysis is made in the frequency domain of an intrinsic-time

process defined by a directional-change event. In the following section, the adopted

event-based approach and the resulting scaling law are described in detail. The

Lomb-Scargle Fourier Transform for the spectral analysis of limit order-book data

is then introduced and defined.

2.1 Intrinsic Time and Physical Time

Let x denote the price and ∆x the price change. In the event-driven setting out-

lined above, the event is a directional change and its accompanied overshoot. More

precisely, the absolute price change (“total price movement”) ∆xtm between two local

extremal values (minimum and maximum price) is decomposed into two sections: a

fixed directional change threshold ∆xdc and an overshoot ∆xos, which represents the

price movement beyond the fixed threshold. Such fixed event threshold defines the

minimum price move between two consecutive local extrema and fully characterises

the directional changes, which are computed iteratively from the last high or low,

depending on whether the directional change is assumed to be downward or upward.

At each iteration, the high is updated to the maximum between the current price

and the last high, or the low to the minimum between the current price and the last

low. At each occurrence of a directional-change event, the direction of the price move

alternates, and the overshoot ∆xos associated with the previous directional change
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Figure 1: Dissection of mid-price curve into directional-change and overshoot sections. The
graph shows a 40-hour mid-price sample and corresponding directional-change events defined by a
threshold ∆xdc = 0.3% (currency pair: AUD-HKD). The directional-change events (diamonds) act
as cut-off points, decomposing an absolute price change between a minimum and a maximum price
(bullets) into directional-change ∆xdc (solid lines) and overshoot ∆xos (dashed lines) components.
Intrinsic time ticks only at directional-change events, and the elapsing time between two contiguous
events, i.e. the directional change duration, is denoted by ∆tdc.

is determined ex-post as the difference between the last high or low and the price

corresponding to that directional change. A price sample and its decomposition into

directional-change and overshoot components are shown in Figure 1.

Let 〈·〉 denotes the average operator. Glattfelder, Dupuis, and Olsen (2009) have

shown that the mean absolute price movement can be decomposed into a directional

change and an overshoot, i.e. 〈|∆xtm|〉 = 〈|∆xdc|〉 + 〈|∆xos|〉. The points in which

the threshold is triggered, either upwards or downwards, are independent of the
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notion of physical time and form a series of directional-change events to be analysed

using the LSFT. This event is chosen, not only because of (a) its scaling properties

but also for (b) the “natural” periodic behaviour of FX markets due to their market

microstructure effects (see, e.g., Lyons (2001) or MacDonald (2007)) .

Let tdc denote the directional change duration, i.e. the elapsed time of a direc-

tional change of a price movement for a given threshold size. The model applied

here is the empirical scaling law obtained by Glattfelder, Dupuis, and Olsen (2009)

that describes

〈∆tdc〉 = c(∆xdc)
k (1)

where c is a constant and k is the scaling exponent. This scaling law investigates the

relationship between the average duration of directional changes (which is a random

variable) and the size of a given price move threshold (which is pre-specified). By

taking the logarithm of both sides of eq. (1), then the power law relationship is cast

into the linear equation

log(〈∆tdc〉) = log(c) + k · log(∆xdc) , (2)

characterised by the slope k and the intercept log(c). The scaling exponent k mea-

sures the proportional change of the average directional-change duration due to

an increment of the price threshold. Different directional-change threshold sizes

∆xdc = {10bp, 15bp, 20bp, 25bp, 30bp, 40bp, 50bp, 75bp, 100bp, 125bp, 150bp,

175bp, 200bp} are chosen to generate the respective average directional-change du-

rations for the individual sampling window. Standard linear OLS regression is used
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to estimate the scaling law parameters in eq. (2).

As discussed, the cut-off points between each directional change and the cor-

responding overshoot form a new event-based and irregularly-spaced time series in

intrinsic time (see Figure 1), which serves as input for the LSFT to calculate the

spectral density function (SDF). The LSFT framework is now described theoreti-

cally.

2.2 Spectral Analysis of Tick Data

In the last decade, the literature on financial econometrics has witnessed a grow-

ing interest in the analysis of tick-by-tick transaction data provided by electronic

trading platforms. Since these UHF data are observed in real-time, yielding the

highest possible sampling limit, they are characterised by the irregularity of time

intervals between two consecutive events. Duration, defined as elapsing time be-

tween two successive orders, is in fact a crucial variable as it reflects the intensity

of trading activity and thus different levels of the asset’s liquidity. Therefore, the

econometric analysis of unevenly-spaced transaction data has focused on modelling

the durations in order to avoid any loss of important information stored in the

temporal structure of the transaction process. Treating these special time series as

point processes, Engle and Russell (1998) have introduced the Autoregressive Con-

ditional Duration (ACD) model, which describes a dynamic duration process with a

conditional expectation written as a linear function of past durations (for a survey,

see Pacurar, 2008 or Bauwens and Hautsch, 2009). In addition, following Cox and

Isham (1980), alternative approaches to deal with ultra-high frequency data as point

processes have been developed such as count models (see Heinen and Rengifo, 2007)
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or intensity models (see Hall and Hautsch, 2006, Bauwens and Hautsch, 2009).

Although these three types of models have been improved by many authors and

have shown good performance in numerous previous studies, they still have draw-

backs and limits. Duration models, for example, can not be extended to multidimen-

sional settings due to the asynchronisation problem of multivariate point processes

(Hall and Hautsch, 2006). In contrast, other approaches can overcome this problem,

but they either lose information because of the aggregation over discrete time inter-

vals (count models) or induce computational complexity by mimicking continuous

time models (intensity models). Since point processes naturally focus on the time of

the actual observation (the “points”), the “marks” (i.e. the observation itself) usu-

ally only serve as regressors explaining the duration or the intensity of the process.

Alternatively, the relationship between different covariates can be investigated by

decomposition methods (see Engle, 2000 or Rydberg and Shephard, 2003). However,

the stochastic process of the key variables are never modelled as single self-contained

processes, but as subordinators.

In order to address the problems mentioned above, this paper suggests using the

LSFT as the natural setting to analyse unequally-spaced time series in the frequency

domain. This approach has the undoubted advantage of reducing the computational

load required by standard models to process large amounts of data and of avoiding

any data manipulation that would alter and impair the information contained in the

UHF data (Giampaoli, Ng, and Constantinou, 2009).

Spectral analysis decomposes a time series into its periodic frequencies in order to

detect and analyse its cyclical behaviour. The application of spectral techniques in

periodic economic processes has a long history, and a significant effort is employed in

the estimation of the spectral density function (SDF) (see Priestley, 1981; a survey
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Figure 2: Fitting the FFT to unevenly-spaced UHF time series data.

of spectral analysis of economic time series can be found in Granger and Engle,

1984 and Iacobucci, 2005). The SDF represents the analogue of the autocorrelation

function in the time domain and encapsulates the frequency properties of the time

series determining how the variation in a time series is built-up by components at

different frequencies.

For standard periodic time series a FFT algorithm is generally employed to de-

termine their spectral properties (Priestley, 1981). As tick-by-tick data and the

resultant filtered time series in intrinsic time are unevenly-spaced, the traditional

FFT can not be applied without artificially tampering with the raw data. Attempts

to transform the irregularly-spaced raw data into regularly-spaced data (e.g., Da-

corogna, Gençay, Müller, Olsen, and Pictet, 2001), by regular resampling or using

interpolation, prior to applying the FFT to calculate the SDF, has recently been

demonstrated to cause (a) loss of information and (b) generation of spurious data.

It has also been shown that these limitations can be overcome using the LSFT (see

Giampaoli, Ng, and Constantinou, 2009). Lomb (1976) first introduced this statisti-
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cal method in astrophysics and fitted sinusoidal curves to the unevenly-spaced data

(for illustration, see Figure 2) by least-squares in order to determine their periodic

behaviour, despite the irregular spacing in time. Scargle (1982) later developed the

methodology further by deriving the standardised Lomb-Scargle (LS) periodogram

that has well defined statistical properties as the work of Horne and Baliunas (1986)

demonstrated. Press and Rybicki (1989) suggested an alternative algorithm for a

faster and more efficient computation (for its implementation see Press, Flannery,

Teukolsky, and Vetterling, 1992). The mathematical properties of the FFT and the

LSFT are now briefly outlined.

A finite time series xt with length T and N observations is considered. For

common time series, the time interval between two observations is constant, i.e.

tj − tj−1 = ∆t = T−1, j ∈ {1, 2, 3, ..., N}. In Fourier analysis the time series can be

expressed as a sum of trigonometric functions

xt =

N/2−1∑
k=−N/2

(ak cos(ωkt) + bk sin(ωkt)) =

N/2−1∑
k=−N/2

cke
iωkt (3)

where the angular frequency is ωk = 2πk/N and the frequency fk = ωk/2π. The

normalised spectral density function (SDF) is defined as

SDFFFT (ωk) =
1

Nσ2
x

∣∣∣∣∣
N∑

t=1

xte
−iωkt

∣∣∣∣∣
2

(4)

where σ2
x = (N − 1)−1∑N

j=1(xj − x̄)2 and the coefficients ck = N−1
∑N

t=1 xte
−iωkt

can be computed using the well-known FFT (see, for example, Bloomfield, 2000

and Warner, 1998). However, as mentioned above, tick data and the resultant time

series, filtered in intrinsic time via the event, arrive in irregular time intervals, where
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∆t is now stochastic. Hence, the simple FFT can not be employed without data

manipulation. The main objective here is to find an algorithm that can compute

eq. (4) fast.

Many diverse areas of science have tackled this issue using the robust framework

of the LSFT (for an overview, see Ware, 1998). Under this framework, the data on

the non-equally spaced grid is transformed into the frequency domain in order to

obtain an unbiased estimation of the SDF. The resulting SDF is calculated for k ∈

{1, 2, 3...,M} frequencies, with M chosen as outlined in Press, Flannery, Teukolsky,

and Vetterling (1992). The normalised SDF is given by

SDFLS (ωk) =
1

2σ2
x


[∑N

j=1 (xj − x̄) cosωk (tj − τ)
]2

∑N
j=1 cos2 ωk (tj − τ)

+

[∑N
j=1 (xj − x̄) sinωk (tj − τ)

]2
∑N

j=1 sin2 ωk (tj − τ)

 (5)

with x̄ = N−1
∑N

j=1 xj and

τ (ωk) =
1

2ωk

arctan

(∑N
j=1 sin (2ωktj)∑N
j=1 cos (2ωktj)

)
(6)

with fk = ωk/2π ∈ [0, 0.5] as the frequency (see Press, Flannery, Teukolsky, and

Vetterling, 1992, p. 581; a generalisation for the non-sinusoidal case can be found

in Bretthorst, 2001). Due to the (re-)shifting of all N sampling times tj with τ ,

the time invariance of f (ωk) is ensured. In addition, Scargle (1982, Appendix C)

demonstrated that this particular choice of the offset τ makes eq. (5) identical

to the expression obtained by linear least-squares fitting sine waves to the data
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(see also Van Dongen, Olofsen, Van Hartevelt, and Kruyt, 1999). Scargle (1982)

has also shown that the Lomb-Scargle periodogram has an exponential probability

distribution with unit mean. The probability that SDFLS will be between some

positive quantity z and z + dz is e−zdz , and the probability of none of them give

larger values than z is (1− e−z)
M . Therefore, we can compute the false-alarm

probability of the null hypothesis, e.g., the probability that a given peak in the

periodogram is not significant, by P (> z) ≡ 1 − (1 − e−z)M (Press and Rybicki,

1989).

3 Empirical Data and Results

The objective of this work is to highlight the advantages of the LSFT in obtaining

the SDF for inhomogeneous UHF data and to demonstrate that the use of LSFT

within an event-based framework reveals new periodic patterns in FX time series

and provides insightful information on the price process.

The tick-by-tick data set comprises 6 currency pairs spanning 3 months, from

November 1, 2008 to January 31, 2009. The following currency pairs are considered

(with the number of observations enclosed in brackets): AUD-HKD (4’472’222),

AUD-JPY (18’821’980), EUR-JPY (32’250’932), EUR-USD (23’057’152), HKD-JPY

(6’052’923), USD-JPY (19’010’622). The varying number of ticks is mostly due to

the fact that different exchange rates have different degrees of liquidity (Glattfelder,

Dupuis, and Olsen, 2009). The data set includes a bid, an ask price, a timestamp,

and each time series is filtered as observations with the same timestamp are averaged
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Currency AUD-HKD AUD-JPY EUR-JPY EUR-USD HKD-JPY USD-JPY

Threshold N(∆xdc) N(∆xdc) N(∆xdc) N(∆xdc) N(∆xdc) N(∆xdc)
(DC/h) (DC/h) (DC/h) (DC/h) (DC/h) (DC/h)

10 bp 22425 32313 15557 8154 8564 8573
(14.8363) (21.7158) (10.4550) (5.4831) (5.7606) (5.7614)

15 bp 10615 15006 7693 3921 3837 3807
(7.0228) (10.0847) (5.1700) (2.6366) (2.5810) (2.5585)

20 bp 6289 8947 4601 2300 2270 2241
(4.1608) (6.0128) (3.0921) (1.5466) (1.5269) (1.5061)

25 bp 4185 5994 3027 1545 1428 1402
(2.7688) (4.0282) (2.0343) (1.0389) (0.9605) (0.9422)

30 bp 2962 4390 2157 1084 1023 1009
(1.9596) (2.9503) (1.4496) (0.7289) (0.6881) (0.6781)

40 bp 1677 2572 1246 622 588 578
(1.1095) (1.7285) (0.8374) (0.4183) (0.3955) (0.3884)

50 bp 1076 1689 793 380 379 372
(0.7119) (1.1351) (0.5329) (0.2555) (0.2549) (0.2500)

75 bp 464 754 355 175 165 162
(0.3070) (0.5067) (0.2386) (0.1177) (0.1110) (0.1089)

100 bp 251 425 188 97 87 84
(0.1661) (0.2856) (0.1263) (0.0652) (0.0585) (0.0565)

125 bp 173 267 122 57 50 49
(0.1145) (0.1794) (0.0820) (0.0383) (0.0336) (0.0329)

150 bp 121 187 84 39 30 29
(0.0801) (0.1257) (0.0565) (0.0262) (0.0202) (0.0195)

175 bp 91 133 64 27 23 22
(0.0602) (0.0894) (0.0430) (0.0182) (0.0155) (0.0148)

200 bp 67 113 54 25 19 18
(0.0443) (0.0759) (0.0363) (0.0168) (0.0128) (0.0121)

Table 1: Number of directional changes (time period: 11/2008 - 01/2009). The table shows for
each given threshold ∆xdc the total number of directional changes N(∆xdc), and the number of
directional changes per hour (DC/h).

out. Throughout the paper, the following definition of mid-price is considered:

xt = (bidt + askt) /2. (7)

From the raw data, a mid-price process for each of the currency pairs is obtained

using eq. (7). It is the mid-price data which are filtered to intrinsic time series.

The filtering follows the procedure outlined above, i.e. by decomposing the total
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Figure 3: Empirical scaling law: estimated scaling law regression lines for the different currency
pairs (time period: 11/2008 - 01/2009). The x-axis shows the threshold size as relative price
change, and the y-axis the respective average time (in seconds), for a given threshold, to observe
the reversion of the price move.

price movements into directional-change (of thresholds ∆xdc = {10bp, 15bp, 20bp,

25bp, 30bp, 40bp, 50bp, 75bp, 100bp, 125bp, 150bp, 175bp, 200bp}) and overshoot

sections. Table 1 shows, for each threshold ∆xdc, the number of directional changes

N(∆xdc) and the “speed” of change of the mid-price process, measured in directional

changes per hour (DC/h).

Figure 3 illustrates the power law regression (eq. 2) for the currency pairs con-

sidered in this paper. Table 2 lists the intercept, slope, associated R2 and mean

square error (MSE) statistics. For each of the currency pairs, we show the results
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Currency Intercept Slope
R2 MSE(s.e.) (s.e.)

AUD-HKD 8.1806 1.9407 0.9996 2.7E-4(0.0258) (0.0111)
GBM 5.9829 1.7176 0.9965 0.0021

AUD-JPY 7.8952 1.8985 0.9995 3.3E-4(0.0284) (0.0123)
GBM 5.6690 1.6578 0.9952 0.0027

EUR-JPY 8.2895 1.9316 0.9994 4.8E-4(0.0342) (0.0148)
GBM 6.1383 1.7451 0.9970 0.0019

EUR-USD 8.7042 1.9768 0.9990 8.2E-4(0.0445) (0.0192)
GBM 6.5774 1.8115 0.9978 0.0015

HKD-JPY 8.9131 2.0520 0.9982 0.0015(0602) (0.0260)
GBM 6.5938 1.8149 0.9978 0.0015

USD-JPY 8.9539 2.0656 0.9983 0.0015(0.0604) (0.0260)
GBM 6.6002 1.8158 0.9978 0.0015

Table 2: Empirical scaling law: estimated regression parameters (time period: 11/2008 -
01/2009). The scaling law relates the average time interval for directional changes of given thresh-
olds to occur to the size of the thresholds. For each currency pair, the last row shows the regression
parameters of the benchmark geometric Brownian motion (GBM).

for a geometric Brownian motion (GBM), used as a benchmark. Given an initial

mid-price x0, the process generated is

xt = x0 exp

((
µ− σ2

2

)
t+ σWt

)
, (8)

where Wt is a Wiener process, and µ and σ are estimated from the data. The

regression coefficients for the GBM are obtained by averaging the OLS estimates over

a sufficiently high number of iterations, so as to ensure good convergence properties.

The slope of the curves (the key parameter in the power-law) are close to those

reported in Glattfelder, Dupuis, and Olsen (2009), with similar associated statistics.
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Figure 4: The upper panel shows the empirical spectral density (normalised by max(SDFLS) ≈
245) of mid-price directional-change events of threshold 0.5% for the EUR-JPY FX rate. The
lower panel shows the corresponding false alarm probabilities of the estimated spectral density at
95% significance level for a given frequency expressed in Hz. The associated period in hours is
indicated in the secondary x-axis label. The graph shows that the most significant contribution to
the variance of the process comes from relatively low frequencies (above 8 hours).

This similarity illustrates the remarkable robustness of the scaling law as the data

used in this investigation are later than those employed by Glattfelder, Dupuis, and

Olsen (2009). In particular, it is noted that all the currency pairs show power-law

behaviour which is statistically different from the corresponding GBM at the 99%

confidence level.

Following the data filtering, the dissection (cut-off) points between directional-

change and overshoot sections generate a new irregularly-spaced time series of

directional-change events in intrinsic time; the LSFT is then applied to calculate
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Figure 5: The upper panel shows the empirical spectral density (normalised by max(SDFLS) ≈
112) of mid-price directional-change events of threshold 0.75% for the EUR-JPY FX rate. The
lower panel shows the corresponding false alarm probabilities of the estimated spectral density at
95% significance level for a given frequency expressed in Hz. The associated period in hours is
indicated in the secondary x-axis label. The graph shows that, as the threshold size increases, the
SDF tends to shift towards lower frequencies (period above 100 hours).

the SDF.

Figures 4, 5, 6, show examples of the SDFs of mid-price directional-change events

(in the top panels) and the corresponding false-alarm probabilities (in the bottom

panels) of the currency pair EUR-JPY for 3 different thresholds (0.5%, 0.75%, 1.5%).

For a better comparison, the spectral densities are normalised by the maximum of

SDFLS. Sample graphs for a selection of two thresholds (0.75%, 1.5%), for the

remaining currency pairs and the same time period, can be found in the appendix.

Figure 4 clearly illustrates that all the significant peaks (for a significance level
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Figure 6: The upper panel shows the empirical spectral density (normalised by max(SDFLS) ≈
24) of mid-price directional-change events of threshold 1.5% for the EUR-JPY FX rate. The lower
panel shows the corresponding false alarm probabilities of the estimated spectral density at 95%
significance level for a given frequency expressed in Hz. The associated period in hours is indicated
in the secondary x-axis label. As the graph illustrates, the SDF continues shifting towards the
left-hand side (period above 340 hours).

of 95%) are located in the left-hand side of the graph1, i.e. that the highest contri-

bution to the variance of the mid-price process comes from relatively low frequencies

(corresponding to a period longer than 8 hours). On the other hand, Figures 5 and

6 illustrate that, as the directional-change threshold increases, the spectral density

tends to shift further towards the left-hand side of the graph, that is towards the

lower frequencies. All the significant peaks correspond in fact to periods longer than
1The graphs show only frequencies below the median value, as to focus on the significant peaks

of the spectral densities.
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100 and 340 hours, respectively for thresholds of 0.75% and 1.5%. This is perfectly

consistent with the expectation that, as the directional-change threshold increases,

the time needed to trigger that threshold also increases (for an equivalent result in

the time domain see scaling law (5) in Glattfelder, Dupuis, and Olsen, 2009, which

relates the average time interval for a directional change of threshold ∆xdc to occur,

to the size of the threshold).

In particular, the scaling property of directional-change durations assures that

in the frequency domain, periodicities associated with a particular threshold are

replicated in the empirical spectral densities of directional-change events of those of

lower thresholds. This property is illustrated for the FX pair EUR-JPY in Table 3,

which shows for a subset of cases the periods expressed in hours, associated with

significant peaks of the estimated spectral density at the 95% confidence level. It

can be seen that the periodicities associated with the 150bp threshold (see Figure

6) are replicated in the spectral density of directional-change events sampled with

both the 75bp and 50bp thresholds (see Figure 5 and 4). Similarly, the additional

periodicities associated with the 75bp threshold are again propagated in the 50bp

threshold and so on. If we observe a 150bp price change about every 360 hours on

average (see Table 3), for example, we should also observe a 75bp and a 50bp price

change at each full cycle.2 In other words, for the same frequency in the spectral

density of a directional change series sampled with a higher threshold, one can also

find a corresponding significant peak in the spectral density sampled with a lower

threshold. This remarkable behaviour in the frequency domain is due to the scaling
2Differences in the values might occur as “rounding errors” as the periods are actually calculated

as reciprocal values from the original frequencies that are expressed in Hz. As discernible in Table
3, the lower the reported period (i.e., the higher the estimated frequency), the smaller are the gaps
between the values across the different thresholds.
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Threshold
150 bp 75 bp 50 bp

1153.5758 1184.5056 1187.6309
961.3131 987.0880 989.6924
823.9827 846.0754 848.3078
720.9849 740.3160 742.2693

658.0586 659.7949
538.4116 539.8322
493.5440 494.8462
394.8352 395.8770

360.4924 370.1580 371.1347
348.3840 349.3032
329.0293 329.8975

312.5344
296.9077
247.4231

236.9011 237.5262
212.0769

204.2251 204.7639
197.4176 197.9385
191.0493 191.5534

185.5673
179.9441

174.1920 174.6516
169.2151 169.6616
164.5147 164.9487

148.4539
144.4519 144.8330

Table 3: Scaling property of directional-change durations for the currency pair EUR-JPY (time
period: 11/2008 - 01/2009). The table shows, for a subsample of three different thresholds ∆xdc =
{50bp, 75bp, 150bp}, the periods in hours associated with significant peaks of the estimated spectral
density at 95% confidence level.

properties in the time domain, and is evident for other thresholds for the EUR-JPY

FX rate, as well as for the other currency pairs investigated in this study.

In general, similar conclusions can be drawn analysing a different currency pair.

For example, the spectral density of the AUD-HKD mid-price exhibits periodicities

similar to those of the corresponding SDF of the currency pair EUR-JPY, showing

an analogous trend, as the period associated with the directional changes tends to

get longer as the directional-change threshold increases. Results for the other FX
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pairs with similar implications are shown in the appendix (see Figures 7 to 16).

4 Concluding Remarks

UHF data are observed in real-time and therefore are characterised by the irreg-

ularity of time intervals between two consecutive events. This paper combines the

LSFT and an event-based approach, to analyse foreign exchange tick-by-tick data.

The Lomb-Scargle Fourier transform implicitly takes into account the non-periodic

property of UHF data without the need to first transform the data to a periodic

array. Using empirical transaction data from FX markets and adopting an event-

based time scale (known as intrinsic time), the spectral analysis shows that various

parts of the whole price process display different periodic patterns, revealed by the

energy of the process in the respective frequency domain. The period associated

with these patterns tends to increase as the directional-change threshold increases,

confirming similar results in other studies (see e.g. Glattfelder, Dupuis, and Olsen,

2009).

Further, this framework can be generalised to a multivariate scheme (see e.g.

Schulz and Stattegger, 1997), which allows the analysis of dependencies between

different variables (e.g. price, volume, etc.) that can not be easily captured by

current econometric models in the literature. On the contrary, comovements of

multivariate time series can be detected in the frequency domain by computing the

cross, coherency and phase spectra. This avenue of research represents a significant

challenge and is an area for future investigation.
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Figure 7: The upper panel shows the empirical spectral density (normalised by max(SDFLS) ≈
160) of mid-price DC events of threshold 0.75% for the AUD-HKD FX rate. The lower panel shows
the corresponding false alarm probabilities of the estimated spectral density at 95% s.l. for a given
frequency expressed in Hz. The associated period in hours is indicated in the secondary x-axis.

Figure 8: The upper panel shows the empirical spectral density (normalised by max(SDFLS) ≈
42) of mid-price DC events of threshold 1.5% for the AUD-HKD FX rate. The lower panel shows
the corresponding false alarm probabilities of the estimated spectral density at 95% s.l. for a given
frequency expressed in Hz. The associated period in hours is indicated in the secondary x-axis.
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Figure 9: The upper panel shows the empirical spectral density (normalised by max(SDFLS) ≈
222) of mid-price DC events of threshold 0.75% for the AUD-JPY FX rate. The lower panel shows
the corresponding false alarm probabilities of the estimated spectral density at 95% s.l. for a given
frequency expressed in Hz. The associated period in hours is indicated in the secondary x-axis.

Figure 10: The upper panel shows the empirical spectral density (normalised by max(SDFLS) ≈
60) of mid-price DC events of threshold 1.5% for the AUD-JPY FX rate. The lower panel shows
the corresponding false alarm probabilities of the estimated spectral density at 95% s.l. for a given
frequency expressed in Hz. The associated period in hours is indicated in the secondary x-axis.
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Figure 11: The upper panel shows the empirical spectral density (normalised by max(SDFLS) ≈
65) of mid-price DC events of threshold 0.75% for the EUR-USD FX rate. The lower panel shows
the corresponding false alarm probabilities of the estimated spectral density at 95% s.l. for a given
frequency expressed in Hz. The associated period in hours is indicated in the secondary x-axis.

Figure 12: The upper panel shows the empirical spectral density (normalised by max(SDFLS) ≈
15) of mid-price DC events of threshold 1.5% for the EUR-USD FX rate. The lower panel shows
the corresponding false alarm probabilities of the estimated spectral density at 95% s.l. for a given
frequency expressed in Hz. The associated period in hours is indicated in the secondary x-axis.
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Figure 13: The upper panel shows the empirical spectral density (normalised by max(SDFLS) ≈
65) of mid-price DC events of threshold 0.75% for the HKD-JPY FX rate. The lower panel shows
the corresponding false alarm probabilities of the estimated spectral density at 95% s.l. for a given
frequency expressed in Hz. The associated period in hours is indicated in the secondary x-axis.

Figure 14: The upper panel shows the empirical spectral density (normalised by max(SDFLS) ≈
13) of mid-price DC events of threshold 1.5% for the HKD-JPY FX rate. The lower panel shows
the corresponding false alarm probabilities of the estimated spectral density at 95% s.l. for a given
frequency expressed in Hz. The associated period in hours is indicated in the secondary x-axis.
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Figure 15: The upper panel shows the empirical spectral density (normalised by max(SDFLS) ≈
65) of mid-price DC events of threshold 0.75% for the USD-JPY FX rate. The lower panel shows
the corresponding false alarm probabilities of the estimated spectral density at 95% s.l. for a given
frequency expressed in Hz. The associated period in hours is indicated in the secondary x-axis.

Figure 16: The upper panel shows the empirical spectral density (normalised by max(SDFLS) ≈
12) of mid-price DC events of threshold 1.5% for the USD-JPY FX rate. The lower panel shows
the corresponding false alarm probabilities of the estimated spectral density at 95% s.l. for a given
frequency expressed in Hz. The associated period in hours is indicated in the secondary x-axis.
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