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Abstract

In this article a multiple regime extension of a Heston-Nandi GARCH(1,1) type model is

presented to describe the asymmetries and intermittent dynamics in �nancial volatility. The

statistical properties and the estimation of their parameters are addressed in detail. The

number of regimes in the model is determined through a statistical procedure based on a

robust Lagrange Multiplier (LM) speci�cation. The ability of the model to forecast �nancial

market volatility is empirically compared to other GARCH models for a set comprising some

of the major world stock indexes and their corresponding foreign exchange rates during the

recent �nancial crisis.
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1 Introduction

The problem of modeling and forecasting the volatility of �nancial time series is one of

the major tasks in investment, security valuation, risk management, monetary policy among

other areas in economics and quantitative �nance. As a result of the seminal papers by Engle

(1982) and Bollerslev (1986), the generalized autoregressive conditional heteroskedasticity

(GARCH) model has been one of the most popular and widely used solutions for tackling

this problem. Despite the ability of GARCH models to capture the so-called volatility

clustering and their relatively accurate volatility forecasts (Andersen and Bollerslev 1998),

some of their main drawbacks are the symmetry in the response of volatility to past shocks

and the sometimes very high implied volatility that are predicted. Regarding the former, as

highlighted by Black (1976) and discussed by Christie (1982) and others, it has been observed

that negative stock returns are followed by larger increases in volatility than equally large

positive returns. This behavior is commonly referred to as the leverage e¤ect, a stylized fact

not well captured by the original GARCH models. The leverage e¤ect is related to a rise
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in the debt to equity ratio of the �rm leading to increased volatility and hence speci�c to

stocks. The second issue is related to the observed exaggerated volatility persistence implied

by these models compared to the true volatility process. This discrepancy has been veri�ed

in exchange rates and stock returns (Engle and Mustafa 1992) and seems to be particularly

pronounced after extreme shocks such as stock market crashes.

To incorporate asymmetry, di¤erent volatility models have been proposed in the liter-

ature. The exponential GARCH (EGARCH) model proposed by Nelson (1991) introduces

asymmetry in the dynamics of the natural logarithm of the conditional variance according

to the sign of past returns. In the GJR model introduced by Glosten, Jagannanthan, and

Runkle (1993), the e¤ect of past squared returns on the current conditional variance depends

on the sign of the lagged returns. Several alternative speci�cations are encompassed by the

asymmetric power ARCH (APARCH) model proposed by Ding, Granger and Engle (1993).

As an alternative approach, regime-switching models are widely used by both practition-

ers and researchers to capture changes in regime and nonlinearities in economic and �nancial

variables. In the context of the classical regression model, Goldfeld and Quandt (1973) in-

troduced a version of switching regressions, which have been referred to subsequently as

Markov-Switching models. More recently, following the seminal paper by Hamilton (1989),

dynamic versions of these models, in which a latent (unobservable) state variable controls the

regime shifts follows a Markov-chain, have been widely studied. These models are success-

ful in capturing the time series behavior of many �nancial variables, resulting in signi�cant

research output in this area.

Meanwhile, the smooth transition approach is an alternative method of incorporating

changes of regime in time series models through observable variables. Several models have

been proposed in the literature. For example, the volatility-switching GARCH (VGARCH)

model by Fornari and Mele (1997) is a generalization of the GJR model in which all the

coe¢ cients change according to the sign of past returns. More recently, the �exible coe¢ cient

GARCH (FCGARCH) model by Medeiros and Veiga (2009) which nests several of the above
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speci�cations and, based on the smooth transition procedure, is de�ned by applying the

logistic distribution as a weighting factor to multiple GARCH(1; 1) dynamics.

In this paper we propose a new multi-regime non-linear asymmetric GARCH (MRN-

GARCH) model, within the smooth transition framework, that allows the persistence in

conditional volatility to depend on its level as well as incorporating multiple limiting regimes

to describe intermittent dynamics of volatility. This model relates very closely to the

GARCH(1,1) model by Heston and Nandi (2000) allowing for the inclusion of several limiting

regimes. The motivation for extending this GARCH speci�cation relies on its potential and

attractive applicability for pricing derivatives through a model that adequately captures the

price dynamics of the underlying asset. The development of an option pricing framework

underpinned by the MRNGARCH model is left for future research.

The MNRGARCH model is demonstrated to have the following advantages. First, the

stationarity restriction on the model parameters allows for rich dynamics. Both explosive and

stable limiting regimes can be included for a better description of the extreme movements and

stylized facts of �nancial time series that standard GARCH speci�cations fail to capture. The

second advantage is that more than two limiting regimes can be modeled and the number

of regimes is determined by a sequential hypothesis testing procedure using a Lagrange

Multiplier (LM)-statistic. This procedure circumvents the identi�cation problem by using

a novel approximation to the so called lower incomplete gamma function and a robust test

under non-normality.

The stationarity and ergodicity of the derived process and the problem of parameter

estimation are addressed. The consistency and asymptotic normality of the quasi-maximum

likelihood estimators (QMLEs) are left for future research, however some remarks on a

feasible approach are discussed. In addition, an empirical exercise employing 18 stock indexes

and 13 foreign exchange (FX) rates return against U.S. dollar (USD) is implemented to

evaluate the ability of the MRNGARCH for modeling and forecasting volatility.

The rest of the paper is organized as follows. Section 2 introduces the model and its
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statistical properties are analyzed. Section 3 discusses in detail the estimation of the MRN-

GARCH model and the hypothesis testing procedure to determine the number of limiting

regimes. In section 4 the model is applied to analyze the return series of a set of stock indices

and their related FX rates to USD. Section 5 contains concluding remarks. Technical results

and their proofs are given in the Appendix.

2 The MRNGARCH Model

To de�ne the model, consider a stochastic process (Xt)t2Z de�ned on some �ltered probability

space
�

;F ; P; (Ft)t2Z

�
, where the available information up to time t is represented by the

sigma algebra Ft. Conditional on Ft�1, the conditional mean and variance of the process are

denoted by �t � E (Xt jFt�1 ) and �2t � V ar (Xt jFt�1 ) , respectively in what follows.

De�nition 1. The error process ut � Xt � �t is said to follow a �rst-order multiple-

regime nonlinear asymmetric GARCH model with m limiting regimes,MRNGARCH(m; 1; 1)

if

ut = �t"t;

�2t = �0 + �0�
2
t�1 + �0 ("t�1 � 
�t�1)

2

+
Pm�1

i=1

�
�i + �i�

2
t�1 + �i ("t�1 � 
�t�1)

2�G ��2t�1;�i� ; (1)

where ("t) is a series of identically and independently distributed zero mean and unit variance

random variables (strict white noise) and, for any � 2 Rd (transition parameters), the

function G (�;�) : (0;1) ! [0; 1] is continuous and increasing such that G (x;�) ! 1 as

x!1. In addition, G is also a continuous function of �.

In contrast to other GARCH processes the conditional variance process (1) is driven

directly by the innovations "t and not by the error process ut. When the number of limiting

regimes ism = 1 and the conditional mean of the log returns processXt = log (St)�log (St�1)
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is governed by �t = r + ��2t , our model reduces to the GARCH(1; 1) process proposed in

Heston and Nandi (2000). This simpli�cation of the ordinary GARCH processes allows for

the existence of a closed option pricing formula. If in addition, �0 = �0 = 0 the resulting

process Xt coincides with the discrete time geometric Brownian motion.

The transition function G (�;�) may be the cumulative distribution function of any posi-

tive continuous random variable, for example, the exponential or gamma distributions. Here-

after, for convenience, the notation Gi;t � G
�
�2t�1;�i

�
is used.

In this paper, we focus our attention to the case where the conditional mean of the process

is driven by

�t = �+
Pp

i=1  iXt�i; (2)

a linear autoregession of order p [AR(p)] . This model can be considered as an exten-

sion of a Heston-Nandi GARCH(1,1) type model where the conditional mean is driven by

(2) instead of a garch-in-the-mean speci�cation. We are interested in studying the statis-

tical properties of multiple-regime dynamics (1) by employing the theoretical results pre-

sented in Meitz and Saikkonen (2008a) for nonlinear AR-GARCH models. The notation

MRNGARCH (p;m; 1; 1) will be used to refer to this model, where p corresponds to the

order of the AR speci�cation and m the number of limiting regimes.

As a standard assumption, the vector of parameters of the MRNGARCH (p;m; 1; 1)

process

� =
�
�;  1; : : : ;  p; �0; : : : ; �m�1; �0; : : : ; �m�1; �0; : : : ; �m�1; 
; �1; : : : ; �m�1

�0
(3)

is constrained to be in the interior of a compact and convex parameter space� � R3m+d(m�1)+p+2:

In order to derive the conditions for stationarity and the existence of �nite moments of

the process (ut), it is necessary to make the following assumptions

Assumption 1. The underlying (Lebesque) density function of "t is positive and lower

semi-continuous on R.

6



Assumption 2. (i) The derivatives of G (�;�) exist up to any order and are continuous.

(ii) For all �, lim
x!�1

xG (x;�) = lim
x!+1

x (1�G (x;�)) = 0; if � 6= �0, then for some x,

G (x;�) 6= G (x;�0) :

(iii) For all �, lim
y!�1

y2G (y;�) = lim
y!+1

y2 (1�G (y;�)) = 0; if � 6= �0, then for some y,

G (y;�) 6= G (y;�0) :

Assumption 3. (i) The parameters �j, �j, and �j, j = 0; : : : ;m� 1 satisfy the restric-

tions Pk
j=0 �j > 0;

Pk
j=0 �j � 0 and

Pk
j=0 �j � 0; 8k = 0; : : : ;m� 1: (4)

(iii) The transition distribution parameters �i, i = 1; : : : ;m� 1 are such that

G1;t � � � � � Gm�1;t; 8t: (5)

Assumption 1 and 2 are fundamental for the mathematical derivations that are developed

in the rest of the paper. Assumption 3 ensures strictly positive conditional variances in

equation (1).

The parameters �j, j = 0; 1; : : : ;m � 1 determine the kurtosis of the distribution of

ut and all the �j being zero implies a deterministic time varying variance. The sign of the

correlation between the variance process and spot return is then determined by the parameter


. Provided the existence of the third moment of "t, from Assumption 1 it can be veri�ed

that

Covt�1
�
�2t+1; Xt

�
= �2


�
�0 +

Pm�1
i=1 �iGi;t+1

�
�2t : (6)

From Assumption 3, it follows that �0 +
Pm�1

i=1 �iGi;t+1 � 0, hence, positive values of 
 lead

to negative correlation between future volatility and returns. The model is then consistent

with Black (1976) postulate and the widely documented leverage e¤ect in the literature for

stock returns (see for example, Christie (1982)).

In the following proposition (see appendix for proof), necessary and su¢ cient conditions

are stated for ensuring strict stationary MRNGARCH (p;m; 1; 1) process (1)� (2).
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Proposition 1. Suppose that the process ut de�ned by (1) and (2) satis�es the Assump-

tions 1-3.

(i) The process is stationary and ergodic with E
�
jXtj2

�
<1 and E [�2t ] <1 if

Pp
i=1 j ij < 1 (7)

and

E
�
log
�
�0 + 
2�0 +

Pm�1
i=1 �i + 
2

Pm�1
i=1 �i +

Pm�1
i=1 max f�i; 0g "2t

��
< 0 (8)

(ii) A su¢ cient condition for stationary and ergodicity of (ut; �2t )
0 is given by

�0 + 
2�0 +
Pm�1

i=1 �i + 
2
Pm�1

i=1 �i +
Pm�1

i=1 max f�i; 0g < 1: (9)

It is important to remark that proposition 1 is also valid in the case of a GARCH-in-the-

mean type model

�t = �+ ��2t : (10)

Conditions for stationarity and ergodicity of the resulting process can be derived by following

similar ideas to those provided in the proof of proposition 1 and the results given by Meitz

and Saikkonen (2008b) :

Finally, it is interesting to highlight that the continuous-time limit of the variance process

�2t of the MRNGARCH model converges weakly to a variance process, Vt which is the square-

root process of Feller (1951), and Cox, Ingersoll Ross (1985)

dVt = a (b� Vt) dt+ �
p
VtdWt; (11)

where Wt is a Wiener process. Equation (11) motivates the possibility of exploiting the

proposed model for valuing �nancial assets. Option pricing under this stochastic volatility

framework is left for future research.
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3 Parameter estimation and the number of regimes

In this section we consider in detail the parameter estimation and develop a sequential

procedure to tackle the problem of determining the number of regimes of the MRNGARCH

model.

3.1 Parameter estimation

Consider x1; : : : ; xn realizations of the process (Xt) de�ned by Xt = �t + ut, where the

conditional mean �t follows the dynamics (2) and the error process (ut) is de�ned by the

pure MRNGARCH model (1), i.e an MRNGARCH(p,m,1,1) process. Conditional on initial

realized values of x�p+1; : : : ; x0 and �0, the quasi-log-likelihood function of the model is

de�ned as

Ln (�) =
Xn

t=1
lt (�) (12)

where lt (�) = �1
2
log (2�) � 1

2
log (�2t ) �

u2t
2�2t

is the log-likelihood contribution arising from

the tth observation.

As the underlying distribution of xt is unknown, (12) is treated as an objective function

to be maximized (rather than a Gaussian likelihood), i.e. the vector of parameters � is

estimated by quasi-maximum likelihood (QML), and the estimator obtained is the QMLE

of � and de�ned as b�n = argmax
�2��R3m+d(m�1)+p+2

Ln (�) : (13)

Two possible sources of non-identi�ability of the model are the reducibility and the

interchangeability of regimes. The former is related to the presence of irrelevant regimes and

the second to permutations of regimes that may lead to the same values of the likelihood

function. To avoid any permutation of regimes it is necessary to impose some restrictions

on the parameters of the transition function G. In this investigation we take the transition
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function to be the Gamma distribution

G (x;�) =

Z x

0

sr

� (r)
ur�1e�sudu; (14)

with parameters � = (r; s)0, r; s > 0. In this case, the problem of interchangeability can be

prevented by imposing the restrictions1

s1 > � � � > sm�1 and r1 � � � � � rm�1; (15)

since together imply Assumption 3(ii).

However, if there exists a regime i 2 f1; : : : ;m� 1g such that �i = �i = �i = 0; then

the parameters in ri and si remain unidenti�able so the model contains an irrelevant regime.

To guarantee that there are no irrelevant regimes, the following additional assumption is

required.

Assumption 4. The parameters �i; �i and �i do not vanish jointly for some regime

i 2 f1; : : : ;m� 1g.

The parameter estimation strategy adopted in this article, together with an outline of

the procedure is given in the following remark.

Remark 1. Consider the transformations

�k = e�
�
k �

Xk�1

j=0
�j, �k = e�

�
k �

Xk�1

j=0
�j, �k = e�

�
k �

Xk�1

j=0
�j; k = 0; 1; : : : ;m� 1: (16)

rj = rj�1 + er
�
j ; sj = sj�1 � es

�
j�1 ; j = 1; : : : ;m� 1; (17)

where

��0; : : : ; �
�
m�1; �

�
0; : : : ; �

�
m�1; �

�
0; : : : ; �

�
m�1; r

�
1; : : : ; r

�
m�1; s

�
1; : : : ; s

�
m�1 (18)

are (unrestricted) real numbers, and the conventions
P�1

j=0 � 0 and r0 = s0 are used.

Recursive formulas (16) and (17) de�ne an unconstrained re-parametrization of the quasi-
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log-likelihood function (12) in terms of parameters (18) and �;  1; : : : ;  p; 
. The resulting

optimization problem can be solved through unconstrained optimization methods. To estimate

the initial values for the parameters, we employ a method based on a genetic algorithm. The

optimization procedure consists of a sequential application of the algorithm of Berndt, B.H.

Hall, R.E. Hall and Hausman (1974) (BHHH) in combination with a method of Mebane and

Sekhon (2011) that combines evolutionary search algorithms with derivative-based (Newton

or quasi-Newton) methods.

The transformations considered in Remark 1 are useful in order to tackle the problem

of maximizing the function (12) in terms of its parameters in order to obtain good QMLE

estimates.

3.2 Estimation of the number of regimes

In De�nition 1 the number of limiting regimes m in the MRNGARCH model is not known in

advance. To address this problem, we follow a "speci�c-to-general" modeling strategy in a

similar fashion to Medeiros and Veiga (2009). Consider the modelMRNGARCH (p;m; 1; 1)

de�ned by (1) and (2) with m limiting regimes and the possibility of adding an extra regime

represented by
�
�m + �m�

2
t�1 + �m ("t�1 � 
�t�1)

2�Gm;t. SinceGm;t = 0 for any �2t�1; rm > 0

if the scale parameter sm is zero, an appropriate null hypothesis is

H0 : sm = 0; (19)

against the alternative H1 : sm > 0. As the base model of m regimes is not identi�ed under

H0, following Luukkonen, Saikkonen and Teräsvirta (1988), it is convenient to expand G

about the null sm = 0. For this purpose, we use a novel result on the approximation to the

so-called incomplete gamma function. A direct application of Lemma 3 (see appendix) to
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the Gamma distribution (14) around s = 0 leads to the approximation,

G (x; r; s) =
cr
� (r)

skx2 +R1; (20)

valid for all x < M and any M > 0, where R1 is the remainder2and k = k (r; s;M) > 0. By

using the expansion (20) for Gm;t, the conditional variance can be rewritten as

�2t = �0 + �0�
2
t�1 + �0 ("t�1 � 
�t�1)

2 +
Xm�1

i=1

�
�i + �i�

2
t�1 + �i ("t�1 � 
�t�1)

2�Gi;t

+ a1�
4
t�1 + a2�

6
t�1 + a3 ("t�1 � 
�t�1)

2 �4t�1 +R2; (21)

where a1 = b�m, a2 = b�m, a3 = b�m, with b = cr� (rm)
�1 skm and k = k (rm; sm;M), M is

any upper bound for the series
�
�2t�1

�n
t=1
, and the remainder R2 vanishes under H0.

When a new regime is considered in the model, the vector of parameters is given by

# =(�0; a0)
0 where a = (a1; a2; a3)

0. It is straightforward to verify that the corresponding

score vector can be written as

S (#) �
Pn

t=1

@lt (#)

@#
=
Pn

t=1 ut

�
1

�2t

@�t
@#

�
+
Pn

t=1

�
u2t � �2t

� � 1
2�4t

@�2t
@#

�
=
Pn

t=1

�
@�t
@#

...
@�2t
@#

�
Wt

�
ut

u2t � �2t

�
=
Pn

t=1�
0
tWt t; (22)

where

�0t �
�
@�t
@#

...
@�2t
@#

�
;Wt �

264 1
�2t

0

0 1
2�4t

375 ; and  t � � ut
u2t � �2t

�
: (23)

Here, triple dots
... are used as a column matrix block separator. The Fisher information

matrix is then calculated as

J (#) � �E
�
@2lt (#)

@#@#0

�
= E

�
1

�2t

@�t
@#

@�t
@#0

�
+
1

2
E

�
1

�4t

@�2t
@#

@�2t
@#0

�
= E (�0tWt�t) ;

by applying the law of iterated expectations and conditioning with respect to =t�1 and noting
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that from the recursive expression (A:7) in the Appendix, the partial derivative @�t
@#
is =t�1

measurable, as is @2�t
@#@#0 .

Under the null hypothesis (19), it is implied that a1 = a2 = a3 = 0 so that expressions

(A:14), (A:15) and (A:16) for vector Vmt and scalars Kmt and Lmt, respectively, vanish.

Then formulas (A:8) and (A:9) in Lemma 2 from the Appendix, corresponding to the partial

derivatives of the local approximation (21), are simpli�ed as

@�2t
@�

= Vt +Kt

@�2t�1
@�

� Lt
@�t�1
@�

; (24)

@�2t
@a

= Vat +Kt

@�2t�1
@a

; (25)

@�t
@�

= Et �
pP
i=1

�i
@�t�i
@�

; (26)

where Vt, Vat, Kt and Lt are given by (A:10), (A:17), (A:11) and (A:12), respectively.

Hence, by noting that @�20
@#
= @��

@#
= 0, � = �p + 1; : : : ; 0, the recursive forms (24) and (25)

have solutions

@�2t
@�

= Vt +
t�1P
i=1

tQ
j=i+1

KjVi �
t�1P
i=1

tQ
j=i+2

KjLi+1
@�i
@�

; (27)

@�2t
@a

= Vat +
t�1P
i=1

tQ
j=i+1

KjVai; (28)

@�t
@�

= Et +
t�1P
j=1

jP
k=1

DjkEj; (29)

where Djk = (�1)k
P

A �i1 � � ��ik with the subset A formed by indexes such that 1 �

i1; : : : ; ik � q and i1 + � � �+ ik = j.

A remaining aspect not addressed in this document is the validity, under the null, of

n�1=2S (#)
d! N (0; J (#)), where J (#) can be estimated by Jn (#) = 1

n

Pn
t=1
b�0tcWt

b�t, where
"b" denotes that each function is evaluated at b�n. In this case, under the null hypothesis
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(19), the LM statistic is then given by

LM = n
nP
t=1

b�0tcWt

� butbu2t � b�2t
� �

nP
t=1

b�0tcWt
b�t��1 nP

t=1

b�0tcWt

� butbu2t � b�2t
�
: (30)

The test statistic (30) can be constructed under the normality assumption. However as the

investigation of normality is not considered in this article we instead implement a robust

version of the LM test against general error distribution by a direct application of Theorem

2.1 in Wooldridge (1990). For the purpose of this paper, consider the estimated gradients

(24) and (26) in the (3m+ d(m� 1) + p+ 2)� 2 matrix

b�0t = �@�t(b�n)@�

...
@�2t(b�n)

@�

�
; (31)

which corresponds to the transpose of �E
�
@t (b�n)

@�
jXt

�
. De�ne the matrix of weights

cW 1=2
t =

2641=b�t 0

0 1=(
p
2b�2t )

375 ; (32)

as well as the auxiliary matrices

e�t � cW 1=2
t
b�t; e	t � cW 1=2

t
b	t and e t � cW 1=2

t

� butbu2t � b�2t
�
; (33)

where b"t = butb�t are the standardized residuals. The procedure for performing the LM test in

regression stages under non-normality can be stated as follows.

1. Compute b�2t , the estimated conditional variance of the process (Xt) driven by equations

(2) and (1) under the null, and the gradient estimates b�t from the formulas (27), (28) and

(29) where Vt, Vat, Et, Kt, Lt, t = 1; : : : ; n are obtained by (A:10), (A:17), (A:13), (A:11)

and (A:12).

2. Regress e�t on e	t and compute the residual vectors brt, t = 1; : : : ; n.
14



3. Regress 1 on e 0tbrt and compute the residual sum of squares SSR. The test statistic

LMR = n� SSR (34)

is asymptotically distributed �2 with 3 degrees of freedom.

Despite the robust version of the LM test it is preferred to the non-robust tests (see

Lundbergh and Teräsvirta, 2002), possible outliers in the data may a¤ect the results of the

sequence of LM test. However, following van Dijk, Franses and Lucas (1999) it is also

possible to develop an outlier-robust version of the LM test developed in this work.

For practical purposes in empirical applications, we follow Medeiros and Veiga (2009)

and implement a sequential application of the proposed LM test. First, linearity is tested

against an ARCH(q) model at signi�cance level $ using the Engle (1982) test. If the null

hypothesis of homoskedasticity is rejected, a MRNGARCH(1; 1; 1; 1) model is estimated and

tested against an MRNGARCH model with two limiting regimes at the signi�cance level $�

for a reduction parameter 0 < � < 1. The procedure continues recursively by estimating an

MRNGARCH(1;m; 1; 1) model with m limiting regimes and testing it against the version

with m+1 limiting regimes. The sequential process stops when the null hypothesis (19) can

not be rejected at the signi�cance level $�m. At each step, the signi�cance level is reduced

and converges to zero as the number of limiting regimes increases so that models with a large

number of parameters are less likely to be chosen.

4 Empirical Application

In this section an empirical application of the MRNGARCH model is implemented to evalu-

ate its ability in forecasting volatility in the context of the major world stock indexes and the

corresponding exchange rates. The exercise is based on a data set of 18 stock indexes and

their corresponding foreign exchange (FX) rates to U.S. dollar. The series are chosen to rep-

resent some of the most important �nancial markets. The sample period is divided into two

15



parts. The �rst for in-sample analysis, and the second to test the forecasting performance

of the models. The in-sample period spans from September 3, 1996 to August 29, 2008

and the out-of-sample spans from September 1, 2008 to June 30, 2010. The in-sample con-

sists of 3,129 daily observations, while the out-of-sample consists of 478 daily observations.

Our study is based on a data set of daily closing prices obtained from Thomson Reuters

DataStream3.

Table 1 shows, for each stock index and its corresponding FX currency rate to USD, some

descriptive statistics for daily log-returns of the 31 series considered in the analysis. The

sample mean (mean), sample standard deviation (std), sample skewness (sk) and sample

kurtosis (ku), in excess to three, are included.

[Table 1 around here]

For each series we estimate the conditional variance via the standard GARCH(1; 1)model

and also the EGARCH(1; 1), GJR(1; 1) and APARCH(1; 1) speci�cations to allow for lever-

age e¤ects. For the conditional mean a simple AR(1) is considered. Tables 2, 3, 4 and 5

contain the estimation results and the diagnostic tests for each of the types of GARCH mod-

els employed. The numbers in parenthesis below the parameter estimates are their robust

standard errors. The basic statistics std, sk and ku are computed for standardized residuals.

To test the adequacy of these models additional diagnostic tests are implemented. We com-

pute the Ljung-Box statistics to test the strict white noise hypothesis to the raw, squared and

absolute standardized residuals; the corresponding p-values are denoted by columns LjB1,

LjB2 and LjBAbs. For testing asymmetry, we report the p-values of the sign bias (Sb),

negative size bias (Nsb), positive size bias (Psb), and joint (Jsb) tests proposed by Engle and

Ng (1993). In addition, for evaluating interval forecast estimations, we implement the uncon-

ditional coverage, independence, and conditional coverage tests proposed by Christo¤ersen

(1998). By considering a 95% con�dence interval, the corresponding p-values of these tests

are presented in columns Pc, Pi and Pcc. Finally, Bayesian information criterion (BIC)

and un-normalized log-likelihood values (Likelihood) are reported.
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For all the series, the coe¢ cients are statistically signi�cant at the 5% level. The nor-

malized residuals have close to zero skewness coe¢ cients, particularly negative in the case

of equities. On the other hand, normalized residuals from simple GARCH and EGARCH

speci�cations have, on average, slightly lager kurtosis to those obtained from the GJR and

APARCH alternatives. When comparing the values of BIC and likelihood, a similar situ-

ation occurs among models, where APARCH speci�cation has the smallest BIC level and

the highest likelihood ones. The sum of corresponding estimated coe¢ cients reveals a high

persistence level in the simple GARCH model (over 0:94, and, on average, close to 1); except

for two series, the situation is similar for the EGARCH model (17 series with levels over 1,

inclusive). In the case of the GJR model, most of the series present an explosive regime, as

the sum of �0, �0 and 
0 is greater than one for most of the equity series and about half of

the FX rates; meanwhile, the APARCH model has relatively moderate persistence for most

of the series.

By inspection of the sign bias, negative sign bias, positive sign bias, and joint tests p-

values columns, there are asymmetric e¤ects in the standardized residuals from the simple

GARCHmodel as well as, though to a lesser degree, for the other three alternative models. In

about half of the series considered there are some asymmetric e¤ects, at the 5% signi�cance

level.

With regards to the analysis of coverage tests, apart from �ve equity series (IBEX35 and

DAX30 -GARCH-, SMI -EGARCH-, ALSI -GJR- and IBOVESPA -APARCH model-), all

speci�cations produce the correct con�dence intervals for the series.

[Tables 2, 3, 4 and 5 around here]

We now consider the MRNGARCH(1,1,1,1) speci�cation as the basis model. We proceed

to determine the number of limiting regimes by implementing the robust version of the LM

test that was developed in the previous section. An initial signi�cance level of 5% was used

for the sequence of LM tests and halved at each step (� = 0:5). The estimation is performed

by the QML method using evolutionary search algorithms with derivative-based numerical
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optimization algorithms. Table 6 reports the parameter estimates. We follow, for similar

reasons, Silvennoinen and Terasvirta (2009) and report p-values and standard errors in this

empirical analysis under the assumption of asymptotic normality of the QMLE.

The main �ndings indicate that equity indices tend to allow for multiple regimes more

often in comparison to FX rates. In all but �ve equity series (AEX, ATX, SET, SMI and

TSX), the null hypothesis of no additional regime is rejected. The tests show evidence of

two limiting regimes for ten series: ALSI, ASX200, BSE100, CAC40, FTSE100, IBEX35,

IBOVESPA, ISE100, NIKKEI225 and RTSI. For the DAX30, IPC and S&P500 three limiting

regimes are found. In contrast, only three of the FX series considered, namely, AUD, MXN

and RUB, showed evidence of additional limiting regimes.

It is important to mention that for all equity indices the parameter 
 is positive and

statistically di¤erent from zero. As discussed in the previous section, this �nding implies

that negative movements of the returns tend to have a larger impact on volatility rather

than positive ones. In contrast, for the FX series, apart from CHF and JPY, the sign of the

leverage parameter is negative. However, the parameter 
 is is not statistically signi�cantly

di¤erent from zero for all FX series.

The diagnostic test results of the model are tabulated in Table 7. When comparing

the LjB1, LjB2 and LjBAbs values to those obtained via the alternative GARCH spec-

i�cations, it can be observed that the white noise assumption for standardized residuals

is satis�ed for more series for the MRNGARCH model. In addition, the interval coverage

tests, MRNGARCH outperforms the other alternatives since some of the reported interval

coverage tests p-values are below the 5% con�dence level for only one of the equity indexes

(S&P500) and four exchange rates (GBP, INR, RUB, TRY). Moreover, the Sb, Nsb, Psb

and Jsb columns indicate that MRNGARCH fails to adequately describe the asymmetric

relation between returns and volatility in only three series, namely, the FX rates BRL, CAD

and JPY.

[Tables 6 and 7 around here]
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When comparing the Likelihood values to the GARCH model alternatives, it can be

noted that, with the sole exception of the CAD index, MRNGARCH model outperforms the

other alternatives. Meanwhile, apart from the NIKKEI, RTSI, THB and ZAR series, the BIC

values lead to the same conclusion. Where the MRNGARCH model does not outperform,

the GJR and APARCH speci�cations seem to be acceptable models.

The �nal step in the empirical study addresses the forecasting performance evaluation of

the models. Following Hansen and Lunde (2005), we use the following three sample expected

loss functions (criterion) in our empirical analysis

MAE � n�1
nP
t=1

���2t � ht
�� ; MSE1 � n�1

nP
t=1

�
�2t � ht

�2
; MSE2 � n�1

nP
t=1

�
�4t � h2t

�2
; (35)

where (ht) is a forecast of the underlying conditional variance process (�2t ). As a proxy of the

variance, the squared returns are used in the analysis and the volatility forecast considers

a one-day-ahead horizon. In Table 8 we present the values of each error criteria for the

MRNGARCHmodel and the GARCH, EGARCH, GJR and APARCH alternatives. For each

series the minimum values are highlighted in bold. The main �nding is that MRNGARCH

model outperforms the alternative speci�cations. The MRNGARCH model produces the

lowest MAE values for 16 out of the 18 equity indices (89%) and 10 out of the 13 FX series

(77%). Under this criteria, EGARCH, GJR and APARCH speci�cations are also acceptable,

or with similar MAE values inclusive, in 3, 8 and 9 cases, respectively. On the other hand,

MSE1 �gures indicate that MRNGARCH is the best model in 16 out of the 18 equity indices

(89%) and 8 out of 13 FX series (62%) which is similar to the results for the MSE2 criteria.

[Table 8]

In order to statistically discriminate if a particular forecasting model is outperformed

by alternative forecasts we implement the so called superior predictive ability (SPA) test

proposed by Hansen (2005). The null hypothesis of the SPA test is that a given model is
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not inferior to any other competing models in terms of their expected loss. The numbers

in parenthesis of Table 8 are the p-values of the SPA test. The main remark is that the

simple GARCH is the model with the most rejections by the SPA test for all the imple-

mented loss criterions (88% rejections on average), in contrast, the proposed MRNGARCH

is the model with the highest forecasting e¤ectiveness (26% rejections on average). When

losses are measured through the MAE criterion, MRNGARCH model produces satisfactory

forecasts for 15 out of the 18 equity indices (83%) and 11 out of the 13 FX series (85%). In

comparison to their performance on equity series, the APARCH, GJR and EGARCH mod-

els are more appropriate for forecasting FX volatilities: 44%, 56% and 28% for the equity

indexes, respectively, in contrast to the corresponding 85%, 62% and 62% ratios observed in

FX rates.

When the MSE1 is used, the MRNGARCH model is again the best performer: ade-

quate forecasts for 26 out of the 31 series (71%) against the 45%, 39% and 39% observed

for APARCH, GJR and EGARCH alternatives, respectively. A similar situation is observed

for the MSE2 criterion. Finally, when the three criteria numbers are averaged, the MRN-

GARCH model shows adequate forecasts for 74% of the series, against 48%, 47%, 40% and

12% obtained for APARCH, GJR, EGARCH and simple GARCH alternatives, respectively.

However, these four alternatives shows better forecasting performance for FX rates in com-

parison to equity series.

5 Conclusions

In this paper we propose a new nonlinear GARCH model, the multiple regime nonlinear

GARCH (MRNGARCH), to describe the asymmetric behavior of �nancial volatility and

returns and their intermittent dynamics. The model is a generalization of the Heston-

Nandi GARCH(1,1) speci�cation that allows multiple regimes in the conditional variance

dynamics. Conditions for strict stationarity, ergodicity and existence of moments for the
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proposed model were established. Estimation of the parameters was addressed through

the quasi-maximum likelihood approach and the asymptotic properties of the estimator

were discussed. The number of regimes in the model was e¤ectively determined through a

sequential implementation of a procedure based on a robust Lagrange Multiplier (LM)-type

speci�cation test. To avoid the estimation of unidenti�ed regimes, a novel expansion formula

for the lower incomplete gamma function was developed.

An empirical application was implemented on a set of 18 of the major world stock indexes

and their corresponding 13 foreign exchange rates to US dollar. A total of thirteen series,

ten of them stock indexes, showed evidence of two limiting regimes, and three stock indexes

allowed for three limiting regimes. With the sole exception of one index, the �rst limiting

regime was associated with negative shocks, representing "bad news". Most of the stock

series have two or three regimes and show a strong leverage e¤ect while FX rates have

no more than two limiting regimes and no leverage e¤ect was detected. The forecasting

performance of the MRNGARCH outperforms the GARCH, EGARCH, GJR and APARCH

alternatives for the majority of the time series.

Finally the MRNGARCH model has as a continuous time limit a CIR process. This

provides a framework for extending the Heston-Nandi option pricing methodology to the

important case of multiple regimes. This will be the focus of a future investigation.

6 Appendix

Proof of proposition 1

In order to prove proposition 1 we require the following Lemma in conjunction with

results obtained by Meitz and Saikkonen (2008a) [MS].

Lemma 1. The conditional variance process (1) is de�ned by a recursive equation

�2t = g
�
"t�1; �

2
t�1
�
; (A.1)
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where g : R � R+ ! R+ satis�es g ("; x) � (a+ b"2)x + c +  (") ; for all x > 0; with

a = �0 + 
2�0 +
Pm�1

i=1 (�i + 
2�i), b = �0 +
Pm�1

i=1 max f�i; 0g,  (") = b
�
j
j+

p
"2 + 
2

�2
,

and some positive c:

Proof

From (1) we can de�ne, for any x > 0,

g ("; x) = ax+
Pm�1

i=1

�
�i + 
2�i

�
(Gi (x)� 1)x+ �0 +

Pm�1
i=1 �iGi (x)

+
�
�0 +

Pm�1
i=1 �iGi (x)

� �
"2 � 2
x1=2"

�
: (A.2)

Note that for any M > 0;

Pm�1
i=1

�
�i + �i


2
�
(Gi (x)� 1)x �

Pm�1
i=1

���i + �i

2
�� (1�Gi (x))x

�
1fx�Mg + 1fx>Mg

�
�

Pm�1
i=1

���i + �i

2
�� �M + (1�Gi (x))x1fx>Mg

�
:

By Assumption 2 (ii), it follows that (1�G (x;�i))x! 0; as x!1. Then by choosing M

su¢ cient large, it follows that

Pm�1
i=1

�
�i + �i


2
�
(Gi (x)� 1)x � 2M

Pm�1
i=1

���i + �i

2
�� : (A.3)

Let " 6= 0 and consider the functions � (x) = "2+2 j
"jx1=2 and � (x) = "2x; both de�ned

for x > 0: It can easily be veri�ed that � (x) = � (x) for the level x = "�2
�
j
j+

p
"2 + 
2

�2
,

so that � (x) � max
��
j
j+

p
"2 + 
2

�2
; "2x

�
. This inequality is useful to guarantee that

for any " 2 R

"2 � 2
x1=2" � "2x+
�
j
j+

p
"2 + 
2

�2
: (A.4)

By noting that 0 � G (x;�i) � 1 and combining (A:3) and (A:4) it follows

g ("; x) �
�
a+ b"2

�
x+ c+  (") ; (A.5)
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where c = 2M
Pm�1

i=1 j�i + �i

2j+ �0 +

Pm�1
i=1 max f�i; 0g > 0:

From Assumptions 2(i) and 3, we observe that function g de�ned by (A:2) is smooth,

strictly positive and satis�es, for any x > 0, the limit behavior g ("; x)!1; as "!1. In

other words, Assumptions 4 (a) and 4 (b) from MS are satis�ed.

Note that by Lemma 1, g (0; x) � ax + c + 4b
2. Then for large enough x, g (0; x) �

(a+ �)x for some � > 0 such that a + � < 1. From the smoothness and strictly positive

variance property, the function g (0; x) has a maximal �xed point h� such that g (0; h�) = h�

and g (0; x) < x for all x > h�. Suppose that for any h0 � h� the sequence fhk = g (0; hk�1)g

converges to h�. It implies hk = g (0; hk�1) < hk�1 for any k � 1, so that the sequence fhkg

is non-increasing and bounded from above by h�. Then there is h1 > h� such that hk ! h1

as k ! 1: On the other hand, by the continuity of g (0; �), g (0; hk) ! g (0; h1). Thus we

must have g (0; h1) = h1, and since h� is the maximal �xed point, h1 = h�: This proofs the

validity of Assumption 4 (c) of MS. Meanwhile (A:5) corresponds to their Assumption 4 (d).

In addition, since E ["2t ] = 1, assumption 1 implies that Assumption 1 of MS holds with

the value r = 1. The AR (p) form in the conditional mean satis�es Assumption 2 in MS,

whereas condition (7) corresponds to that of Lemma 1 (ii) of MS so that their Assumption 3

is also satis�ed. By following the same arguments as in MS, the validity of their Assumption

6 can be veri�ed.

Finally, our Assumptions 2 and 3 together with (8) imply that the process ut de�ned by

(1) satis�es the necessary conditions for the validity of Theorem 1. In order to verify last

a¢ rmation, note that from (A:1) and (A:5) we have that

�2t�m+k+1 � ct�m+k�
2
t�m+k + c+  t�m+k; (A.6)

with the notation cs = a + b"2s and  s = b
�
j
j+

p
"2s + 
2

�2
: By iterating k � 1 times in
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equation (A:6) we obtain

�2t�m+k+1 �
kQ
j=1

ct�m+j�
2
t�m+1+c

 
1 +

k�2P
j=0

jQ
i=0

ct�m+k�i

!
+

 
 t�m+k +

k�2P
j=0

 t�m+k�j�1
jQ
i=0

ct�m+k�i

!
:

If instead of (8) we assume � � E (c) < 1. Furthermore, by noting that  (") � 2
2 +

2
max fj"j ; 
g + "2, we denote � � E [ ("t)] < 1 and de�ne d = (c+ �) = (1� �). By the

independence of the processes ct and  t; as well as individually,

E [h (Zt�m+k)jZt�m = z] � h (z) �k + c
�
1 +

Pk�2
j=0 �

j+1
�
+ �

�
1 +

Pk�2
j=0 �

j+1
�
� h (z) �k + d;

where Zt = [xt�1 � � �xt�p �2t ] denotes the Markov chain de�ned in MS and the explicit repre-

sentation h (Zt�1) = g
�
ut�1; �

2
t�1
�
. By following the same lines as in MS, the results in their

Lemma 5 are valid for our model. Finally, it can be veri�ed the validity of Theorem 1 of MS

since the proofs for Lemmas 2, 3, 4 and 6 are also applicable to our model. As pointed out

in MS , the result is still valid by just replacing r by an unknown r0 2 (0; r), so that if (8) is

assumed, their Theorem 1 is valid and then our process (ut; �2t )
0 is stationary and ergodic.

The su¢ cient condition (ii) is consequence of this remark.

Lemma 2. (i) The gradient, with respect to the vector of parameters � (3), for the

conditional variance of the process (Xt) de�ned by (2) and (1) is given by the recursive

forms
@�2t
@�

= Vt +Kt

@�2t�1
@�

� Lt
@�t�1
@�

;
@�t
@�

= Et (A.7)

for some vectors Vt; Et 2 R5m+p and scalars Kt and Lt.

(ii) The gradient with respect to the parameters # = (�0; a0)0 in the local approximation

(21) is given by equations

@�2t
@�

= Vt +Vmt + (Kt +Kmt)
@�2t�1
@�

� (Lt + Lmt)
@�t�1
@�

(A.8)

@�2t
@a

= Vat + (Kt +Kmt)
@�2t�1
@a

; (A.9)
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for some vectors V mt 2 R5m+p, V at 2 R3 and scalars Kmt and Lmt.

Proof

(i) Note that the Gamma distribution G
�
�2t�1; r; s

�
can be expressed in terms of the

so-called (normalized) Incomplete Gamma Integral through the formula

G
�
�2t�1; r; s

�
= P

�
r; s�2t�1

�
;

where P (a; z) = 1
�(a)

Z z

0

ta�1e�tdt; a; z > 0: The partial derivatives of the Gamma distribu-

tion with respect to its parameters are given by

@G

@r
= g

�
�2t�1; r; s

� @�2t�1
@r

+P1
�
r; s�2t�1

�
and

@G

@s
= g

�
�2t�1; r; s

� @�2t�1
@s

+
1

s
g
�
�2t�1; r; s

�
�2t�1;

where g (u; r; s) = sr

�(r)
ur�1e�su and P1 (r; z) =

@P (r;z)
@r

. For computational purposes, the

partial derivative of the normalized Incomplete Gamma distribution P1 is approximated via

numerical procedures as those described in Moore (1982).

By rewriting the conditional variance as

�2t = �0 +

�
�0 + �0

�
ut�1
�2t�1

� 

�2�

�2t�1 +
Pm�1

i=1

�
�i +

�
�i + �i

�
ut�1
�2t�1

� 

�2�

�2t�1

�
Gi;t;
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it is straightforward to verify the recursions (A:7) where

Vt =
�
00p+1; 1; G1;t; : : : ; Gm�1;t; �

2
t�1; �

2
t�1G1;t; : : : ; �

2
t�1Gm�1;t;�

ut�1
�2t�1

� 

�2
�2t�1;

�
ut�1
�2t�1

� 

�2
�2t�1G1;t; : : : ;

�
ut�1
�2t�1

� 

�2
�2t�1Gm�1;t;

2
�
�0 +

Pm�1
i=1 �iGi;t

� �

�2t�1 � ut�1

�
;�

�1 + �1�
2
t�1 + �1

�
ut�1
�2t�1

� 

�2
�2t�1

�
Dr1;t; : : : ;�

�m�1 + �m�1�
2
t�1 + �m�1

�
ut�1
�2t�1

� 

�2
�2t�1

�
Drm�1;t;�

�1 + �1�
2
t�1 + �1

�
ut�1
�2t�1

� 

�2
�2t�1

�
Ds1;t; : : : ;�

�m�1 + �m�1�
2
t�1 + �m�1

�
ut�1
�2t�1

� 

�2
�2t�1

�
Dsm�1;t

�0
; (A.10)

Kt = �0 +
Pm�1

i=1 �iGi;t �
�
�0 +

Pm�1
i=1 �iGi;t

� �
ut�1
�2t�1

� 

�2

+
Pm�1

i=1

�
�i +

�
�i + �i

�
ut�1
�2t�1

� 

�2�

�2t�1

�
gi;t; (A.11)

and

Lt = 2
�
�0 +

Pm�1
i=1 �iGi;t

� �
ut�1
�2t�1

� 

�
; (A.12)

where 0p+1 2 Rp+1; Gi;t � G
�
�2t�1; ri; si

�
, gi;t � g

�
�2t�1; ri; si

�
, Dri;t � P1

�
ri; si�

2
t�1
�
and

Dsi;t � 1
si
gi;t�

2
t�1, for i = 1; : : : ;m � 1. Finally, the second recursive formula in (A:7) is

veri�ed for

Et =
�
1; xt�1; : : : ; xt�p;0

0
5m�1

�0
; (A.13)

with 05m�1 2 R5m�1:

(ii) The gradient for the extra regime expansion (21) can be directly obtained as in part

(i) by noting that for any component �j in �, the corresponding partial derivative takes the

form
@�2t
@�j

= Vj;t + V mj;t + (Kt +Kmt)
@�2t�1
@�j

+ (Lt + Lmt)
@ut�1
@�j

;
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where

V mj;t = 2a3
�

�2t�1 � ut�1

�
�4t�11f�j=
g; (A.14)

Kmt =
h
2a1=�

2
t�1 + 3a2 � a3

�
ut�1
�2t�1

� 

��

ut�1
�2t�1

� 3

�i
�4t�1; (A.15)

and

Lmt = 2a3

�
ut�1
�2t�1

� 

�
�4t�1: (A.16)

Equation (A:8) is then obtained by considering the vectors Vt = (Vj;t) and Vmt = (V mj;t).

Meanwhile, to verify equation (A:9), it can be shown that the partial derivative with respect

to ai is given by
@�2t
@ai

= V ai;t + (Kt +Kmt)
@�2t�1
@ai

;

where V ai;t is the ith element in vector

Vat =
�
�4t�1; �

6
t�1;

�
ut�1 � 
�2t�1

�2
�2t�1

�0
: (A.17)

Lemma 3. Let r > 0 and consider 
 (r; z) =
R z
0
ur�1e�udu, z � 0 the so-called lower

incomplete gamma function. Given r and M > 0, there are positive number s� = s� (r;M)

and k = k (r; s;M) such that for all 0 < x < M


 (r; sx) = crs
kx2 +R; 0 < s < s�; (A.18)

where jRj < skM2 and cr = 1
2r
if r � 1 and cr = 1

2
otherwise.

Proof

Let r;M > 0 and de�ne the function f (x) = xr�1e�x; x � 0.

We �rst suppose r > 1. Since sre�sM > 0 is bounded as function of s and strictly
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increasing in the interval (0; r=M ], it is implied that there is s1 = s1 (r;M) such that

sre�sM < (1=M)r�2 ; 0 < s < s1: (A.19)

De�ne

k (r; s;M) = r + ((r � 2) logM � sM)= log s; 0 < s < s2; (A.20)

where s2 = min (s1; 1; ) :It is important to remark that the values of k given by (A:20) are

always positive. From equations (A:19) and (A:20), it is implied that

(sM)r�1 e�sM = sk�2 (sM) ;

i.e. the straight line g (x) = sk�2x intersects f (x) at the point sM .

When r > 2, it is straightforward to verify that f (x) is convex in the interval (0; sM) for

all s < s� = min
�
s2;

r�1�
p
r�1

M

�
. For 0 < t

M
< 1, we have that f ((t=M) sM + (1� t=M) 0) <

(t=M) g (sM), i.e.

f (st) < sk�1t; 0 < t < M: (A.21)

By integrating both sides in equality A.21 with respect to t from 0 to x < M , we obtain that

R sx
0
f (u) du <

sk

2
x2; x < M . (A.22)

Meanwhile, when 1 < r � 2, �f (x) is convex so that for all s < s� = s2

sk

2
x2 <

R sx
0
f (u) du; x < M . (A.23)

Both left and right sides in inequalities (A:22) and (A:23) are bounded by 1
2
skM2 and skM2,

respectively. Therefore, the error of approximating
R sx
0
f (u) du by sk

2
x2 is bounded by the
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last quantity

jRj =
����R sx0 f (u) du� sk

2
x2
���� < skM2: (A.24)

For the remaining case 0 < r � 1, a similar bound can be derived by noting that through

integrating by parts 
 (r; z) = 1
r
(srxre�sx + 
 (r + 1; z)), so that (A:24) is bounded by

1
r

�
srM r + sk

�
M2
�
= skM2 for some k > k�, where k� is given by (A:20) with r + 1 in-

stead of r.
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7 Notes

1. Given the parameters s1 > s2 and r1 � r2, Assumption 3(ii) is a consequence of the dom-

inance relationship between the Gamma densities g (u; r1; s1) � g (u; r2; s2)which is equiv-

alent to e�(s1�s2)u � cur2�r1 ;where c � �(r1)s
r2
2

�(r2)s
r1
1
. The inequality holds for any u in the

non-empty interval (0; x�] where x� is the solution of the equation h (x) � e�(s1�s2)x �

cxr2�r1 = 0;which exits because h is continuous and h (c�) � 0 < h (0), where c� �

max
�
1; e�(s1�s2)=(r2�r1)c�1=(r2�r1)

	
:

2. Letting t = su in (14), the Gamma distribution is rewritten asG (x; r; s) = 1
�(r)

R sx
0
tre�tdt =

1
�(r)


 (r; sx), where 
 (r; z) is the so-called lower incomplete gamma function. The absolute

value of the remainder is bounded by cr
�(r)

skM2 and tends to zero as s! 0.

3. http://online.thomsonreuters.com/datastream/
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