
1

Automated Map Generation for the
Physical Travelling Salesman Problem

Diego Perez, Student Member IEEE, Julian Togelius, Member IEEE,
Spyridon Samothrakis, Student Member IEEE, Philipp Rohlfshagen, Member IEEE,

Simon M. Lucas, Senior Member IEEE

Abstract—This paper presents a method for generating
complex problems that allow multiple non-obvious solutions
for the Physical Travelling Salesman Problem (PTSP). PTSP
is a single-player game adaptation of the classical Travelling
Salesman Problem that makes use of a simple physics model:
the player has to visit a number of waypoints as quickly as
possible by navigating a ship in real time across an obstacle-
filled two-dimensional map. The difficulty of this game depends
on the distribution of waypoints and obstacles across the two-
dimensional plane. Due to the physics of the game, the shortest
route is not necessarily the fastest, as the ship’s momentum
makes it difficult to turn sharply at speed. This paper proposes
an evolutionary approach to obtaining maps where the optimal
solution is not immediately obvious. In particular, any optimal
route for these maps should differ distinctively from (a) the
optimal distance-based TSP route and (b) the route that cor-
responds to always approaching the nearest waypoint first. To
achieve this, the evolutionary algorithm CMA-ES is employed,
where maps, indirectly represented as vectors of real numbers,
are evolved to differentiate maximally between a game-playing
agent that follows two or more different routes. The results
presented in this paper show that CMA-ES is able to generate
maps that fulfil the desired conditions.

I. INTRODUCTION

Procedural content generation in games is a growing
research field motivated by a real need within game develop-
ment, and a research goal to enable new kinds of interactive
techniques [26]. Techniques developed in the field, especially
evolutionary techniques, have been employed elsewhere with
great success and content generation has even been the
focus of some competitions such as the Mario AI Champi-
onship [22]. Sometimes, procedural content generation needs
to tackle the problem of infeasible solutions: not only must
the content generated be good for the problem at stake, but it
also needs to be valid material for the domain in which it is
applied. In cases where a problem of some kind is designed,
such as a level, a quest or a puzzle, the design goal is often
that the problem should be interesting, in the sense that it
can be solved in different ways and that the best solution is
not obvious. This paper presents a method for evolving maps
that have exactly those properties.

Diego Perez, Spyridon Samothrakis, Philipp Rohlfshagen,
Simon M. Lucas, (School of Computer Science and Electronic
Engineering, University of Essex, Colchester CO4 3SQ, UK; email:
dperez,ssamot,prohlf,sml@essex.ac.uk);
Julian Togelius (Center for Computer Games Research, IT
University of Copenhagen, 2300 Copenhagen, Denmark); email:
julian@togelius.com)

The testbed game used is the Physical Travelling Salesman
Problem (PTSP), a single-player game adaptation of the
classical Travelling Salesman Problem (TSP)1 that makes use
of a simple physics model: the player has to visit a number of
waypoints as quickly as possible by navigating a ship in real
time across an obstacle-filled two-dimensional map. While
abstract, the game retains certain similarities with some of the
most important features of video games: navigation, obstacle
avoidance, pathfinding, and the real-time component found in
most modern games that forces the player to supply an action
every few milliseconds. Additionally, like in many modern
video-games, the game is long enough to ensure that the
outcomes derived from the actions taken by the agent do not
provide enough information to determine if they will lead to
a victory or a loss. The PTSP features in a popular game
competition organised by the Game Intelligence Group at
the University of Essex where competitors submit software
controllers to navigate a series of unknown maps [19]. The
winner is the controller that manages to visit the most
waypoints in the fewest number of time steps across all maps.

All the maps used in the competition have been designed
by hand to ensure they are sufficiently interesting and chal-
lenging. However, while successful, this approach is time
and labour intensive and lacks flexibility and extensibility.
Automating the generation of interesting PTSP maps would
save much human labour and make it possible to scale up
the competition and its use as a benchmark. However, there
are several other good reasons to develop an effective map
generator for PTSP – in particular the following the reasons
motivate the current paper:
• Finding maps that require or advantage particular solu-

tion strategies and controller types.
• Finding maps where multiple solutions of the same

or very similar quality exist. This is analogous to
showing that multiple strategies of similar effectiveness
exist for a strategy game, something which is generally
considered advantageous.

• Clarifying the relative strengths and weaknesses of
controllers by finding and analysing maps in which they
beat each other; e.g., both maps where controller A beats
controller B and where controller B beats controller A.

Concretely, the objective is to produce maps where the

1The TSP requires an agent to visit all of n cities exactly once using the
shortest route possible, starting and ending the route at the same city.

2

optimal order of waypoints is neither the optimal distance-
based TSP route nor the nearest-city-first route. In other
words, a controller that makes some computational effort on
long-term planning should be able to see an improvement,
especially if taking the physics of the game into account,
against a controller which works in a simple short-term
reactive manner. Such maps are relatively easy to construct
by hand if the number of waypoints are few and the map’s
size is modest. However, it is clear that a manual approach
does not scale well. It is also limited if many maps are
required, which is the case in the PTSP competition.

Additionally, it is interesting to find several routes that
obtain similar high quality results following different way-
point orders, that are distinct from the optimal distance-based
and nearest-city-first TSP routes. Designing maps with these
features by hand is a very complicated task, and an automated
solution would open the possibility to a 2-simultaneous-
player version of the game where challenging maps can
be used. Furthermore, automatic content generation may be
used to personalise the game towards specific gamers (offline
or online), or to create specific maps to test the extreme
behaviour of controllers in the competition.

This paper presents the application of an evolutionary
algorithm, the Covariance Matrix Adaptation - Evolutionary
Strategy (CMA-ES) [8], to automatically generate content
by simulating agents playing the game. The experiments
described in this research show how by using different
strategies, from naive to more involved ones, it is possible
to evolve maps that favour one type of play over others.
This allows the creation of levels for the game that are
not trivially solved by simplistic approaches. Given the
similarity of constrained content generation for games to
problems in other application areas, especially design fields,
the techniques developed here are very likely to have direct
applicability outside of games.

This paper is structured as follows. First, in Section II, a
summary of related research in automatic content generation
is presented. Section III describes the game and the frame-
work in detail. Then, Section IV describes the technique used
to generate maps and the experimental setup, followed by
the analysis of the results in Section V. Finally, Section VI
presents the conclusions and future work.

II. RELATED WORK

We are not aware of any previous work that attempts to
create maps for the Physical Travelling Salesman Problem
automatically. However, a number of previous papers address
the evolution of content for games in general, and the
generation of maps for 2D games in particular, as described
in the following section.

A. Procedural content generation

Procedural Content Generation (PCG) refers to the gen-
eration of game content (e.g. levels, maps, items, quests,
puzzles, texts) with none or limited human intervention.
PCG has occasionally been featured in video games during

the last three decades, but it has only become a topic of
academic interest within the last few years [26]. This problem
is becoming more relevant owing to its wide applicability to
different areas within video-games. One of the earliest uses
of PCG for games is the space trading game Elite (Acornsoft,
1984), which employed procedural representation of star
systems to reduce memory consumption. More recently, PCG
has been used extensively for level or map generation in
games such as Spelunky (Mossmouth, 2012) and those in the
Civilization (Firaxis Games, 2012), Diablo (Blizzard, 1998)
and Borderlands (Gearbox Software, 2009) game series. PCG
has also been used to create literally endless games, with an
infinite number of levels and open spaces that extend for as
long as the player bothers to look. Some examples are Elite
(Acornsoft, 1984), The Sentinel (Geoff Crammond, 1987)
and Malevolence: The Sword of Ahkranox (Visual Outbreak,
2012).

In academic PCG research, the focus is often on ways of
searching a space of game content for artefacts that satisfy
certain criteria or objectives. For instance, Hastings et al. [10]
created weapons in the game Galactic Arms Race (GAR)
using a collaborative evolutionary algorithm. Whitehead [28]
suggests that PCG can improve game aesthetics, and an
example of this use of PCG is given by Liapis et al. [15],
who study the automatic generation of game spaceships
through interactive neuroevolution. PCG can also be used
to generate rules in a game or even complete games. This
has been extensively addressed by Browne in [7]. The author
describes a game description language that can be used to
specify the complete rule set that defines a board game,
including starting position, valid moves, winning conditions,
type of board, number of players, etc. He then proposes
an evolutionary algorithm that creates complete new games
using the description language developed.

Adaptation to the type of player is another motivation
for PCG [29]. There are many different types of players,
ranging from hardcore to occasional players, and not all
of them play the same types of games. This is especially
true in the last few years, when new games have focused
on more unexplored genres, such as “family” or fitness
games. PCG could be used to adapt the game to the type of
player, producing more appropriate content by, for example,
adjusting the difficulty to the skill of the player, or the type
of challenge to that preferred by the player. We are not aware
of any published game that employs PCG for such adaptation
to the player’s abilities, but it is clearly a possible application
for these techniques, considering that the latest movements
in the industry focus on targeting a broader audience.

Another important motivation for the use of PCG, espe-
cially in the development of high-budget commercial video
games, is the possibility of reducing production time and
costs. An example of this is the SpeedTree software [12], a
tool for automatic creation of vegetation. This tool has been
used in numerous recent games, and some games that employ
this algorithm are very popular in the gaming community,
such as Grand Theft Auto IV (Rockstar Games, 2008) and

3

Fallout 3 (Bethesda Game Studios, 2008).
Problems of game content generation share many char-

acteristics with design problems in other application areas
involving interactive or complex systems. For example, in
circuit board design, logistics, and road network planning,
intricate path networks have to be designed while taking into
account constraints relating to order, speed and interference.
Robot and vehicle design problems involve designing for
dynamical systems with nondeterministic behaviour. These
characteristics also apply to the PTSP maze generation
problem, reaffirming the potential for such techniques being
applicable to automatically solving other design problems.

The two key considerations when using evolution or some
similar search/optimisation algorithm to generate content are
content evaluation (fitness function) and representation. A
survey defining these problems, approaches to them, and the
application of PCG in the literature can be found in [26].
Regarding content representation, this topic is central to
several related fields, and surveys have been written from
the perspectives of evolutionary computation [24] and of
artificial life [3]. Typically, there are many possible ways of
representing some types of game content [2], ranging from
direct to more indirect approaches [26, p. 4]. For example,
a dungeon could be represented in many different ways
including the following:

1) Grid cell: each element in the game is specifically
placed in a source matrix.

2) List of positions, orientations, and sizes of areas.
3) Repository of segments or chunks of levels to combine.
4) Desired properties: number of corridors, rooms, etc.
5) Random number seed: the level generator creates a

level taking only a number as input.

In this paper, a relatively direct representation of PTSP
maps is employed, corresponding to the second option in
the list above.

On the other hand, the generator usually needs a procedure
to evaluate the quality of fitness of the generated levels. This
function should rate or rank, in order to be able to sort them
from best to worst. There are several different ways this could
be done:

• Direct evaluation: some objective features are retrieved
from the map and a score for the level is provided by
an evaluation function.

• Simulation-based evaluation: a programmed bot plays
the game and a measure of its performance is taken,
which is used to score the maps. This bot can be fully
hand coded or it can imitate a human player using
machine learning techniques.

• Interactive evaluation: a human plays the game and
feedback is obtained from him. This can be done either
explicitly, with a questionnaire, or implicitly, measur-
ing features of the gameplay, such as death locations,
actions taken, distance travelled, etc.

The research presented in this paper uses simulation-based
evaluation, as agents are used to play PTSP maps.

B. Constrained optimisation

While many search/optimisation problems differentiate
solution quality on a continuum, others feature constraints, so
that some candidate solutions are not just bad, but infeasible.
For example, a Mario level where some gaps can’t be
bridged or a PTSP instance where some waypoints cannot be
reached are clearly infeasible. In evolutionary computation,
several specialised techniques for handling constraints in
optimisation have been developed [18]. Several different
approaches can be discerned, including the “naive” approach
of simply giving infeasible solutions a score of zero and
more “sophisticated” solutions such as repairing infeasible
individuals or keeping separate populations of feasible and
infeasible individuals. In search-based procedural content
generation, the two-population approach has previously been
used for generating game content such as platform game
levels [23] and spaceships [14], [15].

This paper takes a relatively naive approach to constraint
handling, as described in section IV-A. This is done in
order to be able to use the CMA-ES as the evolutionary
algorithm. This algorithm has previously been shown to
be extremely effective for continuous optimisation [8], but
has not to our best knowledge been applied to procedural
content generation before. The use of a well-tested off-
the-shelf continuous optimisation algorithm, rather than a
specifically tailored constraint optimisation algorithm, carries
considerable benefits in terms of ease of experimentation and
replicability.

C. Game AI competitions

In recent years, a number of competitions have been
arranged in association with conferences on AI and games,
such as the IEEE Conference on Computational Intelligence
and Games, and the Artificial Intelligence and Interactive
Digital Entertainment conference. In general these compe-
titions work in the following manner: competitors submit
agents, written in a programming language such as Java,
which connect to a competition evaluation engine provided
by the competition organisers. The winner is generally the
competitor whose software played the game best. Some of
the most popular competitions have been based on well
known games, such as Ms. Pac-Man [21], [17], Super Mario
Bros [13], or lesser known games in a well-defined and
popular genre, such as the car racing game TORCS [16].
However, in some competitions the player does not submit a
high-performing controller, but rather a controller that plays
the game in an as human-like manner as possible [11], or
even a level generator that generates as entertaining levels as
possible for particular players [22].

III. THE PHYSICAL TRAVELLING SALESMAN PROBLEM

The Physical Travelling Salesman Problem (PTSP) is a
modification of the well known combinatorial optimisation
problem, the Travelling Salesman Problem (or TSP). In the
TSP, a set of cities are distributed and the costs of travelling

4

from one to any other are known. The objective is to find the
route that takes an agent or salesman to visit all cities once
with the minimum overall cost. The PTSP game, introduced
by Perez et al. [19], converts the TSP into a real-time game,
where the player must govern a ship to visit, as quickly as
possible, a determined number of waypoints scattered around
a map full of obstacles.

A. The problem

The PTSP is a single player real-time game where the
ship and the waypoints are positioned in a two dimensional
continuous grid. When the game starts, a tick counter,
initialised at 1000, starts decreasing at a rate of one unit
per time step. The ship must visit one of the remaining
waypoints of the map before this counter reaches 0. If the
ship is not able to do that, the game ends. Otherwise, and if
there are more waypoints in the map to collect, the counter
is reset to 1000 and the ship must visit another one, until all
waypoints have been visited. Hence, the score of the game
is stated by the number of waypoints visited and the total
number of time steps taken. The objective of the game is
to visit all the waypoints of the map as quickly as possible.
One solution is considered to be better than another if the
number of waypoints visited by the first one is higher than
the number of waypoints visited by the second solution. In
case of a draw, the solution that involves less time spent is
the winner.

Furthermore, the PTSP is a real-time game: an action must
be supplied every 40 milliseconds or the ship will apply
the default action (idle), and there is an initialization time
of 1000 milliseconds at the beginning of the game. The
ship is governed by applying one out of the six available
actions at a time, resultant of a combination of two different
inputs: acceleration (that can be on or off) and rotation (left,
right or straight). These actions can be considered as forces
that change position, velocity and direction of the ship. The
physics of the game include inertia, by keeping the ship’s
velocity from one time step to the next, and friction, so the
ship eventually stops if no acceleration actions are supplied.

Additionally, the levels of the PTSP contain multiple
obstacles that make the navigation an important element of
the problem to solve. These obstacles do not damage the
ship, although they do modify its velocity by reducing the
speed and producing an elastic collision when the ship hits
the walls.

The PTSP poses a problem at two different levels: solving
the order in which to visit the waypoints, and navigating
through the map to reach them. A priori, these problems
might sound independent, but the fact is that they are
closely related: solving the TSP using the costs between
the waypoints based exclusively on the distances may obtain
optimal paths that are not the optimal routes for the PTSP.
The physics of the ship (especially its inertia), and how the
navigation is performed, have a big impact on the time taken
for travelling from one waypoint to another. Ignoring this

Fig. 1. Example of a PTSP map distributed with the framework.

may cause the ship to describe suboptimal routes to solve
the game.

B. Maps

The PTSP maps are two dimensional levels where all
the entities of the game (ship, waypoints and walls) are
located. The format of the maps is based on the one used by
Nathan Sturtevant, from games such as Warcraft, Starcraft
or Baldur’s gate. These maps have been often used by many
researchers in the literature [25]. The number of waypoints
in a map employed in this study is 10, although this is not
a fixed number and can be changed to create maps with
more waypoints. An example of a PTSP map is depicted in
Figure 1.

To consider a map a valid PTSP level, the following
conditions must be addressed:
• Connectivity of waypoints: there must be a valid path

between each pair of waypoints in the map. This can
be achieved by computing the A* path between them
using the pathfinding library, as shown in Section III-C.

• Initial position for the ship: the position generated to
place the ship at the beginning of the game must avoid
any collision with close walls.

• Positions for the waypoints: as in the previous case,
each waypoint’s position must be obstacle free.

• Ship vs. waypoint distance: the initial position of the
ship and all waypoints must be significant to avoid too
quick visits. The minimum distance is set to 10 times
the radius of the ship.

• Waypoint vs. waypoint distance: the distances between
every pair of waypoints cannot be too low to avoid
multiple visits at once. The minimum distance is set
to 5 times the radius of the ship.

C. Framework utils

The benchmark includes the possibility of executing dif-
ferent controllers and maps, which can be read from static

5

files or created dynamically from data structures. The PTSP
framework includes path finding and line of sight features,
that are used by the controllers employed in this study.

The path finding library builds a grid graph placing nodes
in the navigable parts of the maze. A node will be added to
the graph if a certain position is free of obstacles. Starting
from the top left corner of the map, different positions are
checked by adding a certain value to the coordinates (granu-
larity), until the bottom right corner is reached. The adjacent
nodes of the graph are linked to each other following an
eight-way connectivity scheme: each node can be connected
to eight neighbour nodes: up, right, down, left and the four
diagonals. The controller can query the graph for shortest
paths from any position in the map to another.

Regarding the line of sight feature, the framework includes
a method to find out if there is a clear line of sight between
two positions in the map. In other words, this means that no
obstacles are found in a straight line between those positions,
considering the radius of the ship as the width of the line.

D. The PTSP Competition

The PTSP software has been used to run a competition for
the WCCI (World Congress on Computational Intelligence)
and CIG (Computational Intelligence and Games) 2012 [19].
In the competition, the participants can download the code
and submit a controller that tries to get the best score over a
set of 20 different maps. The objective of the competition
is to see the different approaches that are proposed to
create controllers for this game. These must show a good
balance between completeness (visiting as many waypoints
as possible) and speed (time spent to visit the waypoints).

Each controller is evaluated 5 times in each one of the 20
maps of the final stage of the competition, and only the three
best results, considering the number of waypoints visited,
are used to compute the average score in that map. Points
are awarded for each map, depending on the performance
demonstrated, and the participant with the highest sum of
points wins the competition.

A total of 64 maps were created manually for the PTSP
Competition. This took a significant amount of time and
effort in order to create valid and challenging levels. One of
the objectives of this study is to show a way of generating
PTSP maps automatically, in order to minimise the creation
costs and obtain maps with certain challenging features, as
described in Section IV.

IV. EXPERIMENTAL STUDY

The objective of this research is to obtain maps where
controllers that invest time in finding a waypoint order that
takes the physics of the game into account are most likely
to obtain better results than others that follow a more naive
approach (nearest waypoint or distance-based TSP routes).

A solution is obtained by dividing the problem into two
very well differentiated tasks: 1) calculate the order of
waypoints; and 2) drive the ship to visit the waypoints in
the order specified. In the terminology used in this paper,

Element Data Description (Coordinates)
Lines (xo, yo, xd, yd) ∗L Starting and ending positions.

Rectangles (xo, yo, xd, yd) ∗ S Top-left and bottom-right corners.
Ship (x, y) Ship’s starting position.

Waypoints (xw, yw) ∗ 10 Waypoints’ positions.

TABLE I
REPRESENTATION OF AN INDIVIDUAL OR MAP.

controller must be seen as the combination of the route
planner (which obtains the order of waypoints) and the driver
(which effectively applies the actions to move the ship).

This section of the paper presents the algorithm used to
evolve maps in Section IV-A. Then, the route planners are
described in Section IV-B, followed by the explanation of
how the proposed routes are evaluated, in Section IV-C.
Finally, the procedure to evaluate individuals (or maps) is
detailed in Sections IV-D and IV-E.

A. Evolutionary algorithm: CMA-ES

In this first attempt at automatic generation of maps for
the PTSP, an evolutionary algorithm is proposed. This section
describes the algorithm employed and the representation of
maps as individuals in the population.

Each one of the maps considered in this study is composed
of a set of floating point values that encode the starting
position of the ship, the waypoints and the location and size
of obstacles such as lines and rectangles. Table I details the
representation of an individual of the population. The order
of the rows indicates the order of elements in the string of
values.

As can be observed, two different parameters are needed
to define the contents and length of an individual: the
number of lines (L) and the number of rectangles (R). The
experiments described in this paper are performed with maps
that contain L = 15 lines and R = 8 rectangles, although
initial experimentation shows that it is also possible to evolve
maps with different values for these parameters. With these
settings, the length of the individual is then 114, and each
one of these genes takes a real value in the range [0.05, 0.95].
When the genome is read to create a map, these values
are scaled to the size of the map, which for this study is
established to 500× 500 pixels.

An important feature that must be determined for each
individual is whether it encodes a feasible map or not,
according to the rules described in section III-B.

Some infeasible maps are able to be repaired. One of the
reasons why a map can be invalid is because at least one of
the waypoints or the starting position is in the same position
as an obstacle, or too close to one. Another possibility is
that two of these entities (waypoints and starting position)
are too close to each other. If a map is invalid because of
one of these reasons, a repair mechanism tries to change the
location deterministically, moving one of these entities along
the vertical and horizontal axis until a valid position is found.

6

It might be the case that this simple repair procedure is
not able to fix the problem in the map, or that another of
the problems described in section III-B is the cause of its
infeasibility (i.e.: unreachable waypoints). In this case, the
map is considered invalid and it is flagged as such.

The evolutionary algorithm employed in this research is
the Covariance Matrix Adaptation - Evolutionary Strategy
(CMA-ES). CMA-ES is an algorithm specially suited for
high dimensional continuous domains [8]. CMA-ES is based
on an iterative process that updates a multivariate normal
distribution (MND). The population at a given generation
is obtained by sampling from the distribution, N (m,C),
which is uniquely defined by the distribution mean m ∈ Rn

(that determines the translation of the distribution) and the
covariance matrix C ∈ Rn×n, which defines the shape of the
MND. Each individual xi is sampled from this distribution
according to a step-size σ, so that xi ∼ m + σN (0, C).
At each iteration, the values of m, σ and C are updated in
order to minimize the fitness of the individuals drawn from
the MND. For a more detailed description of the algorithm,
the interested reader is referred to [8].

If an individual happens to be infeasible, the algorithm
creates a new randomly initialized map (drawn from the
MND) and checks for its feasibility again, repeating this
process until a feasible one is created. In this way, a
population is always composed only of feasible individuals.
Therefore, CMA-ES creating infeasible individuals only af-
fects how quickly the experiments are run. Although it would
be possible to design a more involved repair mechanism
that would reduce the number of rejected individuals, the
experiments performed in this research show that the number
of infeasible individuals sampled from the multivariate distri-
bution reduces as the algorithm converges towards a solution
(with a rate of infeasible individuals less than 5%). This
phenomenon is not new, and has been reported previously
in the literature [5].

The number of generations of each experiment is estab-
lished at a maximum of 1000 generations, although a fitness-
based stopping criterion can finish the run earlier: if the range
of the best fitness obtained during the last 10 + (30×N/λ)
generations is smaller than 10−13, the experiment stops. For
the experiments presented here, N is the problem dimension
(114) and λ the population size (100), so this condition must
be fulfilled in 44 consecutive generations. This termination
criteria, known as TolHistFun, is a default stopping condition
of CMA-ES, and has been used in the literature before [4],
[9]. The default value of the population size in CMA-ES is
4+3×log(N), which for this problem would be 18. However,
the population size used in the experiments presented here
is set to 100, a value determined empirically.

B. Route planners

The route planner is in charge of determining the order of
waypoints that the driver must follow during the game. The
route planner considers the cost of travelling from position

A to B as the distance of the path given by the graph, which
is calculated using the A* algorithm.

Three different variants of route planners have been em-
ployed in this study:

• Nearest-first TSP: This TSP solver, and the route it
produces, is referred to in this paper as NTSP . The
order of waypoints is obtained by applying the nearest
first algorithm to solve the TSP. That is, from the current
location, the algorithm sets the closest waypoint as the
next waypoint to visit, repeating this procedure until all
waypoints are in the plan.

• Distance TSP: This TSP solver, and the route it
produces, is referred to in this paper as DTSP . The
planner uses the Branch and Bound (B&B) algorithm
to determine the order of waypoints, using the length
of the A* as the cost between each pair of waypoints.

• Physics TSP: This TSP solver, and the route it pro-
duces, is referred to in this paper as PTSP . As in the
previous case, the B&B algorithm is employed for the
order of waypoints, but in this case the cost between
two waypoints is affected by physical conditions such
speed and orientation of the ship.

The Distance TSP route planner resembles the optimal
TSP path, and it would be the perfect choice if certain physics
conditions, such as the ship’s inertia, were not present in
the game. In contrast, Physics TSP has been prepared in
order to take into account the nature of the game. As has
been suggested before, inertia and navigation should be taken
into consideration to calculate the optimal PTSP route. The
overall idea is based on the fact that the ship can benefit from
visiting waypoints that are in the same straight (or quasi-
straight) line, even if the distance between them is not short,
as this way the ship maintains its velocity. In other words,
minimizing changes of direction within the route - that would
cause the ship to lose inertia and speed - is important when
computing the route.

In this case, the cost of the path is obtained by an
approximation of the time needed to drive the route, as
described in Algorithm 1. Given an order of waypoints r,
a path p is first obtained where each node is in line of sight
with the following in the path (GETINSIGHTPATH(route)
function). This way, the controller would be able to drive
between each pair of nodes in a straight line. Starting with
an initial speed of 0, the algorithm traverses the path whilst
calculating the time taken for the ship to go from one node
to the next. This calculation uses the real physics of the
game, so the time taken between two nodes is completely
accurate, given the selected action sequence, though usually
not optimal.

The overall calculation is, however, an approximation,
owing to the way the speed is kept between each straight
line segment. The dot product of the angle of two consecutive
segments is calculated and used to decrement the speed at
each turn. If this value is 1 (0 degrees), the penalization (pen)
value is 1 and the speed does not decrease. The penalization
increases exponentially with the angle, reaching 0 (complete

7

Algorithm 1 Route cost estimator.
function HEURISTICSOLVER(r)

p← GETINSIGHTPATH(r)
speed← 0
for all Node ni in p do

d← EUCLIDEANDISTANCE(ni, ni+1)
t← TIMETOTRAVEL(d, speed)
dot← DOT(~V (ni, ni+1), ~V (ni+1, ni+2))
pen← GETPENALIZATION(dot)
speed← speed ∗ pen
totalT ime← totalT ime+ t

return totalT ime

stop) when the turn to make is of 180 degrees. The final
estimated cost of the route is the sum of the time taken to
drive all segments of the path given.

C. Evaluating routes: drivers versus estimations

The driver is the agent that makes the moves in the game,
trying to visit all waypoints in the order specified by the
route planner. The main problem of evolving maps using
drivers to evaluate the different routes is the computational
cost it involves. Two different approaches have been taken
to evaluate the routes provided by the route planners:
• Estimated Cost (EC): The estimated cost of a route r,
EC(r), indicates an upfront value that determines the
quality of a route in the map. It is calculated by applying
Algorithm 1 on the route given. There is no need for a
driver to actually play the game to determine the EC of
a route, and the cost is an estimation of the time taken
by any driver that follows it.

• Cost (C): The cost of a route r, C(r), is determined by
using a driver to complete the game following the order
of waypoints provided by the route planner. This value
is calculated by actually playing the game, and it takes
into account the time spent (TotalTime), the remaining
waypoints still to be visited when the game finished
(RemWaypoints) and a penalty P equal to the maximum
time allowed to visit the next waypoint in the route
(1000 time steps). Hence, the cost C of driving in a
map using a route r is:

C(r) = TotalT ime+RemWaypoints ∗ P (1)

In both cases, the smaller the values of EC and C, the
better the route, as they represent the time taken to complete
the game. The main advantage of using a driver is that the
evaluation is reliable in terms of playing the game (one
can be certain that the map obtained produces a determined
output for the driver used to evolve it), while an estimation
is an abstraction that might contain errors and be inaccurate.
However, using a specific driver impacts on the time needed
to evaluate a route and might lead to maps that fit the
navigation style of that particular driver. The estimation, on
the other hand, provides a faster indication of the cost of

the route, which is not tied to any particular driving style.
An interesting trade off that has been employed in this study
is to use the estimation for the evolutionary algorithm and,
once the run has finished, play the game using a real driver
in the maps obtained, in order to verify that the results are
conclusive and the maps obtained have the desired properties.

The driver presented in this study is the Monte Carlo Tree
Search (MCTS) driver, based on an earlier implementation
fully described in [20]. Apart from the fact that this imple-
mentation provided good results in the past, MCTS was also
used in this game by the winner of both editions of the PTSP
competition, and it seems to be, to date, the strongest driver
for this game.

MCTS is a stochastic algorithm that combines the strength
of Monte Carlo simulations at exploring the search space
with a tree search policy that selects among the available
actions to take. This policy, known as the Upper Confidence
Bounds for Trees (UCT), exploits the most promising parts
of the search space while exploring other actions that do not
seem to lead to optimal solutions. This trade off allows the
creation of an asymmetric tree that grows towards interesting
parts of the search space.

The vanilla algorithm is divided into four steps that are
repeated in a loop: first, in the selection step, the UCT
policy decides a move in the search tree, balancing between
exploration and exploitation, until the action chosen has no
representative node in the tree. Then, during the expansion
step, a new node is added to the tree and a Monte Carlo
simulation is run until the end of the game is reached,
constituting the simulation step. Finally, the reward of the
simulation (win, loss or score) is propagated up to the
root during the back-propagation step. A more extensive
description of the algorithm, its variants and applications,
can be found in [6].

The nature of PTSP poses some interesting challenges to
MCTS. The most important one is due to its real-time feature:
the amount of simulations that can be performed at each
cycle is very limited, and the end of the game is so far away
in time that it is usually impossible to reach within the time
limitation. For this reason, a score function value is used
at the end of each simulation in order to provide a quality
measure of the state reached. This function returns a score
based on the waypoints visited, the time taken during the
game, the distance to the next waypoint in the route and the
number of collisions with obstacles. The interested reader
may refer to previous work [20] for details of the MCTS
driver implementation.

D. Evaluating maps: fitness functions with 3 routes

The first objective of this research is to be able to obtain
maps where the results obtained with the same driver using
distinct routes are different. The quality of a map will
be better if it rewards more involved routes than simpler
waypoint orders.

Each individual (or map) of the evolutionary algorithm
is evaluated measuring the EC values (as described in

8

Section IV-C) of the different routes that the route planners
provide. Let us say that in a given map, the three route
planners provide three different routes: NTSP , DTSP and
PTSP (as defined in Section IV-B). Then, the objective is to
achieve:

EC(NTSP) > EC(DTSP) > EC(PTSP)

In other words, the estimated cost of using the nearest-
first TSP route planner is higher than using the distance TSP
route planner, and this cost is also worse than employing the
physics TSP route planner.

In order to achieve this, two different fitness functions are
employed and defined in this section. Given these routes, it
is possible to define the fitness as the result of the following
equation2:

f3 = −Min(ECN − ECD, ECD − ECP) (2)

An analogous fitness can be defined using the real cost (as
defined in Equation 1) of a driver playing the game as:

f ′3 = −Min(CN − CD, CD − CP) (3)

CMA-ES is set up to minimize this fitness, so high nega-
tive values are better. As this fitness measures the distances
between the costs of a naive and a more complex route (both
ECN − ECD and ECD − ECP), it must be understood as
the amount of time steps saved when using a more involved
route instead of a simpler one for solving the problem.

E. Evaluating maps: fitness functions with 5 routes

Additionally, it is also a purpose of this research to obtain
several near-optimal solutions so the best route is not too
obvious. In other words, the evolutionary algorithm must be
able to generate maps where a group of N routes of the type
PTSP (those obtained with the Physics TSP solver) produce a
similar performance among them, but all better than a DTSP

route, which is still better than an NTSP one.
The PTSP route planner presented in Section IV-B pro-

vides only one route: the best achievable, considering the
cost between waypoints, derived from taking the physics of
the game into account. However, other routes can be derived
from this one applying the operators 2-Opt and 3-Opt. These
operators exchange 2 (or 3, respectively) nodes in the path
to create a new solution. Hence, if M additional routes
are needed, the first step is to calculate the best one with
Algorithm 1, as usual. Then, all possible derivatives from
this route are obtained applying 2-Opt and 3-Opt. They are
sorted by ascending cost and the M best ones of this new
group of routes are selected.

The fitness function is similar to the one described in
Equation 2, substituting the best PTSP route for the ith
one in the group of routes. For instance, let us say that the
objective is to create maps where 3 routes of type PTSP

obtain similar performance when followed by a determined

2For the sake of clarity, ECX = EC(XTSP) and CX = C(XTSP)

driver. If any of these 3 routes is followed, the performance
must be better than following a route of type DTSP , and this
should outperform an NTSP route. An initial PTSP route is
obtained with Algorithm 1 (i.e. PTSP ≡ r0), and 2-Opt and
3-Opt operators are employed to derive all routes from this
one. These new routes are sorted by ascending cost (i.e.:
r1, r2, . . . , rm), being PTSP ≡ r0 better than all these by
construction. The fitness function is then defined as follows:

f5 = −Min(ECN − ECD, ECD − EC(r2)) (4)

As in the previous section, a fitness for real drivers can be
defined such as:

f ′5 = −Min(CN − CD, CD − C(r2)) (5)

By obtaining maps that maximize the cost difference be-
tween these three routes, the algorithm provides individuals
where route r2 is better than route DTSP . As r0 and r1 are
by definition better than r2, the resultant maps are separating
the costs of DTSP and the group (r0,r1,r2).

The experiments described in this paper show that it is
possible to evolve maps that distinguish between three (as in
Equation 2) and five (Equation 4) routes. Initial experiments
have shown that it is also possible to evolve maps with 8
different orders of waypoints, five of them forming the group
of PTSP routes r0 to r4.

V. RESULTS AND ANALYSIS

This section details the results of the experiments per-
formed during this research. A total of 40 independent runs
have been executed for each one of the two batches of
experiments (for 3 and 5 routes). The following parameters
have been set up:
• CMA-ES as described in Section IV-A. The initial mean
m of the MND is set to 0.5 and the step size σ = 0.17
(σ = m/3, in order for CMA-ES to converge with ±3
standard deviations). The size of the population, 100,
was determined experimentally.

• Three different route planners are employed: NTSP ,
DTSP , PTSP .

• Each route is evaluated using the heuristic cost estimator
(Algorithm 1): no driver plays the game to evaluate the
routes during evolution.

A. Heuristic Cost Estimation: 3 routes
For these experiments, the fitness function used is f3

(Equation 2) to evaluate the maps. The three routes used
are the ones provided by the three different route planners.

1) Evolution of fitness: Figure 2 shows the evolution of
the averaged fitness during the experiments run. This picture
shows the average (plus standard error), of the best individual
of each generation across all experiments run for this setting.

As can be seen, there is a clear evolution in the fitness of
the runs. At the beginning of the experiments, the best indi-
viduals obtain a fitness close to f3 = −100 (as explained ear-
lier, this represents the minimum difference of cost between

9

0 200 400 600 800 1000
Generation

500

400

300

200

100

0

Fi
tn

e
ss

 f
3

Average of best individuals in 40 runs

Fig. 2. Averaged evolution of the best individuals per generation of the
40 runs executed with the heuristic cost estimator for routes, employing 3
routes per map. Shadowed area indicates the standard error of the measure.

each pair of the 3 routes used to evaluate the maps.). By
the end of the executions, the average of the best individuals
achieve a fitness of f3 = −427±9.36. Approximately 80% of
the runs were stopped by the TolHistFun termination criteria,
as explained in Section IV-A, not reaching the maximum
number of generations set at 1000.

The MCTS driver, defined previously in Section IV-C, has
been used to drive the best maps of the final generation of
all experiments. The routes taken have been NTSP , DTSP

and PTSP , and each one has been played five times (adding
up to 3 × 5 × 40 = 600 games played). The average
fitness, as described in Equation 3, obtained by the MCTS
driver in these maps is f ′3 = −321.44 ± 24.99. This value
cannot be directly compared with the fitness achieved by
the estimated cost heuristic, because they are obtained by a
different procedure (playing the game versus not playing it).
However, it does show that the maps obtained are sensible:
the difference of taking any pair of the given routes is of at
least 321.44± 24.99 time steps on average.

A different way to analyze this result is to compute the
relative difference of fitness between the routes taken. This
is done in the following way: if the time spent by driving
route PTSP is taken as a reference, it is possible to calculate
the increment of time spent by following routes NTSP and
DTSP . Whereas PTSP takes a reference value of 1.0, DTSP

obtains a worse performance of 1.43 ± 0.032, and NTSP

spends even more time to obtain a value of 1.692± 0.038.
This analysis is interesting because it provides a more

detailed view of the time taken per route. As can be seen, the
driver that takes route DTSP spends (43± 3.2)% more time
than following PTSP , and taking NTSP spends (69±3.8)%
more game steps than the physical route. This measure also
provides a sense of order, that matches the goal of the
experiments: taking route PTSP is better than driving through
DTSP , which is still better than following NTSP .

The maps obtained by the runs can also be compared

Map EC(NTSP) EC(DTSP) EC(PTSP) Fitnessf3

1 1298 1103 1091 -12
2 1010 952 922 -30
3 1032 1001 990 -11
4 1146 1146 1152 6
5 1558 1415 1415 0
6 1197 1269 1121 72
7 1070 1070 1070 0
8 1357 1281 1281 0
9 1463 1415 1337 -48

10 1366 1014 1014 0

TABLE II
ESTIMATED COSTS ON MAPS OF THE 2012 PTSP COMPETITION.

with those maps hand-crafted for the WCCI 2012 PTSP
Competition. Table II shows the estimated costs of the three
possible routes and the fitness associated with each one of the
maps distributed with the competition framework. As can be
seen, the fitness of the competition maps is very different
from the results obtained at the end of the experiments
presented in this paper. Indeed, sometimes it is even better
not to follow the routes proposed for the physical TSP route
planner.

If all maps from the WCCI 2012 PTSP Competition (64
maps: the ones from the framework and the other 54 used to
rank the entries) are taken into account, the average fitness
of the maps using the estimated cost is f3 = −12.06 ±
4.06, showing that it is not straightforward to create maps
by hand in which the most involved route planning leads
to a clear victory. It is worth mentioning, however, that the
maps designed for the competition were not only created with
the aim of being a challenge, but also with the objective of
making them aesthetically pleasing, a feature not considered
in this research.

It is also interesting to compare how the evolved maps
differ from randomly created maps. In the case of three
routes, the fitness of 100 randomly initialized maps (after
being repaired) is, using the estimated cost, −4.24 ± 1.95;
very different from the −427 shown in Figure 2.

2) A representative example: Figure 3 shows the map and
three routes obtained in one of the runs explained in this
section. The MCTS verification step produced averages of
2649.75 ± 78.03, 2037.6 ± 43.82 and 1658.0 ± 37.93 for
each one of the routes NTSP , DTSP and PTSP , respectively.
According to the relative performance, it can be seen that the
DTSP and NTSP routes spend respectively around 22% and
59% more time steps than PTSP to visit all waypoints and
complete the game. This picture also backs up a concept pre-
viously mentioned in this paper: routes that visit waypoints in
a straight (or almost straight) line can take advantage of the
speed of the ship, even if the distance travelled is higher. In
this case, it can be seen that the PTSP route has much fewer
changes in direction than the other two and a good balance
between travelling a long distance (as the NTSP route) and
the shortest possible distance (given by DTSP).

Figure 4 shows the evolution of the fitness f3 of the best
individual of each generation during this particular run. It is

10

Fig. 3. Example of a map and its three routes evolved with CMA-ES. The trajectories, followed by the MCTS driver, are shown in the following order,
from left to right: A) NTSP route, with an average of 2649.75± 78.03 time steps; B) DTSP route, with an average of 2037.6± 43.82 time steps; C)
PTSP route, with an average of 1658.0± 37.93 time steps.

0 200 400 600 800 1000
Generation

450

400

350

300

250

200

150

100

50

Fi
tn

e
ss

 f
3

Fitness f3 of best individual

Fig. 4. Evolution of the fitness of the best individual during one of the 40
runs performed with 3 routes.

easier to observe in this figure, rather than in Figure 2, that
during the first half of the generations given, the algorithm
explores the search space, obtaining very different values
for the f3 measure. During this time, the best individual
fitness decreases slowly. Once half the generations are past,
the fitness values become less variable and decrease rapidly,
converging towards a solution and reaching a stable fitness
value of −430 by the end of the run.

B. Heuristic Cost Estimation: 5 routes

This section analyzes the results obtained after performing
40 runs of the algorithm to obtain maps that differentiate
among 5 routes. The only difference in the setup with respect
to the 3 route case is that now the fitness function employed
is f5 (from Equation 4). As explained in Section IV-E, r2
is the second best route derived from PTSP using the 2-Opt
and 3-Opt parameters. Figure 5 shows the average of the best
individuals on each generation in the 40 runs performed.

0 200 400 600 800 1000
Generation

400

350

300

250

200

150

100

50

0

Fi
tn

e
ss

 f
5

Average of best individuals in 40 runs

Fig. 5. Averaged evolution of the best individuals per generation of the
40 runs executed with the heuristic cost estimator for routes, employing 5
routes per map. Shadowed area indicates the standard error of the measure.

As in the 3 routes case, there is a clear improvement of the
fitness. In this case, the average fitness of the best individuals
of the last population is f5 = −369±12.08. It is interesting to
observe, comparing Figures 2 and 5, how the fitness obtained
in this case is not as good as the ones obtained before for
3 routes. This is logical, owing to the fact that this scenario
is more complex than the previous one, as the quality of the
route r2 is, by definition, the second best route obtained with
the PTSP solver. Although the progress of fitness is clear and
significant, it visibly converges slower than when the PTSP

route is employed to calculate fitness. In this case, around
60% of the runs converged to a solution before reaching the
maximum of 1000 generations.

As before, a verification phase with the MCTS driver has
been performed to analyze the resultant maps, employing
the fitness function declared in Equation 5. In this case,
the average fitness obtained by the MCTS driver is f ′5 =
−196.27±23.45, which is again smaller than its counterpart

11

NTSP DTSP PTSP r1 r2

1.53±0.022 1.39±0.02 0.99±0.01 1.01±0.01 1.0±0.0

TABLE III
RELATIVE AVERAGE PERFORMANCE IN BEST MAPS OF 40 RUNS.

Map EC(NTSP) EC(DTSP) EC(r2) Fitnessf5

1 1298 1103 1126 23
2 1010 952 1020 68
3 1032 1001 1024 23
4 1146 1146 1183 37
5 1558 1415 1470 55
6 1197 1269 1172 72
7 1070 1070 1142 72
8 1357 1281 1368 87
9 1463 1415 1415 0
10 1366 1014 1135 121

TABLE IV
ESTIMATED COSTS ON MAPS OF THE 2012 PTSP COMPETITION.

for 3 routes, but still demonstrates that the maps obtained
have the desired properties. As before, Table III shows the
relative average fitness for the results obtained with the
MCTS driver.

In this case, this table also shows the results obtained with
the other 2 physical routes (PTSP and r1). It is clear that the
proposed algorithm is able to find maps where three different
routes (given by the physical TSP planner: PTSP , r1 and r2)
provide a similar performance, all of them better than the
route planned by DTSP , which is still better than NTSP .

A comparison with hand-crafted maps from the 2012
WCCI PTSP Competition has also been made. Table IV
shows the results of the heuristic estimated cost and the
fitness values in the maps distributed with the competition
framework. If all 64 competition maps are to be compared,
the average fitness is f5 = 39±4.89, which is a value much
worse than the one obtained in the experiments described
here.

Again, the results obtained in this section can be compared
with randomly created maps. The fitness of these random
maps, according to the fitness function f5, is 24.0 ± 3.45.
It is straightforward to see that the problem with 5 routes
is more complex than using 3, as there is a clear difference
between the fitness of random maps on both scenarios. A
positive value like this indicates that the physics-based route
r2 is a worse choice than following the nearest waypoint first
approach. This shows that it is not trivial to create maps with
the features desired.

These comparisons are examples of one of the main
advantages of using the technique described in this paper.
If map designs are not good enough (as happened in the
PTSP Competition), it may be better to follow a naive
route (NTSP) and obtain the same results as taking a more
complex approach (DTSP), as in map 7, or even better, as
in map 6. This can be extrapolated to other games, where
simulated based PCG can avoid unfair situations in which
simpler players exploit deficiencies in levels to beat better
players.

Average NTSP DTSP PTSP r1 r2

Time 2279.0 1972.2 1626.0 1591.75 1650.2
Relative 1.38 1.19 0.98 0.96 1.0

TABLE V
PERFORMANCE OF THE MCTS DRIVER IN A RUN WITH 5 ROUTES.

Fig. 7. Evolution of the values of some of the 114 genes of the individual.
The average value of each gene is presented (between 0.05 and 0.95) against
the number of evaluations performed by CMA-ES. The column on the right
shows the final values for the mean m of the genes shown here.

1) A representative example: Figure 6 shows an example
of one of the runs with 5 routes and the map evolved by
CMA-ES. After running the MCTS verification step, the
average fitness obtained is shown in Table V. As can be
seen, the three physical routes provide a similar performance,
while the distance and nearest ones need more time to be
completed.

Figure 7 shows the average of (some of the 114) genes
of the individuals during the evaluations performed in the
run. It is interesting to see how, during the first half of
the experiments, these values have a high variance, which
corresponds to the exploratory phase of the algorithm. How-
ever, close to the end of the run, these genes stabilize
and the standard deviation of each one of them is reduced
significantly, showing that the algorithm is converging on a
solution.

12

Fig. 6. Example of a map and its five routes evolved with CMA-ES. The trajectories, followed by the MCTS driver, are shown in the following order,
from left to right, top to bottom: A) NTSP route, with an average of 2279.0 ± 50.33 time steps; B) DTSP route, with an average of 1972.2 ± 34.29
time steps; C) PTSP route, with an average of 1626.0 ± 60.96 time steps; D) r1 route, with an average of 1591.75 ± 60.97 time steps; E) r2 route,
with an average of 1650.2± 86.1 time steps.

VI. CONCLUSIONS AND FUTURE WORK

This paper introduced an evolutionary algorithm capable
of automatically generating high-quality maps for the PTSP
game. This is, as far as the authors know, the first attempt
at creating maps for this game in a procedural manner.
Additionally, to the best of our knowledge, this is the first
paper that employs CMA-ES for PCG in general.

The results presented in this research show the success
of our technique, being able to create maps that fulfil the
conditions required regarding the routes of waypoints that
can be followed: naive and simple approaches are easily out-
performed by those route planners that take the physics of the
game into account when generating the routes. Additionally,
the experiments performed in this research show that it is
possible to generate maps where several trajectories provide
solutions that are far better than the ones obtained by naive
routes.

This research can be extended in several ways. For in-
stance, the number of waypoints that a map contains could
be increased, resulting in more challenging maps. Another
possibility is to allow the evolutionary algorithm to modify
slightly the rules of the game. For example, the algorithm
could tweak time steps requested to visit each waypoint for
a particular map (instead of the default 1000 value). The
map generation algorithm could therefore adjust this value

for each map in order to modify the difficulty of the level.
It would be interesting to attempt to find maps that maxi-

mally differentiate between different controllers. This could
then be extended to a competitive co-evolution scenario,
where controllers are evolved to beat the best maps and maps
are evolved to differentiate between controllers, spurring a
form of arms race.

Another interesting feature to look at, that has not been
contemplated in this research, are the aesthetic aspects of
the map. Seeing some of the maps presented in the figures
of this paper, one might argue that they are not aesthetically
very pleasant. The inclusion of new shapes, such as circles
(or even more complicated figures), can lead to other types
of maps through evolution. Another possibility is to include
more obstacles once the evolutionary process has finished,
adding different shapes in parts of the maze where the ship
is unlikely to go (in order not to disrupt the routes and hence
invalidate the evolved map).

Additionally, it would be desirable to undertake a thorough
empirical study of different representations for the obstacles
of the map, including the ones described here (lines and rect-
angles) and others such as Compositional Pattern-Producing
Networks (CPPNs), Bezier curves, cell-based approaches or
turtle-based graphics. It would be worthwhile to see how the
representation affects the evolution of maps that are able to
differentiate between several controllers.

13

Since the PTSP game is also available to be played by
humans, another possibility is to create maps that are fun to
play and research what features in the maps make a PTSP
map entertaining.

Although this paper is centred on the PTSP, the conclu-
sions and algorithms described here can also be applicable
to other games and domains. As shown in this paper, it is not
trivial to create game levels that are possible to solve and, at
the same time, require an involved technique to be completed.
Simulation based PCG allows the creation of maps or levels
where a simplistic approach is not good enough to tackle the
game, or other more complex behaviours clearly outperform
the simpler ones. A game/level designer would not like to
create levels with loopholes that can be easily exploited
by naive approaches. Additionally, this research shows that
it is possible to employ simulation based PCG techniques
to evolve mazes with different levels of difficulty, or even
propose maps where a group of solutions solves the problem
with a similar performance, but much better than simpler
approaches.

In a scenario where the use of PCG is extended to evolve
certain parameters that affect the rules of the game, it would
be possible for evolution to discard those rules that make
the game unbalanced. A good example here is designing
opposing armies for online strategy games. If some army
units provide an army with a strong advantage (e.g. a very
fast unit), it unbalances the game and detracts from the player
experience. This balancing is currently performed by hand
through a combination of game design and testing, but one
can envisage a procedure where the system tweaks the rules
of a game to improve certain playability measures.

The work presented in this paper can also be thought of as
a Monte Carlo version of Reverse Game Theory/Mechanism
Design [27]. The goal of mechanism design is to tweak
parameters or discover how one can set up games in a certain
manner so that, if all players act according to some pre-
defined strategy (which can be adaptive), a desirable outcome
can be achieved (e.g. total societal wealth will be increased).
Mechanism design has been used to propose auctions that
had a direct impact on real life [1]. The method presented
here could possibly find uses in scenarios where analytical
solutions are hard or impossible to find, thus providing
another tool in an organization’s toolbox. For example one
can easily imagine a situation where an organisation can
set up internal markets where players try to maximise their
individual payoffs, however this maximisation should result
in higher overall performance for said organisation.

Using our approach, the overall goal of the organisation
would be encoded as a fitness function and the market
mechanism as the game which agents would compete in.
Evolution would then change the game (by presumably
optimizing some parameters) in order to move towards higher
overall payoffs. However, further research, this time closer
to Complex Systems or Computational Sociology, is needed
before one can draw conclusions about the suitability of these
approaches in socio-economic phenomena.

ACKNOWLEDGMENTS

This work was supported by EPSRC grant EP/H048588/1.

REFERENCES

[1] Richard Adams. What is mechanism design theory?
www.guardian.co.uk/business/2007/oct/15/ukeconomy.economics2,
October 2007.

[2] Daniel Ashlock, Colin Lee, and Cameron McGuinness. Search-Based
Procedural Generation of Maze-Like Levels. IEEE Transactions in
Computational Intelligence and AI in Games, 3:260–273, 2011.

[3] Daniel Ashlock, Cameron McGuinness, and Wendy Ashlock. Rep-
resentation in Evolutionary Computation. In IEEE Congress on
Evolutionary Computation, 2012.

[4] A. Auger and N. Hansen. A Restart CMA Evolution Strategy
With Increasing Population Size. In Proceedings of Conference on
Evolutionary Computation, 2005.

[5] Zyed Bouzarkouna, Didier Yu Ding, and Anne Auger. Using Evolution
Strategy with Meta-models for Well Placement Optimization. In
Proceedings of the 12th European Conference on the Mathematics
of Oil Recovery ECMOR 2010, 2010.

[6] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlf-
shagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A
Survey of Monte Carlo Tree Search Methods. IEEE Transactions on
Computational Intelligence and AI in Games, 4:1:1–43, 2012.

[7] Cameron Browne. Automatic Generation and Evaluation of Recom-
bination Games. PhD thesis, Queensland University of Technology,
2008.

[8] N. Hansen. The CMA Evolution Strategy: A Comparing Review. In
J.A. Lozano, P. Larranaga, I. Inza, and Bengoetxea, editors, Towards a
new evolutionary computation. Advances on estimation of distribution
algorithms, pages 75–102. Springer, 2006.

[9] N. Hansen. Benchmarking a BI-Population CMA-ES on the BBOB-
2009 Function Testbed. In Workshop Proceedings of the GECCO
Genetic and Evolutionary Computation Conference, 2009.

[10] E. Hastings, R. Guha, and K. O. Stanley. Evolving Content in
the Galactic Arms Race Video Game. In IEEE Symposium on
Computational Intelligence and Games, 2009.

[11] Philip Hingston. A New Design for a Turing Test for Bots. In
Proceedings of the IEEE Conference on Computational Intelligence
and Games, 2010.

[12] Interactive Data Visualization Inc. (IDV). Speedtree.
http://www.speedtree.com/, 2012.

[13] Sergey Karakovskiy and Julian Togelius. The Mario AI Benchmark
and Competitions. IEEE Transactions on Computational Intelligence
and AI in Games, 4:1:55–67, 2012.

[14] Antonios Liapis, Georgios N. Yannakakis, and Julian Togelius. Neu-
roevolutionary Constrained Optimization for Content Creation. In
IEEE Conference on Computational Intelligence and Games (CIG),
pages 71–78, 2011.

[15] Antonios Liapis, Georgios N. Yannakakis, and Julian Togelius. Adapt-
ing Models of Visual Aesthetics for Personalized Content Creation.
IEEE Transactions on Computational Intelligence and AI in Games,
Special Issue on Computational Aesthetics in Games 2012:213–228,
2012.

[16] Daniele Loiacono, Pier Luca Lanzi, Julian Togelius, Enrique Onieva,
David A. Pelta, Martin V. Butz, Thies D. Lönneker, Luigi Cardamone,
Diego Perez, Yago Saez, Mike Preuss, and Jan Quadflieg. The
2009 Simulated Car Racing Championship. IEEE Transactions on
Computational Intelligence and AI in Games, 2:2:131–147, 2010.

[17] Simon M. Lucas. Ms Pac-Man Competition. ACM SIGEVOlution
Newsletter, pages 37–38, 2007.

[18] Zbigniew Michalewicz. A Survey of Constraint Handling Techniques
in Evolutionary Computation Methods. In Evolutionary Programming,
pages 135–155, 1995.

[19] D. Perez, P. Rohlfshagen, and S. Lucas. The Physical Travelling
Salesman Problem: WCCI 2012 Competition. In Proceedings of the
IEEE Congress on Evolutionary Computation, 2012.

[20] Diego Perez, Edward J. Powley, Daniel Whitehouse, Philipp Rohlfsha-
gen, Spyridon Samothrakis, Peter I. Cowling, and Simon Lucas. Solv-
ing the Physical Travelling Salesman Problem: Tree Search and Macro-
Actions. IEEE Transactions on Computational Intelligence and AI in
Games, (submitted):to appear, DOI: 10.1109/TCIAIG.2013.2263884,
2013.

14

[21] P. Rohlfshagen and S.M. Lucas. Ms Pac-Man versus Ghost Team CEC
2011 Competition. In Evolutionary Computation (CEC), 2011 IEEE
Congress on, pages 70–77. IEEE, 2011.

[22] N. Shaker, J. Togelius, G. Yannakakis, B. Weber, T. Shimizu,
T. Hashiyama, N. Sorenson, P. Pasquier, P. Mawhorter, G. Takahashi,
G. Smith, and R. Baumgarten. The 2010 Mario AI Championship:
Level Generation Track. IEEE Transactions on Computational Intel-
ligence and AI in Games, 3:4:332–347, 2011.

[23] N. Sorenson, P. Pasquier, and S. DiPaola. A Generic Approach
to Challenge Modeling for the Procedural Creation of Video Game
Levels. IEEE Transactions on Computational Intelligence and AI in
Games, 3:229–244, 2011.

[24] Kenneth O. Stanley and Risto Miikkulainen. A Taxonomy for Artificial
Embryogeny. Artificial Life, 9(2):93–130, 2003.

[25] Nathan Sturtevant. Benchmarks for Grid-Based Pathfinding. Trans-
actions on Computational Intelligence and AI in Games, 4:144–148,
2012.

[26] Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and
Cameron Browne. Search-based Procedural Content Generation: A
Taxonomy and Survey. IEEE Transactions on Computational Intelli-
gence and AI in Games (TCIAIG), 3:172–186, 2011.

[27] Hal R Varian. Economic Mechanism Design for Computerized Agents.
In First USENIX Workshop on Electronic Commerce, pages 13–21,
1995.

[28] Jim Whitehead. Toward Procedural Decorative Ornamentation in
Games. In Proceedings of the Workshop on Procedural Content
Generation in Games, 2010.

[29] Georgios N. Yannakakis and Julian Togelius. Experience-driven Proce-
dural Content Generation. IEEE Transactions on Affective Computing,
2:147–161, 2011.

Diego Perez received a B.Sc. and a M.Sc. in
Computer Science from University Carlos III,
Madrid, in 2007. He is currently pursuing a Ph.D.
in Artificial Intelligence applied to games at the
University of Essex, Colchester. He has published
in the domain of Game AI, participated in several
Game AI competitions and organized the Physical
Travelling Salesman Problem competition, held in
IEEE conferences during 2012. He also has pro-
gramming experience in the video-games industry
with titles published for game consoles and PC.

Julian Togelius Julian Togelius is an Associate
Professor at the IT University of Copenhagen
(ITU). He received a BA in Philosophy from
Lund University in 2002, an MSc in Evolutionary
and Adaptive Systems from University of Sussex
in 2003 and a PhD in Computer Science from
University of Essex in 2007. Before joining the
ITU in 2009 he was a post-doctoral researcher
at IDSIA in Lugano. His research interests in-
clude applications of computational intelligence in
games, procedural content generation, automatic

game design, evolutionary computation and reinforcement learning; he has
around 80 papers in journals and conferences on these topics. He is an
Associate Editor of the IEEE Transactions on Computational Intelligence
and AI in Games and the current chair of the IEEE CIS Technical Committee
on Games.

Spyridon Samothrakis is currently pursuing a
PhD in Computational Intelligence and Games at
the University of Essex. His interests include game
theory, computational neuroscience, evolutionary
algorithms and consciousness.

Philipp Rohlfshagen received a B.Sc. in Com-
puter Science and Artificial Intelligence from the
University of Sussex, UK, in 2003, winning the
prize for best undergraduate final year project.
He received the M.Sc. in Natural Computation in
2004 and a Ph.D. in Evolutionary Computation in
2007, both from the University of Birmingham,
UK. Philipp completed a series of post doctoral po-
sitions in evolutionary computation and games and
is now a Principal Scientist working for SolveIT
Software in Adelaide, Australia.

Simon Lucas (SMIEEE) is a professor of Com-
puter Science at the University of Essex (UK)
where he leads the Game Intelligence Group. His
main research interests are games, evolutionary
computation, and machine learning, and he has
published widely in these fields with over 130
peer-reviewed papers. He is the inventor of the
scanning n-tuple classifier, and is the founding
Editor-in-Chief of the IEEE Transactions on Com-
putational Intelligence and AI in Games.

