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A new rejection sampling method without
using hat function
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This paper proposes a new exact simulation method, which simulates a realisation from a proposal density
and then uses exact simulation of a Langevin diffusion to check whether the proposal should be accepted
or rejected. Comparing to the existing coupling from the past method, the new method does not require
constructing fast coalescence Markov chains. Comparing to the existing rejection sampling method, the new
method does not require the proposal density function to bound the target density function. The new method
is much more efficient than existing methods for certain problems. An application on exact simulation of
the posterior of finite mixture models is presented.
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1. Introduction

1.1. Background of exact Monte Carlo simulation

Monte Carlo methods are widely used in statistics, engineering and physics for generation of
realisations from a probability distribution, optimization, numerical integration and so on. They
are particularly important for many complex models where analytical analyses are infeasible.
Markov chain Monte Carlo (MCMC) methods have been the most popular methods in more than
20 years for analysis of complex probabilistic models. MCMC methods generate statistically
dependent and approximate realisations from the target distribution. A potential weakness of
these methods is that the simulated trajectory of a Markov chain will depend on its initial state.
Concerns about the quality of the sampled realisations of the simulated Markov chains have
motivated the search for exact Monte Carlo methods, that is, methods that can be guaranteed to
provide independent samples from the target distribution.

A breakthrough in the search for exact Monte Carlo simulation methods was made by [26].
Their method, named as coupling from the past (CFTP), is an MCMC-based algorithm that pro-
duces realisations exactly from the target distribution. CFTP transfers the difficulty of running
the Markov chain for extensive periods (to ensure convergence) to the difficulty of establishing
whether a large number of coupled Markov chains have coalesced. The CFTP algorithm is only
practical for small discrete sample spaces or for a target distribution having a probability space
equipped with a partial order preserved by an appropriate Markov chain construction. Although
in recent decades, there have been many theoretical developments and applications in this area
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such as [4,8,15,16,20,24,28] and [9], the CFTP algorithm is still not practical for complex statis-
tical models.

Exact simulation can also be achieved via rejection sampling method. This involves sampling
from a density that bounds a suitable multiple of the target density, followed by acceptance or
rejection of the sampled value. In general, it is a very challenging task to find a bounding density,
although efficient rejection sampling methods have been developed for the special class of one-
dimensional log-concave densities [17].

For certain complicated problems, existing methods do not work. An example in Bayesian
statistics, for which all existing exact Monte Carlo simulation fails, is the Monte Carlo simulation
problem for the posterior of finite mixture models (see Section 5 for details). This motivates us
to search for new exact Monte Carlo simulation methods.

1.2. The new idea and the structure of the paper

To introduce the idea of the new method in this paper, we first consider the decomposition of the
target density f , as f (·) = g1(·)g2(·), where g1 and g2 are also (proportional to) proper density
functions and it is easy to simulate from them. Note that here f,g1 and g2 are density functions
up to a multiplicative constant. If we can find M such that g2(·) ≤ M , then traditional rejection
sampling can be used to draw samples from f with the hat function M · g1. In practice, we may
not be able to find M or M is too large to make the rejection sampling efficient.

Our idea is not to find the hat function for f , but to independently simulate x1 and x2 from g1

and g2, respectively. If the two independent samples x1 = x2 = y, then it is easy to show (at least
for discrete variables and heuristically for continuous variables) that the value y must be from
f (·) ∝ g1(·)g2(·). Note that for discrete random variables, f,g1 and g2 correspond to probability
mass functions and it is possible to simulate y from f using the above idea since P(x1 = x2) > 0.
For continuous random variables, however, this is impossible since P(x1 = x2) = 0.

Although it is impossible to achieve x1 and x2 with distance 0 for continuous case, the simu-
lated x1 and x2, if they are very close (defined in later sections), can be viewed as approximately
from the target f . Our idea is to use x1 (or x2) as a proposal and then accept x1 (or x2) as a perfect
sample from f based on exact Monte Carlo simulation of diffusion bridges [1,2]. We will show
that the new method is an exact simulation algorithm theoretically and via simulation studies.
The new method is more efficient than all existing exact simulation methods when applying to
simulations from the posterior of Bayesian mixture models.

This paper is organized as follows. In Section 2, we present the new methodology and show
it is an exact simulation algorithm theoretically and via simulations for a toy example. We also
demonstrate that the new algorithm is related to the CFTP algorithm. In Section 3, we present the
detailed exact simulation algorithm. In Section 4, we provide a generalised version of the new
method. Then we apply the new method to the mixture of normal densities and demonstrate that
the new method is more practical than all existing algorithms in Section 5. Section 6 provides a
discussion.
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2. Methodology

2.1. Preliminaries

Consider the target density f (x) with support Rq for a q-dimensional random variable X. Sup-
pose that it is non-trivial to simulate from f and that f can be decomposed as a product of two
proper density functions, f (x) ∝ g1(x)g2(x). Note that here f , g1 and g2 are densities up to a
multiplicative constant. Assume that g2

1 is also a proper density up to a multiplicative constant
and that we can easily simulate from g1 and g2. We can further write f (x) ∝ f1(x)f2(x) with
f1 = g2

1 and f2 = g2/g1.
Let

A(x) = 1

2
logf1(x) = logg1(x),

(1)
α(x) = (

α(1), . . . , α(q)
)tr

(x) = ∇A(x),

where ∇ is the partial derivative operator for each component of x.
Then we consider a q-dimensional diffusion process Xt (�ω), t ∈ [0, T ] (T < ∞), defined on

the space � = (C[0, T ]q,B(C[0, T ]q)), given by

dXt = α(Xt ) dt + dBt , (2)

where �ω = {ωt , t ∈ [0, T ]} is a typical element of �. Let Wω0 be the probability measure under
which the coordinate mapping process Bt (�ω) = ωt is a Brownian motion starting at B0 = ω0.
Let W be the probability measure for a Brownian motion with the initial probability distribution
B0 = ω0 ∼ f1(·).

From the equations in (1), we know that the above Xt is a Langevin diffusion [18] with the
invariant distribution f1(x), which means Xt ∼ f1(x) for any t ∈ [0, T ] if X0 ∼ f1(x). Let Qω0

be the probability law induced by Xt , t ∈ [0, T ], given X0 = ω0. Let Q be the probability law
induced by Xt , t ∈ [0, T ], with X0 = ω0 ∼ f1(·), that is, under Q we have Xt ∼ f1(x) for any
t ∈ [0, T ].

We shall assume that α satisfies the following standard conditions. Note that under careful
variable transformations it is usually possible to guarantee that α satisfies these conditions. We
will demonstrate this by the toy example in Section 2.5 and via the posterior of mixture models
in Section 5.

Condition 2.1. α is continuously differentiable in all its arguments.

Condition 2.2. There exists l > −∞ such that

φ(x) = 1

2

(‖α‖2 + divα
)
(x) − l ≥ 0, (3)

where div is the divergence of α, defined in (6).
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Condition 2.3. The following

exp

(∫ t

0
α(ωs) dωs − 1

2

∫ t

0

∥∥α(ωs)
∥∥2

ds

)
is a martingale with respect to each measure Wω0 .

Consider a biased diffusion process X̄ = {X̄t ;0 ≤ t ≤ T } defined as follows. First, the
joint density for the pair (X̄0, X̄T ) (the starting and ending points of the biased diffusion pro-
cess), evaluated at point (x,y), is f1(x)t∗(y|x)f2(y), where t∗(y|x) is the transition density
for the diffusion process X defined in (2) from X0 = x to XT = y. Note that we must have∫

f1(x)t∗(y|x) dx = f1(y), since X follows the stationary distribution f1 at all time points, if
X0 ∼ f1(x).

Second, given (X̄0, X̄T ) the process {X̄t ,0 < t < T } is given by the diffusion bridge driven
by (2).

Note that X̄ is actually a biased version of X. Conditional on the ending points, the two pro-
cesses X̄ and X have the same distribution. Clearly the marginal distribution for X̄T is f (y). This
is because

∫
f1(x)t∗(y|x)f2(y) dx = f2(y)f1(y) ∝ f (y).

To draw a sample from the target distribution f (x), we need to simulate a process X̄t , t ∈ [0, T ]
from Q̄ and then X̄T ∼ f (x). The following lemma gives us an implication of how to simulate
the process X̄, which will be introduced in the next subsection.

Lemma 2.1. Let Q̄ be the probability law induced by X̄. Then we have the Radon–Nikodym
derivative:

dQ̄

dQ
(�ω) ∝ f2(ωT ). (4)

Proof. The proof of the lemma follows easily from the proof of Proposition 3 in [3]. �

2.2. Simulating the process X̄

We here use similar rejection sampling ideas as that in [2] and [1]. Under Conditions 2.1 to 2.3
and following [2], we have

dQ

dW
(�ω) = exp

[
A(ωT ) − A(ω0) − 1

2

∫ T

0

(‖α‖2 + divα
)
(ωt ) dt

]
(5)

where

divα(x) =
q∑

j=1

∂α(j)(x)

∂x(j)
(6)
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and x(j) is the j th component of x.
Then we consider a biased Brownian motion {B̄t ;0 ≤ t ≤ T }, defined as (B̄0, B̄T ) following a

distribution with a density h(x,y) and {B̄t ;0 < t < T } to be a Brownian bridge given (B̄0, B̄T ).

Lemma 2.2. Let Z be the probability law induced by {B̄t ;0 ≤ t ≤ T }. We have that the Radon–
Nikodym derivative of Z with respect to W is given by

dZ

dW
(�ω) = h(ω0,ωT )

f1(ω0)(1/
√

2πT )e−‖ωT −ω0‖2/(2T )
. (7)

Proof. Let W
ω0,ωT

0,T be the probability measure, under which Bt (�ω) = ωt (given B0 = ω0,

BT = ωT ) is a Brownian bridge. Let Z
ω0,ωT

0,T be the probability law induced by B̄t (given

B̄0 = ω0, B̄T = ωT ). From the definition of B̄t , we know that B̄t and Bt have the same dis-
tribution law given B̄0 = B0 and B̄T = BT . Choose any set F ∈ B(C[0, T ]q). We have

Z
ω0,ωT

0,T {�ω ∈ F} =W
ω0,ωT

0,T {�ω ∈ F}.
Therefore,

EZ

[
I [�ω ∈ F]] =

∫
Rq

∫
Rq

E
Z

ω0,ωT
0,T

[
I [�ω ∈ F]]h(ω0,ωT ) dω0 dωT

=
∫

Rq

∫
Rq

E
W

ω0,ωT
0,T

[
I [�ω ∈ F]]h(ω0,ωT ) dω0 dωT

= EW

[
I [�ω ∈ F] h(ω0,ωT )

f1(ω0)(1/
√

2πT )e−‖ωT −ω0‖2/(2T )

]
which implies (7). �

By letting

h(ω0,ωT ) = f2(ωT ) exp
[
A(ωT ) − A(ω0)

]
f1(ω0)

1√
2πT

e−‖ωT −ω0‖2/(2T ) (8)

and using (4), (5) and (7), we have

dQ̄

dZ
(�ω) ∝ dQ̄

dQ
(�ω)

dQ

dW
(�ω)

dW

dZ
(�ω)

= f2(ωT ) · exp

[
A(ωT ) − A(ω0) − 1

2

∫ T

0

(‖α‖2 + divα
)
(ωt ) dt

]
(9)

· f1(ω0)(1/
√

2πT )e−‖ωT −ω0‖2/(2T )

h(ω0,ωT )

= exp

[
−1

2

∫ T

0

(‖α‖2 + divα
)
(ωt ) dt

]
.
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Then under Condition 2.2, we can rewrite (9) as

dQ̄

dZ
(�ω) ∝ exp

[
−
∫ T

0
φ(ωt ) dt

]
, (10)

which has a value no more than 1. Now it is ready to use rejection sampling to simulate X̄t

from Q̄. First, we simulate a proposal B̄t from Z and then we accept the proposal as X̄t according
to the probability in (10). Note that this rejection sampling can be done using similar methods as
that in [2] and [1].

Note that to simulate a proposal B̄t from Z, it is necessary to simulate (ω0,ωT ) from h given
in (8). This is not difficult, because according to f1 = g2

1 and f2 = g2/g1 we have

h(ω0,ωT ) = f2(ωT ) exp
[
A(ωT ) − A(ω0)

]
f1(ω0)

1√
2πT

e−‖ωT −ω0‖2/(2T )

(11)

= g2(ωT )g1(ω0)
1√

2πT
e−‖ωT −ω0‖2/(2T ).

We can easily simulate ω0 from g1 and ωT from g2 and then accept (ω0,ωT ) as a sample from

h according to the probability exp[−‖ωT −ω0‖2

2T
].

2.3. Rejection sampling for f (x) ∝ g1(x)g2(x) without using hat function

The previous subsection demonstrated how to simulate X̄t , t ∈ [0, T ] from Q̄ via the rejection
sampling technique. From the definition of X̄t in Section 2.1, we then have that X̄T is actually a
sample from f1(x)f2(x), the target distribution f (x). Therefore, the following rejection sampling
algorithm (Algorithm 1) can be used to simulate x from f ∝ g1g2 = f1f2.

Remark 1. Step 9 of Algorithm 1 can be done using the method in [2] and [1].

Remark 2. Algorithm 1 is a rejection sampling algorithm but it does not require finding a hat
function to bound the target density, which is usually the main challenge of the traditional re-
jection sampling for complicated target densities. The above algorithm uses g2 as the proposal
density function, which does not have to bound the target f .

Choosing an appropriate value T is important for Algorithm 1 to achieve a larger acceptance
probability. We can see that the proposal ωT will be accepted if U ≤ exp[−‖ω0 − ωT ‖2/(2T )]
and if I = 1, where I is the indicator simulated in Step 9 of Algorithm 1. Define

AP1 = P
{
U ≤ exp

[−‖ω0 − ωT ‖2/(2T )
]}

,
(12)

AP2 = P
(
I = 1|(ω0,ωT )

)
.
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Algorithm 1: Rejection sampling for f ∝ g1g2 = f1f2

1 Simulate ω0 from g1 and ωT from g2;
2 Simulate a standard uniform variable U ;
3 if U ≤ exp[−‖ω0 − ωT ‖2/(2T )] then
4 (ω0,ωT ) is from h;
5 else
6 Go to Step 1;
7 end
8 Simulate the Brownian bridge B̄ = {ωt , t ∈ (0, T )} conditional on (ω0,ωT );
9 Simulate I = 1 with probability given by (10);

10 if I = 1 then
11 Output ωT ;
12 else
13 return to Step 1;
14 end

If T is large, the probability AP1 will be relatively large, but the probability AP2 which can also
be written as

P
(
I = 1|(ω0,ωT )

)= exp

(
−
∫ T

0
φ(ωt ) dt

)
, (13)

will be small. On the contrary, if T is small, the probability AP2 will be relatively large, but
AP1 will be small. Therefore, it is important to choose an appropriate value of T to make the
acceptance probabilities AP1 and AP2 to be as large as possible. In practice, it may be more
desirable to have a larger value of AP2, the acceptance probability for the diffusion bridge, since
Steps 8 and 9 (simulation of the diffusion bridge) in Algorithm 1 are not easy to implement [1,2].
We will discuss the choice of T in later sections via simulation studies.

2.4. The advantage of the new algorithm and its relation to CFTP and
direct sampling

2.4.1. The advantage of the new algorithm

Note that in the new algorithm, we do not need g2 (or g1) to bound the target density f . In-
stead, Algorithm 1 makes use of the proposals from both g1 and g2 and the acceptance/rejection
of a diffusion bridge to draw samples exactly from the target. We can see that the acceptance
probability AP2 in (12) depends on the lower bound l for (‖α‖2 + divα)/2. Therefore, this algo-
rithm will be attractive when it is possible to find good lower bounds for (‖α‖2 + divα)/2, but
difficult to find a good hat function for the target density f . In Section 3, we will demonstrate
how to find good lower bounds for (‖α‖2 + divα)/2. The new method in Section 3 does not re-
quire any specified properties for the target function f or α, such as log-concativity. This makes
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the new method more practical than existing adaptive rejection sampling methods. We will also
demonstrate this when dealing with the posterior of mixture models in Section 5.

2.4.2. The link to CFTP – A heuristic interpretation

In summary, Algorithm 1 first simulates ω0 from g1 and ωT from g2 and then accepts (ω0,ωT )

as a sample from h with probability exp(−‖ω0 − ωT ‖2/(2T )). To accept the proposal ωT , the
algorithm simulate I = 1 via acceptance/rejection of a diffusion bridge.

To explain the link of the new algorithm with CFTP, we temporarily assume that f2 is a proper
density. Note that this assumption is not required by the algorithm.

From Lemma 2.1, we know that dQ̄(�ω) ∝ f2(ωT )dQ(�ω). Therefore, the biased diffusion X̄
can be generated from Q̄ via the following heuristic steps. Step 1: we generate ω0 ∼ f1 and then
the diffusion process ωt ,0 ≤ t ≤ T , which is governed by (2). This means that {ωt ,0 ≤ t ≤ T }
is generated from Q. Step 2: we generate ω′

T ∼ f2, independent of {ωt ,0 ≤ t ≤ T }. Then if
ωT = ω′

T , we can accept that {ωt ,0 ≤ t ≤ T } as a realisation of the biased diffusion X̄.
We can also imagine that the above Step 2 simulates another diffusion process ω′

t ,0 ≤ t ≤ T

with invariant distribution f2, but only output the process at time T . The two processes are
simulated independently and coalesce at time T , a pre-determined value. This means that two
random variables (but having the same value) ωT and ω′

T are simulated independently from f1

and from f2, respectively. Their joint distribution must be f1(ωT )f2(ωT ) = f (ωT ). Therefore,
ωT is a sample from f .

Recall that the CFTP algorithm simulates Markov chains starting from all possible states and
uses the same random numbers for each chain. The challenge of CFTP is to monitor coalescence
for many different Markov chains. The new method can be viewed heuristically as running two
independent diffusion processes, where the product of the invariant distributions of the two diffu-
sions is the target distribution. When the two processes coalesce at a predetermined time point T

(independent of the diffusions), the coalesced point is from the target distribution. The challenge
here is to guarantee that the two independent processes coalesce at a predetermined time point.
This challenge is solved via rejection sampling for diffusions, that is, we choose a value of T

first and then use rejection sampling to find the diffusion.

2.4.3. The link to sampling directly from f – A heuristic interpretation

Note that theoretically, we can choose any value of T in Algorithm 1, although T affects the
algorithm efficiency. When we choose T = 0, Algorithm 1 actually ignores the diffusion simu-
lations, but only involves simulation of ω0 from g1 and ωT from g2. The proposal ωT will be
accepted if ω0 = ωT , since exp(−‖ω0 − ωT ‖2/(2T )) = 1 with T = 0 and ‖ω0 − ωT ‖ = 0 if we
define 0/0 = 0. This means that we independently simulate ω0 from g1 and ωT from g2. When
ω0 = ωT := ω∗ we accept ω∗ as a sample from f . Although it is impossible to have ω0 = ωT ,
this approach can be viewed as simulate ω∗ ∼ g1 · g2 = f .
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2.5. A toy example

We end this section by providing a toy example to demonstrate the density decomposition and
necessary variable transformation to guarantee Conditions 2.1 and 2.2 are satisfied. The variable
transformation will also be used in Section 5.

Example 2.1. Consider a Dirichlet distribution as the target, having density proportional to
fp(p) = p4

1p
4
2(1 − p1 − p2)

4, 0 ≤ p1,p2 ≤ 1. Since Algorithm 1 requires that the target f (·)
should have support in R2, we first consider the transformed variable x = (x1, x2) with

p1 = p1(x) := exp(x1)
/[

1 + exp(x1) + exp(x2)
]
,

(14)
p2 = p2(x) := exp(x2)

/[
1 + exp(x1) + exp(x2)

]
.

We have∣∣∣∣∣
∂p1
∂x1

∂p1
∂x2

∂p2
∂x1

∂p2
∂x2

∣∣∣∣∣=
∣∣∣∣p1(x) − p1(x)2 −p1(x)p2(x)

−p1(x)p2(x) p2(x) − p2(x)2

∣∣∣∣= p1(x)p2(x)
(
1 − p1(x) − p2(x)

)
since according to (14) we have

∂pk(x)/∂xk = pk(x) − pk(x)2,
(15)

∂pj (x)/∂xk = −pj (x)pk(x), j �= k.

Therefore, the Jacobin associated with the transformation is

J (x) = p1(x)p2(x)
(
1 − p1(x) − p2(x)

)
.

Then the density function for x can be written as fx(x) = fp(p1(x),p2(x))J (x). Therefore

fx(x) ∝
[

exp(x1)

1 + exp(x1) + exp(x2)

]5[ exp(x2)

1 + exp(x1) + exp(x2)

]5[ 1

1 + exp(x1) + exp(x2)

]5

and can be decomposed as fx(x) = g1(x)g2(x), with

g1(x) =
[

exp(x1)

1 + exp(x1) + exp(x2)

]2[ exp(x2)

1 + exp(x1) + exp(x2)

]2[ 1

1 + exp(x1) + exp(x2)

]2

g2(x) =
[

exp(x1)

1 + exp(x1) + exp(x2)

]3[ exp(x2)

1 + exp(x1) + exp(x2)

]3[ 1

1 + exp(x1) + exp(x2)

]3

.

Note that α(x) satisfies Conditions 2.1 and 2.2, since A(x) = log(g1(x)) = 2(x1 + x2) −
6[log(1 + exp(x1) + exp(x2))] and

α(x) =
[

2
2

]
− 6

[ exp(x1)
1+exp(x1)+exp(x2)

exp(x2)
1+exp(x1)+exp(x2)

]
.
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Figure 1. Left figure: marginal empirical distribution for p1; right figure: marginal empirical distribution
for p2. Light curve: empirical distribution based on ‘rdirichlet’; black curve: empirical distribution based
on the new method. For both p1 and p2, the light and black curves overlap.

We further have

divα(x) = −6
[
1 + exp(x1) + exp(x2)

]−2[exp(x1)
(
1 + exp(x2)

)+ exp(x2)
(
1 + exp(x1)

)]
and ‖α(x)‖2 + divα(x) ≥ −3. Therefore, the proposed algorithm can be applied.

We simulate 5000 realisations using the proposed new method and another 5000 realisations
using the ‘rdirichlet’ command of MCMCpack package of R. The marginal empirical distribu-
tions for p1 and p2 are plotted for both methods. We can see that the empirical distributions under
different methods overlap everywhere, that is, the empirical distribution for the two methods are
almost exactly the same for p1 (the left figure) and p2 (the right figure).

3. The new rejection sampling algorithm with layered Brownian
motion

We can see that in Algorithm 1, there are two rejection steps: line 3 and line 10. The accep-
tance probabilities are given in (12). These two probabilities can be very small, especially when
the dimension, q , of ωt is large. In this section, we provide details on how to improve Algo-
rithm 1.

3.1. Improvement on the diffusion bridge simulation – The
one-dimensional case

The method proposed in this subsection relies on the concept of layered Brownian motion in [1].
So we first briefly introduce in Section 3.1.1 the layers defined in [1] and the methods developed
therein.
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3.1.1. The layered Brownian motion in [1]

Define the probability measure W
ω0,ωT

0,T , under which ωt is a Brownian bridge with (ω0,ωT ) as
the starting and ending points. Let {ai}i≥1 be an increasing sequence of positive numbers and
a0 = 0. Let x̄ = ω0 ∧ ωT , ȳ = ω0 ∨ ωT . Define the ith layer, Di (x̄, ȳ;0, T ) = Ui (x̄, ȳ;0, T ) ∪
Li (x̄, ȳ;0, T ), where

Ui (x̄, ȳ;0, T )

=
{
�ω : sup

0≤s≤T

ωs ∈ [ȳ + ai−1, ȳ + ai]
}

∩
{
�ω : inf

0≤s≤T
ωs > x̄ − ai

}
,

(16)
Li (x, y;0, T )

=
{
�ω : inf

0≤s≤T
ωs ∈ [x̄ − ai, x̄ − ai−1]

}
∩
{
�ω : sup

0≤s≤T

ωs < ȳ + ai

}
.

For simplicity of notations, we use Di to represent Di (x̄, ȳ;0, T ).
In fact, it will be easier for us to understand the event Oi , defined as

Oi =
i⋃

k=1

Dk. (17)

If �ω ∈ Oi , then the Brownian bridge is bounded by [x̄ − ai, ȳ + ai]. Because {Di , i = 1, . . .}
forms a partition for the space of �ω, we can also write Di =Oi −Oi−1. Therefore, the Brownian
bridge in layer i, {ωt ,0 < t < T } ∈Di , means that ωt ∈ [x̄ − ai, ȳ + ai],0 < t < T , but ωt is not
bounded by [x̄ − ai−1, ȳ + ai−1].

In Algorithm 1, the acceptance indicator I can be simulated via the following subroutine (Al-
gorithm 2) [1]. Algorithm 2 simulates a layer I according to the probability P(I = i|ω0,ωT ) =
W

ω0,ωT

0,T {�ω ∈ Di}. Then conditional on the layer I , the Brownian bridge is simulated. Thus, the
simulated Brownian bridge will be bounded by the boundaries of the I th layer, that is, bounded
by [x̄ − aI , ȳ + aI ]. Based on the boundaries of the Brownian bridge, an upper bound rI for
supt∈[0,T ],�ω∈DI

{[α2(ωt ) + α′(ωt )]/2 − l} can then be found and a Poisson thinning algorithm
can be used to simulate the event I .

3.1.2. Improve the diffusion bridge simulation by re-weighting the layer probabilities

The acceptance probability for the diffusion bridge can be very small, if the lower bound l is
very small. Therefore, Algorithm 2 may be very inefficient due to the low acceptance probability
and the complexity of diffusion bridge simulation. To improve the efficiency, we should increase
the lower bound l. For one-dimensional case, [10] proposed an adaptive approach to increase
the lower bound, which uses different lower bounds of (α2 + α′)(ωs)/2 for different layers. We
here briefly introduce the idea as follows and then extend the method in [10] to multi-dimensional
processes in Section 3.2. Note that [25] proposed a method using more flexible layers to simulate
one-dimensional jump diffusions.

Given �ω ∈Di (the Brownian bridge is in layer i), Condition 2.2 implies that we can find li such
that li ≤ infs∈[0,T ],�ω∈Di

{(α2 + α′)(ωs)/2} and li → l. Obviously, for all i, such li satisfies li ≥ l.
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Algorithm 2: Simulation for I , one-dimensional case

1 Given ω0 and ωT , simulate a Brownian bridge ωt , t ∈ [0, T ] via the following Steps 1a and
1b:;
// 1a: Simulate layer I with probability P(I ) = W

ω0,ωT

0,T (�ω ∈ DI )

// 1b: Given ω0 and ωT , simulate a sample path �ω, from W
ω0,ωT

0,T

conditional on �ω ∈ DI, using the algorithm in [1]

2 Calculate l = inf[α2(u) + α′(u)]/2, for all u ∈ R;
3 Calculate rI such that rI ≥ supt∈[0,T ],�ω∈DI

{[α2(ωt ) + α′(ωt )]/2 − l};
4 Simulate � = {ψ1, . . . ,ψρ} uniformly distributed on U[0, T ] and marks ϒ = {ν1, . . . , νρ}

uniformly distributed on U[0,1], where ρ is from Poi(rI T );

5 Compute the acceptance indicator I :=∏ρ
j=1 I [r−1

I φ(ωψj
) < νj ];

Define a process {B̃t ,0 ≤ t ≤ T } which has the probability law Z̃ given by the Radon–Nikodym
derivative, with respect to W,

dZ̃

dW
(�ω) ∝ h(ω0,ωT )

f1(ω0) · (1/
√

2πT )e−(ω0−ωT )2/(2T )

∞∑
i=1

exp{−T li}I {�ω ∈Di}.

We then have

dQ̄

dZ̃
(�ω) ∝ dQ̄

dQ
(�ω)

dQ

dW
(�ω)

dW

dZ̃
(�ω)

= f2(ωT ) · exp

[
A(ωT ) − A(ω0) − 1

2

∫ T

0

(
α2 + α′)(ωt ) dt

]
(18)

· f1(ω0)(1/
√

2πT )e−|ωT −ω0|2/(2T )

h(ω0,ωT )
· 1∑∞

i=1 exp{−T li}I {�ω ∈ Di}

∝
∞∑
i=1

exp

{
−
∫ T

0

[
1

2

(
α2 + α′)(ωs) − li

]
ds

}
I {�ω ∈ Di},

which is also a value no more than 1. Therefore, we can also use rejection sampling to simulate
from Q̄ if we can simulate from Z̃(�ω). The acceptance probability ratio in (18) will be larger than
the acceptance probability ratio in (10), since li ≥ l.

Note that, simulating from Z̃(�ω) can actually be done based on the method in [10] if �ω is a
one-dimensional process.



2446 H. Dai

3.2. Improvement on the diffusion bridge simulation, when x ∈ Rq

The methodology in Section 3.1 can be extended to q-dimensional processes. Suppose that
�ω = (ω(1), . . . ,ω(q)) and ω(j) = {ω(j)

s , s ∈ [0, T ]}. Given ω0 and ωT , define x̄(j) = ω
(j)

0 ∧ ω
(j)
T

and ȳ(j) = ω
(j)

0 ∨ ω
(j)
T .

We define the events D(j)
i (x̄(j), ȳ(j);0, T ) = U (j)

i (x̄(j), ȳ(j);0, T ) ∪ L(j)
i (x̄(j), ȳ(j);0, T ),

where U (j)
i (·, ·;0, T ) and L(j)

i (·, ·;0, T ) are defined similarly as that in (16) for each compo-
nent ω(j). For simplicity, the sequence {ai} in (16) is chosen to be same for all components ω(j),
j = 1, . . . , q . With these definitions, the event ω(j) ∈⋃i

k=1 D
(j)
k means that the j th component

of the q-dimensional Brownian bridge is bounded by [x̄(j) − ai, ȳ
(j) + ai].

Further, by defining

O(j)
i :=

i⋃
k=1

D(j)
k , (19)

the event �ω ∈⊗q

j=1 O
(j)
i means that all components of the q-dimensional Brownian bridge are

bounded by the ith layer boundaries, [x̄(j) − ai, ȳ
(j) + ai], j = 1, . . . , q , respectively. Here the

sign ⊗ is the direct product.
Define Qi =⊗q

j=1 O
(j)
i −⊗q

j=1 O
(j)

i−1. Clearly, {Qi , i = 1, . . .} form a partition for the space
of the q-dimensional �ω. We say that Qi is the ith layer.

We can write

W
ω0,ωT

0,T {�ω ∈Qi} = W
ω0,ωT

0,T

(
�ω ∈

q⊗
j=1

O(j)
i

)

−W
ω0,ωT

0,T

(
�ω ∈

q⊗
j=1

O(j)

i−1

)
(20)

= W
ω0,ωT

0,T

(
�ω ∈

q⊗
j=1

[
i⋃

k=1

D(j)
k

])

−W
ω0,ωT

0,T

(
�ω ∈

q⊗
j=1

[
i−1⋃
k=1

D(j)
k

])
.

On the other hand, with the definitions above, we can find li such that

li ≤ inf
s∈[0,T ],�ω∈Qi

{(‖α‖2 + divα
)
(ωs)/2

}
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and li → l. Let {B̃t ,0 ≤ t ≤ T } be the process having probability law Z̃, given by

dZ̃

dW
(�ω) ∝ h(ω0,ωT )

f1(ω0)e−‖ω0−ωT ‖2/(2T )

∞∑
i=1

exp{−T li}I {�ω ∈Qi}. (21)

We have that the Radon–Nikodym derivative of Q̄ to Z̃ becomes

dQ̄

dZ̃
(�ω) ∝

∞∑
i=1

exp

{
−
∫ T

0

[
1

2

(‖α‖2 + divα
)
(ωs) − li

]
ds

}
I {�ω ∈ Qi}. (22)

Similarly as before, if we can simulate from Z̃(�ω) then we can simulate from Q̄(�ω) via rejection
sampling.

3.2.1. Simulation from Z̃(�ω) given by (21)

We can rewrite (21) as

dZ̃(�ω) ∝ h∗(ω0,ωT )

f1(ω0)e−‖ω0−ωT ‖2/(2T )

∑∞
i=1 exp{−T li}I {�ω ∈Qi}∑∞

i=1 exp{−T li}Wω0,ωT

0,T {�ω ∈Qi} dW(�ω)

= h∗(ω0,ωT ) ·
∑∞

i=1 exp{−T li}I {�ω ∈Qi}∑∞
i=1 exp{−T li}Wω0,ωT

0,T {�ω ∈Qi} dW
ω0,ωT

0,T (�ω) (23)

= h∗(ω0,ωT ) · dZ̃ω0,ωT

0,T (�ω),

where h∗(ω0,ωT ) = h(ω0,ωT ) · ∑∞
i=1 exp{−T li}Wω0,ωT

0,T {�ω ∈ Qi}, Wω0,ωT

0,T is the Brownian

bridge measure and dZ̃
ω0,ωT

0,T is given by

dZ̃
ω0,ωT

0,T

dW
ω0,ωT

0,T

(�ω) =
∑∞

i=1 exp{−T li}I {�ω ∈Qi}∑∞
i=1 exp{−T li}Wω0,ωT

0,T {�ω ∈Qi} . (24)

To simulate from Z̃(�ω), we can first simulate ω0,ωT from h∗(ω0,ωT ) and then conditional
on (ω0,ωT ), we simulate {ωt ,0 < t < T } from Z̃

ω0,ωT

0,T (�ω) given by (24). It is simple to simulate
from h∗ via rejection sampling since we can simulate from h and h∗ · exp(T l) ≤ h.

Now the key step to be solved is to simulate from Z̃
ω0,ωT

0,T (�ω) given by (24). By rewriting (24)
as,

dZ̃
ω0,ωT

0,T

dW
ω0,ωT

0,T

(�ω) =
∞∑
i=1

{ exp{−T li}Wω0,ωT

0,T {�ω ∈Qi}∑∞
k=1 exp{−T lk}Wω0,ωT

0,T {�ω ∈Qk}
I {�ω ∈Qi}

W
ω0,ωT

0,T {�ω ∈Qi}
}

(25)

we know that its simulation can be achieved via the following two steps.

Step 1: we can first simulate the layer I according to the probability

P̃(I = i) = exp{−T li}Wω0,ωT

0,T {�ω ∈ Qi}∑∞
k=1 exp{−T lk}Wω0,ωT

0,T {�ω ∈Qk} ; (26)
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this step can be done using the same method in [10].
Step 2: then conditional on the layer I = i we simulate �ω from dW

ω0,ωT

0,T (�ω)I {�ω ∈ Qi}, which
will be discussed later in Lemma 3.2.

Remark. Recalling Qi =⊗q

j=1 O
(j)
i −⊗q

j=1 O
(j)

i−1, the event �ω ∈ Qi means that ω(j) ∈ O(j)
i ,

j = 1, . . . , q , but ω(j) /∈ O(j)

i−1 for at least one component j , say ω(j ′) /∈ O(j ′)
i−1. Therefore, for

the above Step 2, a simple way of simulating �ω conditional on layer I = i (i.e., conditional on
�ω ∈ Qi ) is to independently simulate each component, conditional on that �ω ∈⊗q

j=1 O
(j)
i . Then

if all simulated component are such that �ω ∈ ⊗q

j=1 O
(j)

i−1, we have to reject the simulated �ω
and restart; otherwise we accept it. This simple approach, however, is not efficient as there is a
rejection step involved. Thus, we consider a more efficient approach in Lemma 3.2.

First, we need to provide another expression for Qi in Lemma 3.1.

Lemma 3.1. We denote S(j ′)
i = [⊗j �=j ′ O(j)

i ] ⊗D(j ′)
i for j ′ ∈ {1, . . . , q}. Then we have

Qi =
q⋃

j ′=1

(
S(j ′)

i −
q⋃

h=j ′+1

S(h)
i

)
(27)

=
q⋃

j ′=1

{[
j ′−1⊗
j=1

O(j)
i

]
⊗D(j ′)

i ⊗
[

q⊗
j=j ′+1

O(j)

i−1

]}
,

where the operator
⊗q

j=q+1 gives an empty set.

Proof. Recalling the definition of Qi and the fact that �ω ∈ Qi means ω(j) ∈O(j)
i , j = 1, . . . , q ,

but ω(j) /∈O(j)

i−1 for at least one component j , we have

Qi =
q⋃

j ′=1

{[⊗
j �=j ′

O(j)
i

]
⊗D(j ′)

i

}
(28)

=
q⋃

j ′=1

S(j ′)
i =

q⋃
j ′=1

(
S(j ′)

i −
q⋃

h=j ′+1

S(h)
i

)
,

where the last equality sign is just an exercise of expressing a union of sets to a union of non-
intersecting sets.

Given any two sets Y1 ⊃ Y2, using the facts O(j ′)
i = D(j ′)

i ∪ O(j ′)
i−1 and that D(j ′)

i ∩ O(j ′)
i−1

is empty, we have D(j ′)
i ⊗ Y1 − O(j ′)

i ⊗ Y2 = D(j ′)
i ⊗ Y1 − D(j ′)

i ⊗ Y2 = D(j ′)
i ⊗ (Y1 − Y2).
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Therefore, we have

S(j ′)
i −

q⋃
h=j ′+1

S(h)
i

=
[

j ′−1⊗
j=1

O(j)
i

]

⊗
{
D(j ′)

i ⊗
(

q⊗
j=j ′+1

O(j)
i︸ ︷︷ ︸

Y1

)
−O(j ′)

i ⊗
q⋃

h=j ′+1

((
q⊗

j=j ′+1;j �=h

O(j)
i

)
⊗D(j)

i

)
︸ ︷︷ ︸

Y2

}
(29)

=
[

j ′−1⊗
j=1

O(j)
i

]
⊗D(j ′)

i ⊗
{

q⊗
j=j ′+1

O(j)
i︸ ︷︷ ︸

Y1

−
q⋃

h=j ′+1

((
q⊗

j=j ′+1;j �=h

O(j)
i

)
⊗D(j)

i

)
︸ ︷︷ ︸

Y2

}

=
[

j ′−1⊗
j=1

O(j)
i

]
⊗D(j ′)

i ⊗
{

q⊗
j=j ′+1

O(j)

i−1

}
,

by noting that Y1 ⊃ Y2 and their difference is
⊗q

j=j ′+1 O
(j)

i−1. This together with (28) proves the
lemma. �

Lemma 3.1 implies that we can represent Qi as a union of q mutually exclusive events, S(j ′)
i −⋃q

h=j ′+1 S
(h)
i , j ′ = 1, . . . , q . Then the simulation of �ω, conditional on �ω ∈ Qi , can be carried

out via the following steps. First, we can simulate an event from these mutually exclusive events,
which tell us the layers (or boundaries) of each component of �ω. This step can be done via
a uniform random variable simulation, if we can work out the probabilities of these mutually
exclusive events. Second, conditional on the layers or boundaries for each component of �ω, the
path for each component of �ω can be simulated.

Now it is ready to introduce the following lemma.

Lemma 3.2. Suppose that we already simulated a layer i, that is, �ω ∈ Qi and suppose that
random variable U is uniformly distributed in the interval

[
W

ω0,ωT

0,T

(
�ω ∈

q⊗
j=1

O(j)

i−1

)
,W

ω0,ωT

0,T

(
�ω ∈

q⊗
j=1

O(j)
i

)]
,
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that is, the interval [
q∏

j=1

W
ω0,ωT

0,T

(
ω(j) ∈O(j)

i−1

)
,

q∏
j=1

W
ω0,ωT

0,T

(
ω(j) ∈O(j)

i

)]
. (30)

For a given value j ′, we define

�
(j ′)
l =

j ′−1∏
j=1

W
ω0,ωT

0,T

(
ω(j) ∈ O(j)

i

) ·
q∏

j=j ′
W

ω0,ωT

0,T

(
ω(j) ∈O(j)

i−1

)

�
(j ′)
r =

j ′∏
j=1

W
ω0,ωT

0,T

(
ω(j) ∈O(j)

i

) ·
q∏

j=j ′+1

W
ω0,ωT

0,T

(
ω(j) ∈O(j)

i−1

)
.

Note that �
(j ′)
l and �

(j ′)
r depend on the layer i. For simplicity of notations, we omit the sub-

script i.
Then we have

P
(
U ∈ [�(j ′)

l ,�
(j ′)
r

])
=W

ω0,ωT

0,T

(
j ′−1⊗
j=1

{
ω(j) ∈O(j)

i

}
,

q⊗
j=j ′+1

{
ω(j) ∈ O(j)

i−1

}
,ω(j ′) ∈D(j ′)

i | �ω ∈ Qi

)
.

Proof. The density function of U is, with s belonging to the interval (30),

fU(s) =
[

q∏
j=1

W
ω0,ωT

0,T

(
ω(j) ∈O(j)

i

)−
q∏

j=1

W
ω0,ωT

0,T

(
ω(j) ∈ O(j)

i−1

)]−1

(31)

= 1

W
ω0,ωT

0,T (ω ∈Qi )
.

We also have

�
(j ′)
r − �

(j ′)
l =

j ′−1∏
j=1

W
ω0,ωT

0,T

(
ω(j) ∈ O(j)

i

) ·
q∏

j=j ′+1

W
ω0,ωT

0,T

(
ω(j) ∈ O(j)

i−1

)
· [Wω0,ωT

0,T

(
ω(j ′) ∈ O(j ′)

i

)−W
ω0,ωT

0,T

(
ω(j ′) ∈O(j ′)

i−1

)]
=

j ′−1∏
j=1

W
ω0,ωT

0,T

(
ω(j) ∈ O(j)

i

) ·
q∏

j=j ′+1

W
ω0,ωT

0,T

(
ω(j) ∈ O(j)

i−1

)
·Wω0,ωT

0,T

(
ω(j ′) ∈ D(j ′)

i

)
.
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Therefore, �
(j ′)
r − �

(j ′)
l corresponds to the probability of the event S(j ′)

i −⋃q

h=j ′+1 S
(h)
i given

in Lemma 3.1.
On the other hand, we have �

(j ′)
l ≤ �

(j ′)
r = �

(j ′+1)
l , �

(1)
l ≤ · · · ≤ �

(q)
l and �

(1)
r ≤ · · · ≤ �

(q)
r .

Using (31) and by noticing that [�(1)
l ,�

(q)
r ] is the same as the interval in (30), and {�(1)

l ,�
(2)
l =

�
(1)
r , . . . ,�

(j+1)
l = �

(j)
r , . . . ,�

(q)
r } forms a partition of the interval in (30), we have

P
(
U ∈ [�(j ′)

l ,�
(j ′)
r

]) = �
(j ′)
r − �

(j ′)
l

W
ω0,ωT

0,T (ω ∈Qi )

= W
ω0,ωT

0,T

((
ω(1), . . . ,ω(j ′−1)

) ∈
j ′−1⊗
j=1

O(j)
i ,

(
ω(j ′+1), . . . ,ω(q)

) ∈
q⊗

j=j ′+1

O(j)

i−1,ω
(j ′) ∈D(j ′)

i | �ω ∈Qi

)
.

�

Note that the variable U in Lemma 3.2 follows a uniform distribution in the interval
[∏q

j=1 W
ω0,ωT

0,T (ω(j) ∈ O(j)

i−1),
∏q

j=1 W
ω0,ωT

0,T (ω(j) ∈ O(j)
i )]. The two boundary points of this

interval are limits of certain alternating sequences [1]. Therefore, the random variable U in

Lemma 3.2 can be easily simulated. Given �ω ∈ Qi , if U belongs to the interval [�(j ′)
l ,�

(j ′)
r ],

then we have that from Lemma 3.2

ω(j ′) ∈ D(j ′)
i ,

ω(j) ∈ O(j)
i for j < j ′, (32)

ω(j) ∈ O(j)

i−1 for j > j ′

which tells us the boundaries or layers for each ω(j). Then each component ω(j) can be sampled
conditional on (32), using the method in [1]. The methodology in this subsection is summarized
in the algorithms provided in the following subsection.

3.2.2. The improved algorithm

In summary, an improved version of Algorithm 2 is given below (see Algorithm 3 and Algo-
rithm 4).

Then further the improved version of Algorithm 1 is given by Algorithm 5.

Remark. Note that, based on the methods in Section 3.1 and Section 3.2, the new method is
more efficient than existing rejection sampling methods when a good hat function for f is not
readily available. The posterior of finite mixture models is not log-concave. It is nontrivial to
find a good hat function for it by partitioning the support of the posterior into several subsets
and finding a bound for each subsets. However, it is always possible to partition the space of a
Brownian bridge into many different layers and then we can find lower bounds for each layer.
This makes the new method practical for complicated target distributions.
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Algorithm 3: Simulation for I , high dimensional case

1 Given B̃0 = x and B̃T = y, simulate a process B̃t , t ∈ [0, T ] via the following Steps 1a and
1b:;
// 1a: Simulate layer I with probability P̃(I ) given in (26)

[10]
// 1b: Simulate a value j ′ ∈ {1, . . . , q} via Algorithm 4

// 1c: Given B̃0 and B̃T , simulate a sample path B̃t ,0 < t < T ,

from W
x,y

0,T conditional on ω(j ′) ∈ D(j ′)
k ,ω(j) ∈ O(j)

i for j < j ′ and

ω(j) ∈O(j)

i−1 for j > j ′, using the algorithm in [1]

2 Calculate lI such that lI ≤ infs∈[0,T ],�ω∈QI
{(‖α‖2 + divα)(ωs)/2};

3 Calculate rI such that rI ≥ supt∈[0,T ],�ω∈DI
{[‖α‖2(ωt ) + divα′(ωt )]/2 − lI };

4 Simulate � = {ψ1, . . . ,ψρ} uniformly distributed on U[0, T ] and marks ϒ = {ν1, . . . , νρ}
uniformly distributed on U[0,1], where ρ is from Poi(rI T );

5 Compute the acceptance indicator I :=∏ρ
j=1 I [r−1

I [(‖α‖2 + divα)(ωψj
)/2 − lI ] < νj ];

Algorithm 4: Simulation of layers (or boundaries for each component), conditional on layer
i, based on Lemma 3.2

1 Simulate a uniform random variable U from the interval given in (30);

2 Find the value j ′, j ′ ∈ {1,2, . . . , q} such that U ∈ [�(j ′)
l ,�

(j ′)
r ];

3 Output j ′.

3.3. Simulating the event with probability AP1

Algorithm 1 simulates ωT from g2 as a proposal. We can see that the proposal is more likely to
be accepted if the distance ‖ω0 − ωT ‖2 becomes smaller. Therefore, to increase the acceptance
probability, we need to find a good decomposition, f = g1 ·g2, to make AP1 as large as possible,
where

AP1 = P
{
U ≤ exp

[−‖ω0 − ωT ‖2/(2T )
]}

(33)
= P

{‖ω0 − ωT ‖2 ≤ −2T log(U)
}
,

where U ∼ U [0,1],ω0 ∼ g1,ωT ∼ g2.
Note that it is nontrivial to find the best decomposition f = g1 · g2 to achieve the maximum

value of AP1, since there are infinite decompositions. However, we can find the best one under
a subset of all possible decompositions of f , which will provide us a direction of finding a good
decomposition.

First, we introduce the following notations: Eg1 = ∫
xg1(x) dx and Eg2 = ∫

xg2(x) dx. Then
we have the following lemma.



A new rejection sampling method 2453

Algorithm 5: Rejection sampling for f ∝ g1g2 = f1f2

1 Simulate ω0 from g1 and ωT from g2, and a standard uniform variable U ;
2 if U ≤ exp[−‖ω0 − ωT ‖2/(2T )] then
3 (ω0,ωT ) is from h;
4 else
5 return to Step 1;
6 end
7 Simulate a standard uniform variable U ′ ;
8 if U ′ ≤∑∞

i=1 exp{−T (li − l)}Wω0,ωT

0,T {�ω ∈ Qi} then
9 Simulate the reweighted layered Brownian bridge B̄ = {ωt , t ∈ (0, T )} conditional on

(ω0,ωT );
10 Simulate I = 1 with probability given by (22) ;

// The above two steps are based on Algorithm 3
11 if I = 1 then
12 Output ωT ;
13 else
14 return to Step 1;
15 end
16 else
17 return to Step 1.
18 end

Lemma 3.3. Define A = {(g1, g2) : such that f = g1 · g2 and Eg1 = Eg2}. Then for all
(g1, g2) ∈ A and for independent variables ω0 ∼ g1(·) and ωT ∼ g2(·), the expectation
E‖ω0 − ωT ‖2 reaches the minimum when g1(·) = g2(·) = √

f (·).

Proof. We have

E‖ω0 − ωT ‖2 =
∫

‖x‖2g1(x) dx +
∫

‖x‖2g2(x) dx − 2〈Eg1,Eg2〉

=
∫

‖x − Eg1‖2g1(x) dx +
∫

‖x − Eg2‖2g2(x) dx + ‖Eg1 − Eg2‖2

=
∫

‖x − Eg1‖2
[
g1(x) + f (x)

g1(x)

]
dx

which reaches the minimum when g1(x) = f (x)/g1(x), that is, g1 = g2 = √
f . �

The above result implies that we should choose a decomposition to make g1 and g2 as close
to each other as possible. Indeed, we find that this is true in our simulation studies for mixture
models.
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4. Rejection sampling for the general case f = ∏ι
l=1 gl

In general, the target density f may be decomposed as a product of ι terms, f =∏ι
l=1 gl , where

we can easily draw a sample from gl . To draw a sample from f , we can use the following
recursive algorithm. First, we decompose f as f = f1f2, where f1 = g2

1, f2 = g−1
1

∏ι
j=2 gj .

To use Algorithm 1, we need to simulate from
∏ι

j=2 gj , which can be further decomposed as
g2 ·∏ι

j=3 gj . Keep simplifying the target until it becomes gι−1 ·gι. When running such a recursive
algorithm, we actually do it in the reverse procedure, that is, simulate samples from

∏ι
j=l gj , l

from ι − 1 to 1. This is given by Algorithm 6.
Note that in the for loop of Algorithm 6, the code tries to draw a sample from

∏ι
j=l gj . If a

sample is successfully drawn from
∏ι

j=l gj then l decreases by 1; otherwise the algorithm goes
back to the beginning since the proposal from

∏ι
j=l gj is rejected.

We can also see that Algorithm 6 simulates {xl}ι−1
l=1 and y independently. The proposal y will

be accepted if Ul ≤ exp(−‖xl − y‖2/(2T )) and Il = 1 for l = 1, . . . , ι − 1. Since simulating
the event Il = 1 using [1,2] or the more efficient Algorithm 3 is usually complicated and time
consuming, we can revise Algorithm 6 as follows to increase the efficiency: First, simulate xl ,

l = 1, . . . , ι − 1 and y; second, check if Ul ≤ exp(−‖xl − y‖2/(2T )) for l = 1, . . . , ι − 1; third,
simulate Il = 1, for l = 1, . . . , ι − 1. The revised algorithm is given below (see Algorithm 7).

Note that Algorithm 6 and Algorithm 7 can be improved via the methods in Section 3.

Algorithm 6: Rejection sampling for f =∏ι
l=1 gl

1 Simulate y from gι;
2 for l ← ι − 1 to 1 do
3 Simulate xl from gl ;
4 Simulate standard uniform variable Ul ;
5 if Ul > exp(−‖xl − y‖2/(2T )) then
6 Goto Step 1;
7 end
8 Simulate the Brownian bridge B̄ = {ωt , t ∈ (0, T )} given (ω0 = xl ,ωT = y);
9 Simulate Il = 1 with probability given by (10), with α(x) = ∇A(x) and

A(x) = loggl(x);
10 if Il = 1 then
11 y can be viewed as a sample from

∏ι
j=l gj ;

12 else
13 Goto Step 1;
14 end
15 end
16 Output y.
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Algorithm 7: Revised rejection sampling for f =∏ι
l=1 gι

1 Simulate y from g(ι);
2 for l ← ι − 1 to 1 do
3 Simulate xl from g(l);
4 Simulate standard uniform variable Ul ;
5 if Ul > exp(−‖xl − y‖2/(2T )) then
6 Goto Step 1
7 end
8 end
9 for l ← ι − 1 to 1 do

10 Simulate the Brownian bridge B̄ = {ωt , t ∈ (0, T )} given (ω0 = xl ,ωT = y);
11 Simulate Il = 1 with probability given by (10), with α(x) = ∇A(x) and

A(x) = logg(l)(x);
12 if Il = 0 then
13 Goto Step 1;
14 end
15 end
16 Output y;

5. Application – Exact Monte Carlo simulation for finite
mixture models

5.1. The finite mixture models and existing methods

Consider the following mixture of normal densities, where the data {zi, i = 1, . . . , n} are from
the finite mixture of normal densities

h(zi;�) =
K∑

k=1

pkhk(zi; θk, ν), hk(zi; θk, ν) = |ν|e−(ν2/2)(zi−θk)
2

(34)

with � = (p, ν, θ), where ν and θk range in R and pk is the component proportion with
0 ≤ pk ≤ 1 and

∑
k pk = 1. Such mixture models provide a statistical description of data ob-

tained when sampling successively from randomly selected sub-populations. These models arise
naturally in the areas of statistical classification and clustering. More detailed introduction about
mixture models can be found in [22].

The Dirichlet distribution for p and the normal-gamma distribution for (θ , |ν|) are widely used
as the prior for �. They are given by

π0(�) ∝ |ν|2a−1e−bν2 |ν|K
K∏

k=1

[
e−(σkν

2/2)(θk−μk)
2
p

�k−1
k

]
, (35)
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where (σk,μk,�k, a, b) is known. We focus on (35) in this paper for simplicity as it is conjugate
to the mixture components, though other choices of prior based on reparameterisations of mixture
models are available in [23]. Based on (35), the posterior distribution can be written as

f (�) ∝
n∏

i=1

[
K∑

k=1

pkhk(zi;�)

]
π0(�). (36)

A Gibbs sampler for (36) is readily available in [12] and a more general sampler is available
in [27] with K being unknown. However, it is very difficult to diagnose the convergence of the
MCMC algorithms for the above posterior of mixture models. Some illustrations of this are given
by [14]. Celeux et al. [6] even argue that “almost the entirety of MCMC samplers implemented
for mixture models has failed to converge.” Therefore, it is important to find an efficient method
to draw exact realisations from (36).

Note that for certain simpler versions of (34), exact simulation from its posterior is readily
available. For example for the simple mixture models with known �, methods in [19] and [13]
and the method of adaptive rejection sampling for log-concave densities base on the algorithm
in [21] can draw exact realisations from its posterior. The application of all these methods is
limited to small sample sizes and small number of components. Dai [7] proposed a rejection
sampling method, called Geometric-Arithmetic Mean (GAM) method, to draw from the posterior
of the simple mixture model. This method can deal with large sample sizes and large number of
components and is much more efficient than all the other existing methods. Although practical
methods are available for simple mixture models, it is extremely difficult to apply them to the
mixture models with unknown component parameters �. Casella et al. [5] investigate the use of
a CFTP algorithm, called the perfect slice sampler, to simulate from (36), but this method only
works theoretically.

5.2. Reparameterisation and density function decomposition

To the proposed method in this paper, we first consider the following parameter transformation
� = �(x), where x = (u, η, δ),

pk := pk(x) = euk∑K−1
k=1 euk + 1

, k = 1, . . . ,K − 1,

ν := ν(x) = η, (37)

θk := θk(x) = δkη
−1, k = 1, . . . ,K.

We consider such a transformation to make the support of the posterior f (x) to be Rq , where
q = 2K .

Then using the change-of-variable formula and with the definition

�k(zi;x) = e−(1/2)(ziη−δk)
2
, �(zi;x) =

K∑
k=1

pk(x)�k(zi;x) (38)
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the posterior distribution becomes

f (x) ∝ |η|n
n∏

i=1

[
K∑

k=1

pk(x)�k(zi;x)

]
π0
(
�(x)

) · J (x)

= |η|n
n∏

i=1

[
K∑

k=1

pk(x)e−(1/2)(ziη−δk)
2

]
(39)

×
{

|η|2a−1e−bη2

[
K∏

k=1

e−(σk/2)(δk−ημk)
2
pk(x)�k

]}
,

where the Jacobin J (x) = [∏K
k=1 pk(x)] · |η|−K (see Section 2.5 for the Jacobin term related to

the transformation from p to x).

5.2.1. A decomposition of f , which only works theoretically

To use the proposed method, one may consider the following decomposition into a product of
two terms,

f (x) ∝
{

n′∏
i=1

[
K∑

k=1

pk(x)e−(1/2)(ziη−δk)
2

]}

×
{

e−bη2/2

[
K∏

k=1

e−(σk/4)(δk−ημk)
2
pk(x)�k/2

]}
(40)

· |η|n+2a−1

{
n∏

i=n′+1

[
K∑

k=1

pk(x)e−(1/2)(ziη−δk)
2

]}

×
{

e−bη2/2

[
K∏

k=1

e−(σk/4)(δk−ημk)
2
pk(x)�k/2

]}
.

The first term can be viewed as g1 and the second term can be viewed as g2. We here put
all the non-differentiable terms, related to |η|, into g2 to guarantee that the log-transformation
of the first term is differentiable. Although we can simulate x from g1 and y from g2, such a
decomposition will not work. The reason is that g1 is not close to g2 and the simulated x and y
are almost always far away from each other. This makes the probability AP1 very small. For this
reason, we consider the following decomposition.

5.2.2. A practical decomposition for a hat function of f

We need to guarantee that the log-transformation of g1 is differentiable (Condition 2.1) and that
g1 and g2 are similar (for large AP1). In order to make g1 and g2 similar, we need to put the
term |η|(n+2a−1)/2 into g1 and into g2 as well, but this will make logg1 not differentiable. This
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makes it non-trivial to find a good decomposition for f . Therefore, to draw samples from (39),
we consider the following hat function

f̂ (x) ∝ (
η2 + c

)(n+2a−1)/2

·
n∏

i=1

[
K∑

k=1

pk(x)e−(1/2)(ziη−δk)
2

]{
e−bη2

[
K∏

k=1

e−(σk/2)(δk−ημk)
2
pk(x)�k

]}

for some value c > 0. We can always choose a very small value of c to make f̂ similar to f .
Clearly f̂ always bounds f and its log-transformation is differentiable.

Let 0 = n0 < n1 < · · · < nι = n be a sequence of positive integers. Let ml = nl − nl−1 for
l = 1, . . . , ι. Then the posterior density can be decomposed as a product of ι terms, f̂ (x) ∝∏ι

l=1 gl(x), with

gl(x) = (
η2 + c

)ml/2+(ml/2n)(2a−1)

[
nl∏

i=nl−1+1

�(zi;x)

]
(41)

·
{

e−(ml/n)bη2
K∏

k=1

e−(σkml/(2n))(δk−ημk)
2
pk(x)ml�k/n

}
, l = 1, . . . , ι.

5.3. Simulation from gl , a density based on the observations in the lth
group

Let ξi be the latent allocation variables for the mixture model. Define the following statistics: the
number of observations in group l from component k,

n̆l,k =
nl∑

i=nl−1+1

I [ξi = k];

the first sample moment for the observations in group j from component k, Z̄l,k =
n̆−1

l,k

∑nl

i=nl−1+1 I [ξi = k]zi ; and Z2
l =∑nl

i=nl−1+1 z2
i .

Then we can further write

gl(x) = (
η2 + c

)ml/2+(ml/2n)(2a−1)
e−(ml/n)bη2

·
∑

n̆l ,Z̄l ,Z
2
l

{
K∏

k=1

pk(x)n̆l,k+mj �k/n

(42)

× exp

[
−1

2

∑
k

(
n̆l,k + σkml

n

)[
δk − n̆l,kZ̄l,k + (σkmlμk)/n

n̆l,k + (σkml)/n
η

]2]

× exp

[
−1

2

(
Z2

l +
∑

k

(
σkml

n
μ2

k − (n̆l,kZ̄l,k + (σkmlμk)/n)2

n̆l,k + (σkml)/n

))
η2
]}

.
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Note that we can simulate from (42) directly when K and mj are small, that is, when the number
of statistics (n̆l , Z̄l ,Z

2
l ) is not large. For example, when the mixture model has K = 2 compo-

nents and ml = 25, the number of different (n̆l , Z̄l ,Z
2
l ) is about 225 = 33 554 432 terms, which

can be dealt with by a standard desktop.
To simulate x from (42), the only challenge is to do the integration for η over gl(x). This can

be done via a recursive approach. The method of simulation from gl is given in Section 1 of the
supplementary file [11].

5.4. Simulate diffusions with invariant distribution gl(x)

To use Algorithm 7, we also need to simulate the multivariate diffusion, having gl as the invariant
distribution,

dX(l)
t = α(l)

(
X(l)

t

)
dt + dB(l)

t , (43)

where α(l)(x) = ∇A(l)(x) and A(l)(x) = loggl(x).
Note that from the definition of x = (u, η, δ), we have that the vector function α(l)(x) =

(α
(l)
u1 (x), . . . , α

(l)
uK−1(x), α

(l)
η (x), α

(l)
δ1

(x), . . . , α
(l)
δK

(x)) is given by

α(l)
uk

(x) = ∂ loggl(x)

∂uk

= ∂gl(x)/∂uk

gl(x)
, α(l)

η (x) = ∂ loggl(x)

∂η
= ∂gl(x)/∂η

gl(x)
,

(44)

α
(l)
δk

(x) = ∂ loggl(x)

∂δk

= ∂gl(x)/∂δk

gl(x)
.

According to

divα(l)(x) =
K−1∑
k=1

∂α
(l)
uk

(x)

∂uk

+ ∂α
(l)
η (x)

∂η
+

K∑
k=1

∂α
(l)
δk

(x)

∂δk

(45)

we further have ∥∥α(l)(x)
∥∥2 + divα(l)(x)

(46)

=
K−1∑
k=1

∂2gl(x)/∂u2
k

gl(x)
+ ∂2gl(x)/∂η2

gl(x)
+

K∑
k=1

∂2gl(x)/∂δ2
k

gl(x)

whose expression can be found in the supplementary file [11]. We also show that (46) is bounded
below in Section 3 of the supplementary file [11].

Note that we also need to find the upper bound (required by Algorithm 2) and lower bounds
(required by (21)) for ‖α(ωt )‖2 + divα(ωs) under each layer Qi . This is also straightforward
and the details are provided in Section 2 of the supplementary file [11].
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5.5. Simulation results for mixture models

We consider a mixture model with 2 components, h(zi;�) = ∑2
k=1 pkN (θk, ν

−2), with the

means θ1 = 1.0, θ2 = 0.0, p1 = 0.6 and the variance ν−2 = 0.22. We consider a small sample
size n = 20 since when n = 20 we can easily sample directly from the posterior distribution. The
results of using direct simulation can be compared with the results of the new method and we
can then justify the correctness of the proposed algorithm. We use the prior distribution in (35)
with a = 1.5, b = 1.0, σ1 = σ2 = 1, μ1 = 1.0,μ2 = 0.0 and ρ1 = ρ2 = 2.0.

To use the new method, we partition the 20 samples into two groups. By doing this, the hat
function f̂ of the posterior can be decomposed into a product of g1g2 where gk is a density
based on the kth group of data (e.g., see (41)). We partition the samples into two groups in the
following way: first we order the samples to z(1), z(2), . . . , z(19), z(20) and then the first group is
{z(2k−1), k = 1, . . . ,10} and the second group is {z(2k), k = 1, . . . ,10}. By doing this, the two
functions g1 and g2 will be similar and this can increase the acceptance probability AP1. See
Lemma 3.3 and the arguments in Section 3.3. This is also demonstrated by the simulation results
in Table 1 and Table 2, where we found that the algorithm would not work if we simply randomly
allocate the samples into two groups but it works well if we do the sample allocation as above.

For the hat function in (41), we choose c = 0.05. and a layer value ai = 0.1 and T = 0.03.
For both methods, the proposed new method and the direct simulation method, we simulate

5000 realisations. Then we plot the marginal empirical distribution functions for each parameter,
based on the two simulation methods. The results are shown in Figure 2. We can see that the new
method and the direct simulation method output almost identical empirical distributions.

For model and priors mentioned above in the beginning of Section 5.5, we choose sample
size n = 40 and compare the running times taken by the algorithm under different grouping of
samplings and under different choices of T , c and ai , which are all parameters governing the
efficiency of the algorithms.

Running time comparisons under for different sample partitions

To use the new method, we partition the 40 samples into two groups in the following way: first we
order the samples and then the first group is the ordered statistics with odd ranks and the second
group is the ordered statistics with even ranks. Clearly such a partition will make the two samples
very similar and thus make g1 and g2 similar. We therefore suggest such a partition of samples
based on ordered statistics as a general approach. Without doing this (e.g., just randomly allocate
samples into two groups) we found that the new algorithm will not work due to low acceptance
probability AP1.

Running time comparisons under different values of c

Note that when dealing with mixture model, we actually use the proposed algorithm to sample
from f̂ first and then use acceptance/rejection sampling method to decide whether the proposal
is a sample from f . Therefore, there is an extra acceptance/rejection step involved here. Suppose
that the acceptance probability, for x ∼ f̂ in (41) to be accepted as x ∼ f in (39), is denoted
as AP3. The value c used in (41) governs the acceptance probability AP3 and the smaller value
of c the larger AP3. However, it does not mean an algorithm with smaller values of c will be more
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Figure 2. Comparison with direct sampling; two methods output almost the same results.

efficient. From the lower bound (7) in the supplementary file [11], we can see that the smaller
values of c, the smaller lower bound for (‖α‖2 +α′)(·) that is, the smaller acceptance probability
AP2. This is shown by the simulation results summarised in Table 1 and Table 2. By comparing
the results in both tables, we can see that it is more efficient to choose c = 0.05 than to choose
c = 0.03, for all different choices of ai and T .

Note that AP1 will be larger if g1 and g2 have smaller variation. The value c = 0.03 gives
smaller variances for g1 and g2 therefore we expect that AP1 should be larger with c = 0.03.
This is confirmed by the simulation results: The acceptance probability AP1 slightly increases
by changing c = 0.05 to c = 0.03.

Table 1. Running times in seconds for simulation of one realisation from the posterior and acceptance
probabilities: (i) AP1 and (ii) AP2; c = 0.05 which gives AP3 ≈ 0.8

c = 0.05 T = 0.01 T = 0.02 T = 0.03

(i) AP1 7.8e−5 3.0e−4 0.0006
ai = 0.15, time 244 s 246 s 284 s
ai = 0.15, (ii) 0.821 0.421 0.331
ai = 0.60, time 337 s 310 s 474 s
ai = 0.60, (ii) 0.738 0.409 0.268
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Table 2. Running times in seconds for simulation of one realisation from the posterior and acceptance
probabilities:: (i) AP1 and (ii) AP2; c = 0.03 which gives AP3 ≈ 0.9

c = 0.03 T = 0.01 T = 0.02 T = 0.03

(i) AP1 8.3e−5 3.5e−4 0.0007
ai = 0.15, time 284 s 275 s 503 s
ai = 0.15, (ii) 0.656 0.357 0.211
ai = 0.60, time 355 s 375 s 589 s
ai = 0.60, (ii) 0.564 0.334 0.171

Running time comparisons under different values of T

As we discussed in early sections, the value of T is very important for the efficiency of the
algorithm. In practice, we can always roughly estimate a value of T . To do this, we need to
roughly estimate the order of (‖α‖2 + α′)(ωt )/2 − li , which actually depends on the sample
size n, the layer parameter ai and the value c. In some pilot simulation studies, we found that the
value of this function is roughly between 60 and 65 with ai = 0.15 and c = 0.03. This means that
if we choose value T around (0.01 ∼ 0.03), the acceptance probability AP2 is roughly around
[exp(−65 · 0.03) = 0.14, exp(−65 · 0.01) = 0.52] (or an even larger value), which is not a very
tiny acceptance probability. This is confirmed by the acceptance probability estimates (based on
the Monte Carlo simulations) in Tables 1 and 2.

If we choose T = 1, the algorithm never returns a value in a realistic time period, since AP2 is
too small. On the other hand, the efficiency of the algorithm also depends on AP1, which will be
very tiny if T is very small. For example, if we choose T = 0.001, the algorithm is not efficient
either, since AP1 is too small. We choose T ranges from 0.01 to 0.03 in our simulation studies,
as it makes AP1 and AP2 both in an acceptable range. In our simulation studies, we found that
with T = 0.02 the algorithm is the most efficient.

Running time comparisons under for different values of ai

The value of ai is used to defined the layers for the layered Brownian motion. Theoretically,
the smaller value of ai will give a larger acceptance probability AP2. We compare the simulation
results under two scenarios ai = 0.15 and ai = 0.60. The simulation results in Tables 1 and 2 con-
firm that smaller values of ai give larger acceptance probability AP2. However, as [10] pointed
out, to sample a reweighted layered Brownian motion the algorithm will do a search from layer 1
to the layer to be sampled. Suppose that when choose ai = 0.6, the algorithm is likely to sample
a layer value, say I = 4. Then if we choose ai = 0.15, the algorithm will be likely to sample a
layer value ranges from I = 13 to I = 16. Clearly the algorithm takes more time to search until
finding the target layer. Therefore, choosing very tiny values for ai will not be a good choice.

6. Discussion

This paper proposes a new rejection sampling method, which does not require a hat function
to bound the target function f but to decompose f into a product of density functions which
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are easy to simulate from. The new method is more efficient than existing rejection sampling
methods when a good hat function for f is not readily available. We demonstrate this using the
mixture models, for which no other practical methods are available. The new method proposed
in this paper transfers the difficulty of finding the hat function to finding the lower bounds of
‖α‖2(ωs) + divα(ωs). We can always partition the space of Brownian bridges into many layers
and find the lower bound for each layer, which makes the new method practical for complicated
target distributions.

In practice, many complicated distribution densities may not have support in Rq which is
required by the new method, but we can usually find a transformation and use change-of-variable
formula to obtain the new target density with support in Rq . We achieve this even for the very
complicated posterior of the mixture of normal densities. Therefore, such a constraint will not
limit the application of the method.

The new method brings new insights for rejection sampling and coupling from the past and
it leads to the following possible future works. When simulating the starting and ending points
(ω0,ωT ) from h(·, ·), we have to simulate ω0 ∼ g1 and ωT ∼ g2 and accept (ω0,ωT ) with
probability exp(−‖ω0 − ωT ‖2/(2T )).

When sampling from the posterior of finite mixture model, we actually applied the new
method to the hat function (41), since the log-transformation of the target function is not dif-
ferentiable. By using the hat function (41) Condition 2.1 is satisfied, but we need an extra ac-
ceptance/rejection step to draw a sample from the target function (39). Therefore, to improve
the efficiency of the algorithm for the posterior of mixture models, it is important to develop a
new algorithm for exact simulation of diffusions with piecewise differentiable drift coefficient α.
If such an method is available, we could possibly apply the new method directly on the target
distribution (39). We also leave this as a future work.

Acknowledgements

The author thanks the two reviewers and the Editor for their valuable comments and suggestions
which improved significantly the final form of the paper.

Supplementary Material

Supplement to: “A new rejection sampling method without using hat function” (DOI:
10.3150/16-BEJ814SUPP; .pdf). The supplement file includes some necessary proofs for ap-
plying the proposed method to the simulation from the posterior for Gaussian mixture models.

References

[1] Beskos, A., Papaspiliopoulos, O. and Roberts, G.O. (2008). A factorisation of diffusion measure and
finite sample path constructions. Methodol. Comput. Appl. Probab. 10 85–104. MR2394037

[2] Beskos, A., Papaspiliopoulos, O., Roberts, G.O. and Fearnhead, P. (2006). Exact and computationally
efficient likelihood-based estimation for discretely observed diffusion processes. J. R. Stat. Soc. Ser.
B. Stat. Methodol. 68 333–382. With discussions and a reply by the authors. MR2278331

http://dx.doi.org/10.3150/16-BEJ814SUPP
http://www.ams.org/mathscinet-getitem?mr=2394037
http://www.ams.org/mathscinet-getitem?mr=2278331


2464 H. Dai

[3] Beskos, A. and Roberts, G.O. (2005). Exact simulation of diffusions. Ann. Appl. Probab. 15 2422–
2444. MR2187299

[4] Breyer, L.A. and Roberts, G.O. (2001). Catalytic perfect simulation. Methodol. Comput. Appl. Probab.
3 161–177. MR1868568

[5] Casella, G., Mengersen, K.L., Robert, C.P. and Titterington, D.M. (2002). Perfect samplers for mix-
tures of distributions. J. R. Stat. Soc. Ser. B. Stat. Methodol. 64 777–790. MR1979386

[6] Celeux, G., Hurn, M. and Robert, C.P. (2000). Computational and inferential difficulties with mixture
posterior distributions. J. Amer. Statist. Assoc. 95 957–970. MR1804450

[7] Dai, H. (2007). Perfect simulation methods for Bayesian applications. Ph.D. thesis, University of
Oxford. Supervisor: Peter Clifford.

[8] Dai, H. (2008). Perfect sampling methods for random forests. Adv. in Appl. Probab. 40 897–917.
MR2454038

[9] Dai, H. (2011). Exact Monte Carlo simulation for fork-join networks. Adv. in Appl. Probab. 43 484–
503. MR2848387

[10] Dai, H. (2014). Exact simulation for diffusion bridges: An adaptive approach. J. Appl. Probab. 51
346–358. MR3217771

[11] Dai, H. (2016). Supplement to “A new rejection sampling method without using hat function.”
DOI:10.3150/16-BEJ814SUPP.

[12] Diebolt, J. and Robert, C.P. (1994). Estimation of finite mixture distributions through Bayesian sam-
pling. J. R. Stat. Soc. Ser. B. Stat. Methodol. 56 363–375. MR1281940

[13] Fearnhead, P. (2005). Direct simulation for discrete mixture distributions. Stat. Comput. 15 125–133.
MR2137276

[14] Fearnhead, P. and Meligkotsidou, L. (2007). Filtering methods for mixture models. J. Comput. Graph.
Statist. 16 586–607. MR2351081

[15] Fill, J.A. (1998). An interruptible algorithm for perfect sampling via Markov chains. Ann. Appl.
Probab. 8 131–162. MR1620346

[16] Fill, J.A., Machida, M., Murdoch, D.J. and Rosenthal, J.S. (2000). Extension of Fill’s perfect rejection
sampling algorithm to general chains. In Proceedings of the Ninth International Conference “Random
Structures and Algorithms” (Poznan, 1999) 17 290–316. MR1801136

[17] Gilks, W.R. and Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Appl. Statist. 41
337–348.

[18] Hansen, N.R. (2003). Geometric ergodicity of discrete-time approximations to multivariate diffusions.
Bernoulli 9 725–743. MR1996277

[19] Hobert, J., Robert, C. and Titterington, D. (1999). On perfect simulation for some mixture of distribu-
tions. Stat. Comput. 9 287–298.

[20] Huber, M. (2004). Perfect sampling using bounding chains. Ann. Appl. Probab. 14 734–753.
MR2052900

[21] Leydold, J. (1998). A rejection technique for sampling from log-concave multivariate distributions.
ACM Trans. Model. Comput. Simul. 8 254–280.

[22] McLachlan, G. and Peel, D. (2000). Finite Mixture Models. Wiley Series in Probability and Statistics:
Applied Probability and Statistics. New York: Wiley. MR1789474

[23] Mengersen, K.L. and Robert, C.P. (1996). Testing for mixtures: A Bayesian entropic approach. In
Bayesian Statistics (Alicante, 1994) 5. Oxford Sci. Publ. 255–276. New York: Oxford Univ. Press.
MR1425410

[24] Mira, A., Møller, J. and Roberts, G.O. (2001). Perfect slice samplers. J. R. Stat. Soc. Ser. B. Stat.
Methodol. 63 593–606. MR1858405

[25] Some Monte Carlo methods for jump diffusions. Ph.D. thesis, ProQuest LLC, Ann Arbor, MI, Uni-
versity of Warwick, UK. MR3389378

http://www.ams.org/mathscinet-getitem?mr=2187299
http://www.ams.org/mathscinet-getitem?mr=1868568
http://www.ams.org/mathscinet-getitem?mr=1979386
http://www.ams.org/mathscinet-getitem?mr=1804450
http://www.ams.org/mathscinet-getitem?mr=2454038
http://www.ams.org/mathscinet-getitem?mr=2848387
http://www.ams.org/mathscinet-getitem?mr=3217771
http://dx.doi.org/10.3150/16-BEJ814SUPP
http://www.ams.org/mathscinet-getitem?mr=1281940
http://www.ams.org/mathscinet-getitem?mr=2137276
http://www.ams.org/mathscinet-getitem?mr=2351081
http://www.ams.org/mathscinet-getitem?mr=1620346
http://www.ams.org/mathscinet-getitem?mr=1801136
http://www.ams.org/mathscinet-getitem?mr=1996277
http://www.ams.org/mathscinet-getitem?mr=2052900
http://www.ams.org/mathscinet-getitem?mr=1789474
http://www.ams.org/mathscinet-getitem?mr=1425410
http://www.ams.org/mathscinet-getitem?mr=1858405
http://www.ams.org/mathscinet-getitem?mr=3389378


A new rejection sampling method 2465

[26] Propp, J.G. and Wilson, D.B. (1996). Exact sampling with coupled Markov chains and applications to
statistical mechanics. In Proceedings of the Seventh International Conference on Random Structures
and Algorithms (Atlanta, GA, 1995) 9 223–252. MR1611693

[27] Richardson, S. and Green, P.J. (1997). On Bayesian analysis of mixtures with an unknown number of
components. J. R. Stat. Soc. Ser. B. Stat. Methodol. 59 731–792. MR1483213

[28] Wilson, D.B. (2000). How to couple from the past using a read-once source of randomness. Random
Structures Algorithms 16 85–113. MR1728354

Received May 2014 and revised October 2015

http://www.ams.org/mathscinet-getitem?mr=1611693
http://www.ams.org/mathscinet-getitem?mr=1483213
http://www.ams.org/mathscinet-getitem?mr=1728354

	Introduction
	Background of exact Monte Carlo simulation
	The new idea and the structure of the paper

	Methodology
	Preliminaries
	Simulating the process X
	Rejection sampling for f(x)g1(x)g2(x) without using hat function
	The advantage of the new algorithm and its relation to CFTP and direct sampling
	The advantage of the new algorithm
	The link to CFTP - A heuristic interpretation
	The link to sampling directly from f - A heuristic interpretation

	A toy example

	The new rejection sampling algorithm with layered Brownian motion
	Improvement on the diffusion bridge simulation - The one-dimensional case
	The layered Brownian motion in Beskos.2008
	Improve the diffusion bridge simulation by re-weighting the layer probabilities

	Improvement on the diffusion bridge simulation, when x inRq
	Simulation from Z(omega) given by (21)
	The improved algorithm

	Simulating the event with probability AP1

	Rejection sampling for the general case f = l=1iota gl
	Application - Exact Monte Carlo simulation for ﬁnite mixture models
	The ﬁnite mixture models and existing methods
	Reparameterisation and density function decomposition
	A decomposition of f, which only works theoretically
	A practical decomposition for a hat function of f

	Simulation from gl, a density based on the observations in the lth group
	Simulate diffusions with invariant distribution gl(x)
	Simulation results for mixture models
	Running time comparisons under for different sample partitions
	Running time comparisons under different values of c
	Running time comparisons under different values of T
	Running time comparisons under for different values of ai


	Discussion
	Acknowledgements
	Supplementary Material
	References

