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SUMMARY
We examine the effect of survey measurement error on the empirical relationship between child mental health and
personal and family characteristics, and between child mental health and educational progress. Our contribution is
to use unique UK survey data that contain (potentially biased) assessments of each child’s mental state from three
observers (parent, teacher and child), together with expert (quasi-)diagnoses, using an assumption of optimal
diagnostic behaviour to adjust for reporting bias. We use three alternative restrictions to identify the effect of
mental disorders on educational progress. Maternal education and mental health, family income and major adverse
life events are all significant in explaining child mental health, and child mental health is found to have a large
influence on educational progress. Our preferred estimate is that a one-standard-deviation reduction in ‘true’ latent
child mental health leads to a 2- to 5-month loss in educational progress. We also find a strong tendency for
observers to understate the problems of older children and adolescents compared to expert diagnosis. Copyright
© 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Childhood has become the focus of a growing body of research in economics concerned with the
closely related concepts of children’s well-being, mental health and non-cognitive skills. Much of this
interest has been sparked by Heckman’s model of life cycle human capital accumulation, which
contends that, distinct from cognitive ability, a stock of ‘non-cognitive skills’ is built up by streams
of investment over the life course and influences a wide range of life outcomes (Heckman et al.,
2006; Cunha et al., 2010). A strong motivation for this line of research comes from the belief that
IQ or cognitive ability is much less malleable than socio-emotional skills, particularly after the age
of 10. From a policy perspective, this would suggest that the returns to interventions targeted at non-
cognitive skills are potentially much higher than those focused on cognitive outcomes alone. For
example, the Perry preschool intervention program in the 1960s did not raise the IQ of participating
children in a lasting way, yet they went on to have better adult outcomes than the control group in a
variety of dimensions (Heckman et al., 2010). The inference that Perry succeeded because of its impact
on attention skills or antisocial behaviours, rather than cognitive ability, is one that is supported by
evaluations of more recent childhood interventions which tend to show much larger effects on
behaviour (of both parents and children) than on cognitive achievement outcomes (Currie, 2009).

* Correspondence to: Stephen Pudney, ISER, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
E-mail: spudney@essex.ac.uk

Copyright © 2013 John Wiley & Sons, Ltd.

JOURNAL OF APPLIED ECONOMETRICS
J. Appl. Econ. 29: 880–900 (2014)
Published online 9 October 2013 in Wiley Online Library
(wileyonlinelibrary.com) DOI: 10.1002/jae.2359



Mental health conditions are much more common in childhood than most physical conditions. It has
been estimated that half of all lifetime mental health disorders start by age 14 (Kessler et al., 2007), and
a growing body of evidence suggests that prevalence is highest among children from low-income
backgrounds. While the relationship between non-cognitive skills and medical conceptions of mental
health is unclear (even though in practice they are often measured using the same indicators; e.g.
Duncan and Magnuson, 2009), whether interpreted as lack of non-cognitive skills or the existence of
a mental health problem, a central concern is the impact that these adverse childhood states have on
the process of human capital accumulation and the implications for the intergenerational transmission
of economic advantage. It has been recognised recently that mental health conditions are potentially an
important channel through which parental socio-economic status influences the outcomes of the next
generation. For example, Currie and Stabile (2006, 2007) and Currie et al. (2010) found significant
impacts of hyperactivity on a range of later educational outcomes in US and Canadian longitudinal
data and showed the persistence of these effects. Evidence from the medical literature is rather
more mixed but also indicates the importance of mental health problems (Duncan and Magnuson,
2009; Breslau et al., 2008, 2009).
A key issue in the empirical study of the impact of child mental health on child outcomes is

reliability of measurement. Two types of measure are common in the research literature. Clinical
diagnoses are used extensively in psychiatric research, but they have several drawbacks: they are often
only available for small, endogenously sampled groups of children; they identify relatively extreme
and rare cases (affecting somewhere in the region of 5–10% of children); and they are sensitive to
differences in diagnostic practice, which may produce surprising differences between apparently
similar groups: for example, diagnosed attention deficit and hyperactivity disorder (ADHD) rates in
the USA are double those in Canada (Stabile and Currie, 2006). A second type of measure is derived
from a ‘screener’ module which can be completed quickly by parents, teachers or the children
themselves, in the context of large-scale sample surveys. These screeners are designed specifically to
identify the symptoms of clinical disorders and are often used as a first step in diagnosing suspected
cases—a high screening score being suggestive of a recognised disorder, while lower scores reflect
the incidence of symptoms among the ‘normal’ population. Screener modules are often available in
surveys that measure associated outcomes and so provide a way of assessing the relationship between
early mental health problems and their consequences. Few data sources are available that give both
screening and diagnostic-type information for large representative samples.
Whatever type of information is used, measurement error is an important concern, which has

received too little attention in the literature on child mental health and its consequences. There is a
substantial body of research suggesting that adults’ assessments of their physical health are prone to
serious measurement error (e.g. Butler et al., 1987; Mackenbach et al., 1996; Baker et al., 2004;
Lindeboom and van Doorslaer, 2004; Etilé and Milcent, 2006; Bago d’Uva et al., 2007; Jones and
Wildman, 2008; Johnston et al., 2009), and this problem is likely to be magnified in the case of child
mental health. Children may manifest symptoms differently in different settings, perhaps showing
deviant behaviour at school but not at home (or vice versa). They may deny or minimise socially
undesirable symptoms when asked by parents or teachers. Informants may also have very different
thresholds or perceptions of what constitutes abnormal behaviour in children.
The availability of multiple measures is particularly helpful in dealing with measurement error prob-

lems, but there is a strong possibility of observer-specific reporting bias. Evidence in the psychology
and medical literatures indicate large disagreements between informants in their assessment of chil-
dren’s psychological well-being. For example, in a sample of US children aged 5–10, Brown et al.
(2006) found that parents failed to detect half of school-aged children considered to be seriously dis-
turbed by their teachers. Youngstrom et al. (2003) found that prevalence rates of comorbidity in a
clinical sample ranged from 5.4% to 74.1%, depending upon whether ratings from parent, teacher,
child or some combination were used to classify the child. Goodman et al. (2000) suggest that parents
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are slightly better at detecting emotional disorders than teachers but that the opposite is true for conduct
and hyperactivity disorders, while the self-assessments of children have less explanatory power than
parents or teachers. Johnston et al. (2013) show, using data from the Survey of Mental Health of
Children and Young People in Great Britain, that estimates of the income gradient in childhood mental
health are sensitive to who provides the assessment, with the smallest gradients found when using
children’s own assessment of themselves rather than those of parents and teachers. A clear implication
of this limited body of evidence is that measurement error is substantial and unlikely to be the simple
random noise which is assumed by the classical errors-in-variables model. If no observer can be
assumed to be unbiased, standard methods cannot be used to identify the true mental health process.

In this paper we make three main contributions. First, we exploit data from a remarkable UK survey
(see Section 2) that contains assessments of children’s mental health from parents, teachers and the
children themselves, to demonstrate the existence of significant biases in all three observers. We do this
by using additional diagnostic-style assessments from a panel of expert psychiatric assessors, under the
assumption that the experts are able to make the best possible use (in a rational expectations sense) of
all available information, but with random variations in the threshold of seriousness they use for
generating diagnoses. This model of expert behaviour, set out in Section 3, allows us to identify
(up to scale) the parameters of a model representing the distribution of ‘true’ child mental health
conditional on personal and family characteristics.

Second, we estimate the effect of mental health on educational progress, which requires us to over-
come a second identification problem (discussed in Section 4), arising from the difficulty in
distinguishing the indirect effect of influences on mental health from their direct effect on educational
attainment. We use alternative identification strategies to provide parallel estimates of the impact of
mental health problems on educational progress, relative to an age-specific norm. The orthodox
multiple-indicator latent variable model estimated under the standard assumption of an unbiased
observer is not consistent when observers may be biased, and we develop an alternative approach
which exploits an exclusion restriction derived from the age-referenced structure of our measure of
educational progress. This novel method of instrumental variable (IV) construction does not impose
the assumption of an unbiased observer.

Third, our empirical findings cast doubt on the robustness of some of the empirical literature on child
mental health. In Section 3, we find strong evidence of different biases in the reports from different
types of observers of the child (parents, teachers and children). The standard latent variable method
of dealing with measurement error suggests an impact of mental disorders on educational progress
much larger than that implied by a simple proxy variable regression; we find that the more appropriate
IV method gives results much closer to the naive estimate. Unless we are very sure of our assumptions,
it is clearly not enough to presume that an estimation method which allows in some way for the
existence of response error is necessarily superior to a naive approach.

2. DATA, DEFINITIONS AND DESCRIPTIVE STATISTICS

The data we use come from the 2004 Survey of Mental Health of Children and Young People in Great
Britain, commissioned by the Department of Health and Scottish Executive Health Department, and
carried out by the Office for National Statistics. Its aim was to provide information about the preva-
lence of psychiatric problems among people living in Great Britain, with a particular focus on three
main categories of mental disorder: conduct disorders, emotional disorders and hyperkinetic disorders.
A sample of children aged between 5 and 16 years was randomly drawn using a stratified sample
design (by postcode) from the Child Benefit register. At the time of sampling, Child Benefit was
essentially a universal entitlement for parents of all children, so the register provides an excellent
sampling frame. Information was obtained in 76% (or 7977) of sampled cases, yielding information
gathered from the child’s primary caregiver (the child’s mother in 94% of cases), from the teacher
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and (if aged 11–16) the young person him/herself. Among cooperating families, almost all the parents
and most of the children gave full responses, while teacher postal questionnaires were obtained for
78% of the children interviewed. We focus on a subsample of 6806 white children who have informa-
tion supplied by their mother, and who have non-missing information for key covariates and mental
health measures. The reason for this sample restriction was that ethnic minority and paternal respondent
cases were too few for reliable inferences to be drawn about ethnic differences. Inclusion of these groups
with associated dummy variables as covariates makes no appreciable difference to the main results.
Child mental health is first assessed in the survey with the Strengths and Difficulties Questionnaire

(SDQ). The SDQ is a 25-item instrument for assessing social, emotional and behavioural functioning,
and has become very widely used as a measure of the mental health of children. The SDQ questions
cover positive and negative attributes and respondents answer each with a response ‘not true’ (0),
‘somewhat true’ (1), or ‘certainly true’ (2). Tables A1 and A2 of the online Appendix (supporting
information) give a complete list of the SDQ questions relating to conduct disorder, hyperactivity
and emotional problems. In our empirical analyses we use parent, child and teacher SDQ scores that
have been constructed in the standard way by summing responses. We carry out the analysis using
two alternative indicators:

1. General Mental Health: sum of the 15 items for conduct, emotional and hyperactivity disorder.
2. Hyperactivity: sum of the 5 items for hyperactivity alone.

Each is normalised to a 0–1 scale. Measure (i) is intended as a general assessment of psychological
distress, while (ii) focuses exclusively on the hyperactivity component of ADHD, which has been
studied extensively in the research literature and found to be particularly important in some studies.
These measures have good internal consistency, with high Cronbach α for the general and hyperactivity
measures (see Table I), which are in line with external values reported by Smedje et al. (1999).
Following the SDQ is the Development and Well-Being Assessment (DAWBA), a structured inter-

view administered to parents and older children. Although it has limitations, the DAWBA has been
found to be an effective diagnostic tool, especially for ADHD (Foreman et al., 2009). The DAWBA
contains a series of sections, with each section exploring a different disorder; examples include social
phobia, post-traumatic stress disorder, eating disorder, generalised anxiety and depression. Each disor-
der section begins with a screening question that determines whether the child has a problem in that
domain. If the child passes the screening question and the relevant SDQ score is normal, the remainder
of the section is omitted but, if parent or child indicates that there is a problem or the SDQ score is high,
detailed information is collected, including a description of the problem in the informant’s own words.

Table I. Sample mean scores for psychological disorders and educational attainment

Cronbach Sample means

α All children
No diagnosed

disorder
Diagnosed
disorder

Parent general SDQ scorea 0.82 0.218 0.194 0.470
Child general SDQ scorea 0.79 0.288 0.272 0.443
Teacher general SDQ scorea 0.86 0.167 0.146 0.411
Parent hyperactivity SDQ scoreb 0.78 0.321 0.293 0.615
Child hyperactivity SDQ scoreb 0.71 0.389 0.372 0.556
Teacher hyperactivity SDQ scoreb 0.88 0.270 0.241 0.596
Educational attainment relative to age norm — 0.034 0.128 �1.007

aSum of SDQ scores for emotional, conduct and hyperactivity disorders, scaled to the unit interval.
bSDQ scores for hyperactivity disorder, scaled to the unit interval. High scores indicate high levels of disorder. Parent, child and
teacher scores are present for 6806, 2958 and 5038 cases, respectively. 4891 cases have non-missing educational attainment.
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The DAWBA parent and child interviews respectively take around 50 and 30minutes, respectively, to
complete (Goodman et al., 2000). A shortened version of the DAWBA was also mailed to the child’s
teacher. Once all three DAWBA questionnaires were returned, a team of child and adolescent psychi-
atrists reviewed both the verbatim accounts and the answers to questions about children’s symptoms
and their resultant distress and social impairment, before assigning diagnoses using ICD-10 criteria.
Importantly, no respondent was automatically prioritised.

Table I provides the sample means for the parent, child and teacher SDQ scores for all children, and
for the subsets of children who were and were not diagnosed with an ICD-10 mental disorder. The
sample means indicate that teachers report the fewest symptoms (0.167) and that children report the
most (0.288). Table I also shows that the SDQ scores of children with a diagnosed mental disorder
are two to three times larger than the SDQ scores of children without a mental disorder. Estimated
kernel densities of parent, child and teacher SDQ scores are presented in Figure 1. They are positively
skewed, with most children exhibiting few symptoms and only a small minority exhibiting many.

The final key variable for our analysis is educational attainment. The survey focuses very much on
measurement of mental state and a consequence of this is that educational outcomes are not

Figure 1. Distributions of SDQ scores for different observers: (a) general mental health; (b) hyperactivity (kernel
density estimates: Epanechnikov kernel, bandwidths (a) 0.075, (b) 0.20)
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documented in detail. In particular, the dataset does not contain test score information, and we use
instead the one available quantitative measure of general educational progress: the teacher’s assess-
ment of the child’s scholastic ability relative to other children of the same age. We construct this
measure by using teacher responses to the question ‘In terms of overall intellectual and scholastic
ability, roughly what age level is he or she at?’, from which we subtract the child’s chronological
age. This measure of educational progress is unusual in the economics literature, but the concept of
a child’s ‘mental age’ has a long history in child educational psychology—indeed, Intelligence
Quotient (IQ) tests are so named because they were originally constructed as the ratio of mental age
to chronological age multiplied by 100. The concept also underlies the practice in many educational
systems (but not the UK’s) of holding children back in a lower grade if he or she has made inadequate
progress relative to the norm for that child’s age. However, in the UK, the existence of a national
school curriculum and associated testing programme means that there is a clear norm of age-specific
achievement against which progress can be judged by teachers.
For our sample of children, the average scholastic age gap is 0.034 years, or approximately 2weeks

ahead of actual age (see Table I). The age gap is, however, significantly different from zero for the
groups of children with and without mental health problems. For children without a diagnosed mental
disorder, the mean gap is 0.128 years, and for those with any disorder the gap is �1.007, implying an
average gap between the two groups of around 15months. Non-parametric estimates of the relation-
ships between parent, child and teacher SDQ scores and educational attainment are shown in Figure 2,
which confirms the pattern shown in Table I, but indicates that the relationship is continuous and
approximately linear, rather than a discrete distinction between the absence or presence of a disorder
(see also Currie and Stabile, 2006). This suggests that identification analysis based on the joint
distribution of binary states (see Kreider and Pepper, 2007, for an excellent example) would miss an
important feature of the relationship between mental health and education outcomes.
Table A3 of the online Appendix presents sample means for the explanatory covariates used in our

analysis. The continuous variables have been scaled to avoid extreme numerical values: age, number of
children and log income are divided by 10; and mother’s GHQ mental health score is scaled to lie in the
[0,1] interval. All other covariates are binary; consequently, the sample means indicate that children
with a diagnosed disorder are more likely to be male; live in social housing; have experienced serious
adverse life events; and have a parent who is unmarried, less educated, non-employed or with a mental
health problem.

3. MODEL-BASED MEASUREMENT OF MENTAL HEALTH

Our model has two components: a model of the complex measurement process for mental health and a
relationship between the observed educational outcome and the child’s (latent) mental health and other
relevant characteristics. The measurement model is based on three main principles. The first is that
there exists a ‘true’ state of mental disorder, S, conceptualised as the (latent) assessment that would
be made by experienced psychiatric assessors in possession of fully detailed, multi-source information
on the child. This latent measure is the factor which we see as a potential influence on educational
development.
Second, we accept that the child’s true mental state S is not accurately observable by anyone: not by

the parent, the child him/herself, the teacher, the psychiatric assessment team, nor—least of all—by us,
the statistical analysts. We assume the SDQ responses from parents, children and teachers are all
potentially subject to systematic distortion, which we see as arising either because certain observers
(particularly parents and children) may be reluctant to admit the existence of a problem, or may exaggerate
minor problems, or because certain aspects of the problem are less visible to certain types of observer.
It is important to realise that any (finitely) biased measure can be reinterpreted as an unbiased

measure of a different concept (although not necessarily a theoretically appealing one). Thus any
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single-factor model with biased multiple observers is logically equivalent to a multi-factor model in
which each observer measures a different factor. Conti et al. (2011) is a recent example of a high-
dimensional factor model where the use of observer-specific measures generates additional factors.
We would argue that the measurement error approach, involving measurement of a common under-
lying concept, is a powerful one that has important advantages of parsimony and straightforward
theoretical interpretation. It also matches the intention behind the SDQ instrument, which was
explicitly designed to achieve comparability across observers (Goodman et al., 2000).

The third underlying assumption is that psychiatric assessors make the best use they can of the
information available to them, exploiting their experience of diagnosis in a multi-observer setting,
where the information reported to them by children and by parents and teachers may be subject to dis-
tortions and misinterpretation. Any analysis of measurement error requires an assumption which links
some observed measure to the underlying concept that we seek to measure. Our rational expectations
assumption for psychiatric assessors provides this link, but how plausible is it? The development of the
US Diagnostic and Statistical Manual of Mental Disorders (DSM) and International Statistical Classi-
fication of Diseases and Related Health Problems (ICD) provide standardised frameworks for

Figure 2. The empirical education-mental health relation: (a) general mental health; (b) hyperactivity (kernel
regression estimates: Epanechnikov kernel, rule-of-thumb bandwidth)
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diagnosis which help to impose consistency on diagnostic practice and reduce bias of individual
assessors relative to the norms set out in the DSM and ICD. Although the psychiatric assessors in
our survey do not meet the families, the survey information they have at their disposal is similar to
the diagnostic procedures used in connection with the DSM and ICD. There has been a debate in
psychology about diagnostic norms and the possibility of bias linked particularly to ethnicity and
culture (see USDHHS, 1999), and there is quite strong evidence of a greater readiness to diagnose dis-
order in black and other minority groups, particularly by white clinicians (Trierweiler et al., 2006).
DSM-IV and ICD-10 (the versions in force at the time of the survey) both provide for cultural differ-
ences to be considered explicitly, but they have been criticised for their Western focus (Kleinman,
1997). Ethnic minorities form a very small proportion of our original survey sample and are not
included in the subsample used for our analysis, so the main area of concern over biased psychiatric
assessment is not relevant here.
We implement our approach through a latent variable structure with switching between observa-

tional regimes, to reflect the different information sets that may be available to psychiatric assessors
under different circumstances. The sample consists of a set of n observed children. Child i’s ‘true’
mental health state is Si, which is related to the child’s characteristics and circumstances through a
latent regression:

Si ¼ Xiβ þ Ui (1)

where Ui is N 0;σ2
u

� �
. Since Si is unobservable, we can normalise β and σ2

u arbitrarily to fix the origin
and scale of Si. We observe three SDQ scores reported by the parent, child and teacher, YiP, YiC and YiT,
all treated as continuously variable measures. The scores derived from parents’, children’s and
teachers’ SDQ responses are potentially biased readings of Si:

Yij ¼ λjSi þ Xiαj þ Vij; j ¼ P;C; T (2)

where Xi is a vector of variables, available to all observers, reflecting causal factors including the
child’s personal characteristics, family and social circumstances and the occurrence of past traumatic
events. (ViP,ViC,ViT) are jointly normal conditional on Si and Xi, with zero means and variance matrixP

YY; λj� 1 represents the sensitivity of the observer to the child’s true state and αj captures any
measurement distortions linked to specific characteristics of the child and family circumstances.
Consequently, an observer of type j gives generally unbiased reports only if λj= 1 and αj = 0. Note that
the inclusion of covariates in measurement models is used frequently in psychology to allow for
systematic differences (‘bias’) in the sensitivity of cognitive ability tests and has been used in this
way by Carneiro et al. (2003) in the economics literature.
The reduced form of (1)–(2) for observer j is

Yij ¼ Xi λjβ þ αj
� �þ λjUi þ Vij (3)

and the coefficients [λjβ + αj] describe the mean relationship between the distorted SDQ scores and the
child’s observable characteristics.
In addition, parents and children are each asked a direct question about whether they perceive there

to be a problem with respect to the specific aspect of mental health, yielding two binary indicators,WiP,
WiC. These indicators are important, since they play a role in triggering additional questionnaire
content, but they are based on the same underlying opinion as revealed by the SDQ and we assume
them to contain no additional information, so that Si ╨ Wij YiP; YiC; YiT ;Xij . Our rational expectations
model of assessors’ behaviour has four components:

MULTIPLE OBSERVERS AND MEASUREMENT ERROR 887

Copyright © 2013 John Wiley & Sons, Ltd. J. Appl. Econ. 29: 880–900 (2014)
DOI: 10.1002/jae



1. Information. The basic information which is always available to the psychiatric assessment pro-
cess is Bi ¼ YiP; YiC; YiT ;WiP;WiC;Xif g. If the parent’s SDQ score exceeds a specific threshold
(YiP≥KP) or the parent reports the child’s state to be problematic (WiP = 1), then a more detailed
set of questions is triggered, generating additional information ΩiP; similarly, if the child
perceives there to be a problem or his or her SDQ responses exceed a threshold KC, further
information ΩiC is elicited from him or her. Thus the additional contingent information set avail-
able to assessors is

Ci ¼

∅ if YiP < KP;WiP ¼ 0; YiC < KC;WiC ¼ 0

ΩiP if YiP≥KP or WiP ¼ 1ð Þ; YiC < KC;WiC ¼ 0

ΩiC if YiP < KP;WiP ¼ 0; YiC≥KC or WiC ¼ 1ð Þ
ΩiP;ΩiCf g if YiP≥KP or WiP ¼ 1ð Þ; YiC≥KC or WiC ¼ 1ð Þ

8>>><>>>: (4)

As external observers, we observe which of these four observational regimes occurs, but not the
content of the information sets ΩiP and ΩiC.

1

2. Knowledge. Psychiatric assessors’ knowledge and experience gives them the ability to ‘purge’ infor-
mational signals from parents, children and teachers of their bias. Although we do not claim that
assessors think in terms of statistical models, this assumption is equivalent to assuming that they
know the values of population parameters like β, λj, αj.

3. Conditionally unbiased expectations. Assessors make minimum-variance unbiased predictions of Si,

conditional on the available information eSi ¼ E Si BiCi;XiÞjð . Standard properties of the multivariate
normal distribution imply that this conditional expectation is

eSi ¼
Xiβ þ j ¼ P;C; T

X
j¼P;C;T

b j
SY :X Yij � μ j

Y Xið Þ� �
if Ci ¼ ∅

Xiβ þ j ¼ P;C; T
X

j¼P;C;T

b j
SY :CX Yij � μ j

Y Xið Þ� �þ bSC:YX Ci � μC Xið Þ½ � if Ci≠∅

8>>><>>>: (5)

where μ j
Y Xið Þ ¼ Xi λjβ þ αj

� �
is the conditional mean from the reduced form (3). b j

SY:X is the co-

efficient of Yij in a population regression of Si on YiP, YiC, YiT and Xi, and bjSY:CX ; bSC:YX are the
coefficients of Yij and the contingent information Ci from an extended regression on YiP,YiC,YiT and Ci.
Structure (5) implies that assessors make predictions which are optimal linear combinations of the three
observers’ information signals, after purging those signals of their bias components: consequently, the
signal receiving the greatest weight is not necessarily the least biased. The term bSC:YX Ci � μC Xið Þ½ �
represents the contribution of information available to the assessor but not to the statistical analysis and

thus, from the point of view of the external observer, only inflates the residual error in eSi.
4. Diagnosis. The observed assessment is a binary quasi-diagnosis Di, indicating a high predicted
level of disorder: , where τ is the assessor’s decision threshold, assumed distributed

1 Some, but not all, of the contingent diagnostic information is actually available in the dataset, but is not readily usable in a
modelling framework because of its complexity and high dimensionality.
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as N μτ;σ
2
τ

� �
.2 As an outside observer, the statistical analyst observes the diagnosis Di and the basic

information Bi. The probability of a diagnosed problem is

Pr Di ¼ 1jBi;Xið Þ ¼ Φ
X

j¼P;C;T

b j
SY :X

στ

" #
þ Xi

β
στ

� �
� μτ

στ

 !
(6)

where Eij= Yij� (λjβ + αj). If contingent information Ci is available to the assessment process, the
probability of a diagnosed mental health problem conditional on the information available to the
analyst is

Pr Di ¼ 1jBi;Xið Þ ¼ Φ
στ

ωC

X
j¼P;C;T

b j
SY :CX
στ

" #
Eij þ Xi

β
στ

� �
� μτ

στ

( ) !
(7)

where ω2
C ¼ σ2

τ þ var
X

j
b j
SC:YX Ci � μC Xið Þ½ �

� 	
. Thus, conditional on all the observed information in

Bi, we have a probit model for the psychiatric assessment, with regime switches in the coefficients of
Eij and Xi and in the normalising variance. However, conditional on Bi, these switches are exogenous,
so there is no endogenous selection problem as there would be if we conditioned on Xi but not on the
SDQ scores Yij. Note that, if item non-response makes one or more of the SDQ scores unavailable to us
and to the assessors, the forms of (5) and (6) or (7) change to take account of the more limited infor-
mation available.

What can be identified from this measurement model? Equations (2) and (1) imply the following re-
duced-form SDQ models:

Yij ¼ Xi λjβ þ αj
� �þ Vij þ λjUi

� �
; j ¼ P;C; T (8)

Thus regression analysis of the SDQ scores conditional on Xi identifies the reduced-form coefficient
vectors (λjβ + αj), which give the response of the SDQ score from observer j=P,C,T to variation in

characteristics X. In the Ci ¼ ∅ regime, the probit model (6) identifies bjSY :X=στ for each j=P,C,T

and β �
X

j
bjSY:X λjβ þ αj

� �h i
=στ. Consequently, β/στ can be recovered, so that β is identified up to scale.

Estimates were computed using maximum likelihood estimation of a system comprising (6), (7) and

(8), parametrised in terms of β/στ,μτ/στ, b j
SY :X=στ

� �
; λjβ þ αj
� �

; j ¼ P;C; T

 �

and ωC=στð Þ;f
bPSY :CX ; b

C
SY :CX ; b

T
SY :CX

� �
=ωC; each Ci∈Cg, whereC is the set of non-empty configurations of contingent

information (ΩiP,ΩiC or (ΩiP,ΩiC)). To allow for item or individual non-response in the SDQ for children
or teachers, as well as the response-triggered contingent information, we allow for four missing data re-
gimes with the following combinations of SDQ scores observed3: (i) YiP,YiC,YiT; (ii) YiP,YiC; (iii) YiP,YiT;
(iv) only YiP. The structure of the vector bSY:CX=στ varies across these four regimes. The scale factors
στ=ωC are parametrised as exp(ψPνiP+ψCνiC), where νij is the amount of contingent information supplied

2 Another plausible way of modelling the assessment is to assume that the assessor constructs the probability that the true level of
disorder exceeds some critical threshold, then diagnoses a problem if that probability is large enough to cause concern. Under our
assumptions, this two-stage process would lead to the same empirical model with slightly different parametrisation.
3 A few observations involved other combinations of missingness in the SDQ measures; these observations were discarded.
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by observer j, ranging from νij=0 for no additional information to νij=3 for contingent information on all
three aspects of conduct, emotional disorder and hyperactivity.

Parameter estimates of the psychiatric assessment model are given in Table II. The estimates of

bjSY:CX=στ indicate that, when available, assessors give greatest weight to teacher’s SDQ reports,
slightly less to the parental report and considerably less to the child’s own self-assessment. This
relative weighting is a consequence of the different amounts of noise that remain in the parent,
child and teacher signals, after they are purged of bias. Note that teachers’ assessments are the
most informative, but not necessarily the least biased, since the parameters αT may be large.
Indeed, we report evidence below that estimates based on the assumption of zero bias in teachers’
assessments are themselves subject to substantial bias. The ψ-parameters are negative, which is
consistent with the theoretical prediction that στ=ωC < 1 and indicates that additional contingent
information has value in clarifying the circumstances which led to the problematic self-
assessment.

The estimates of β/στ are shown in Table III. They give the influence of the characteristics X on the
child’s mental state S, using a normalisation of S which is dictated by the variability of psychiatric
assessments. Since στ is unknown, scaling is arbitrary and it is only the significance and relative mag-
nitudes of the coefficients that are meaningful here. Maternal education of any kind has a substantial
positive influence on the child’s mental health, comparable to major adverse life events including loss
of a parent through death or divorce/separation and past experience of serious illness or injury. There is
some evidence of inter-generational transmission of mental health problems, since the mother’s own
GHQ measure of mental (ill-)health is found to have a significantly negative influence on the child’s
mental state. For example, if the GHQ score were to double from the mean level of 0.3 to 0.6, the
predicted impact on the child’s mental disorder would be around a third as great as the impact
attributable to the absence of maternal educational attainment, or to the death of a friend or serious
illness or injury during childhood. Indicators of social disadvantage do not have a large influence:
housing type and tenure are statistically insignificant and, although log household income has a signif-
icant protective effect on child mental health, a very large income increase of around 170% would be

Table II. Estimated parameters of the psychiatric assessment process

Parameter General mental health Hyperactivity

Estimate SE Estimate SE

(i) YP, YC,YT observed
bPSY :CX=στ 4.253*** (0.900) 1.099* (0.595)
bCSY :CX=στ 1.471* (0.843) 0.006 (0.682)
bTSY :CX=στ 6.358*** (0.845) 3.461*** (0.549)
(ii) YP, YC observed

bPSY :CX=στ 9.607** (3.781) 3.575* (1.897)
bCSY :CX=στ �1.135 (2.831) 0.160 (2.050)
(iii) YP, YT observed
bPSY :CX=στ 3.264*** (0.515) �0.043 (0.368)
bTSY :CX=στ 5.814*** (0.475) 3.429*** (0.340)
(iv) YP observed

bPSY :CX=στ 3.470 (2.267) 1.973 (2.454)
ψP �0.281*** (0.031) �0.0422*** (0.030)
ψC �0.177*** (0.047) �0.219*** (0.047)

Significance:
*10%; **5%; ***1%.
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required to produce an effect comparable to that of maternal education or adverse life events. We find
no statistically significant evidence of an effect for the child’s age (for general mental health) and gen-
der or for the parents’ employment or partnership status, in contrast to the SDQ reduced-form estimates
(see Tables A4 and A5 in the online Appendix).
If an observer j is unbiased (and thus has αj= 0), then the reduced-form coefficient vector λjβ + αj is

proportional to β/στ. Since both are identified, we can rescale each estimate to have unit Euclidean
length and carry out a Wald test of their equality (after dropping one redundant element of the differ-
ence vector). These tests give strong rejections for all three observers,4 so we can clearly reject the
hypothesis that any of the observers is an unbiased observer, relative to the judgements made by the
psychiatric assessors.
Although the distortion parameters λj, αj are not separately identified, some inferences about the

nature of the distortions are possible. If, for some observer j and covariate xk, the identifiable effect
of xk on true mental health (βk/στ) and on the SDQ report by observer j ([λjβk+ αjk]) are of opposite
sign, then αjk must have the opposite sign to βk. This would imply that misreporting by observer j
has the effect of attenuating or even reversing the apparent impact of xk on mental health. We examine
this by conducting tests of the hypothesis Hk

0 : βk=στð Þ λjβk þ αjk
� �

≥0; j ¼ P;C; T against the alterna-

tiveHjk
1 : βk=στð Þ λjβk þ αjk

� �
< 0 for each variable xk in turn, using Chen and Szroeter’s (2009) test for

multiple inequality restrictions. (Note that this is a very conservative procedure, since sign conflicts
between βk/στ and αjk need not generate a corresponding sign conflict between the identifiable
coefficients βk/στ and [λjβk+ αjk].) The test generates significant results only for age, where the joint
non-negativity hypothesis can be rejected clearly for the hyperactivity measure (P= 0.048) and more

4 The test statistics are χ2(22) = 1,060.4 (parent); 1,161.3 (child); 862.8 (teacher) for general mental health, and 1,395.2 (P),
1,437.8 (C) and 2,055.9 (T) for hyperactivity.

Table III. Estimated coefficients ( β/στ) for latent mental disorder equation

Covariate General mental health Hyperactivity

Estimate SE Estimate SE

Age 0.276 (0.210) 0.428* (0.244)
Male 0.171 (0.111) 0.059 (0.132)
No. children 0.296 (0.565) 0.097 (0.691)
Social housing 0.043 (0.152) 0.001 (0.178)
Apartment –0.236 (0.236) –0.281 (0.303)
Cohabiting 0.340* (0.183) 0.349 (0.222)
Single –0.366 (0.258) –0.327 (0.305)
Widowed/divorced 0.085 (0.248) 0.126 (0.307)
Mother’s GHQ 0.398*** (0.046) 0.380*** (0.053)
Mother employed –0.134 (0.122) –0.151 (0.146)
Father employed –0.196 (0.213) –0.210 (0.259)
Degree –0.404* (0.207) –0.479* (0.246)
Vocational –0.342* (0.193) –0.422* (0.222)
A-levels –0.191 (0.180) –0.160 (0.216)
O-levels –0.523*** (0.141) –0.540*** (0.160)
ln(income) –0.356*** (0.043) –0.403*** (0.049)
Parental split 0.230 (0.145) 0.164 (0.178)
Death in family 0.364 (0.233) 0.457* (0.268)
Death of friend 0.395** (0.198) 0.412* (0.233)
Illness 0.255* (0.142) 0.324* (0.170)
Injury 0.441** (0.199) 0.363 (0.257)
Financial crisis 0.239 (0.147) 0.291* (0.167)
Police trouble 0.278 (0.216) 0.136 (0.265)

Significance:
*10%; **5%; ***1%.
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marginally for general mental health (P= 0.106). This suggests a tendency for observers to understate
the problems of older children and adolescents relative to younger children, by the standards of the
fully informed expert psychiatric assessment and is perhaps unsurprising, since the early stages of
the process of child development are often the focus of special attention, while the problems of older
children and adolescents may be less visible to external observers and possibly under-acknowledged
by young people themselves.

4. MENTAL HEALTH AND EDUCATIONAL ATTAINMENT

We now turn to the consequences of biased reporting of the child’s mental state for inferences about
the causal impact of child mental health on educational development. Educational attainment relative
to the child’s age is denoted by Ai and is assumed to be related to mental health Si and other covariates
Xi as follows:

Ai ¼ ρSi þ Xiδþ ηi (9)

where ηi is a normally distributed regression residual, which may be correlated with some or all of the
SDQ residuals Vij. Our results are based on model (9) with dependent variable Ai defined as the
difference between the child’s educational age and actual age.5

Note two potentially limiting features of our analysis using model (9). First, we assume that
mental health has a uni-dimensional impact on education. Identification of ρ is a difficult issue
and identification becomes more demanding if the state of mental health Si is treated as multi- rather than
uni-dimensional. Our approach is to use a single variable to represent mental health, with alternative
broad- and narrow-scope measures used to assess robustness. Thus we again report on two
implementations: one where Si represents a concept of general mental health corresponding to the over-
all emotional + conduct + hyperactivity SDQ score; the other representing hyperactivity alone. The close
correspondence between the findings for these two specifications suggests that the assumption of
uniform impact across dimensions of mental disorder is a reasonable approximation.

A second potential shortcoming is that we have only a single quantitative measure of general edu-
cational attainment, which is provided by the teacher and therefore subject to observational error just
as the teacher’s SDQ reports are. There are three reasons for believing that bias in teachers’ assess-
ments of educational progress will be a less serious problem than bias in judgements made about
mental health. First, teachers are professionals and thus the argument we used to motivate the assump-
tion of unbiased assessment by psychiatrists carries over to teachers in relation to judgements about
educational performance. Second, teachers in the UK operate within a tightly defined national curric-
ulum with associated age-specific achievement norms and a rigorous external school monitoring
regime. One can credibly argue that this system reduces the scope for bias and performs much the same
function of imposing external validity as the DSM-IV and ICD-10 diagnostic frameworks do for
psychiatric practice. Third, the measure Ai is a dependent variable so that any independent random
noise in Ai only has the effect of reduce precision by inflating var(ηi) rather than introducing bias. This
contrasts with the measurement of mental health states, which are used as explanatory covariates and
are therefore vulnerable to classical measurement error as well as biased measurement.

Nevertheless, there remains a possibility that teachers’ judgements about educational achievement
have some element of bias related to childrens’ mental states. There is very little evidence available

5 There are other teacher-reported outcome measures relating to truancy and special needs status but these are essentially indi-
cators of mental health rather than the accumulation of human capital. Other subjective assessments of reading and maths ability
are not explicitly norm-referenced and are thus less easily interpretable. A similar model with the dependent variable re-expressed
as a proportion of actual age gave similar results but a considerably worse sample fit and those results are not presented here.

D. JOHNSTON ET AL.892

Copyright © 2013 John Wiley & Sons, Ltd. J. Appl. Econ. 29: 880–900 (2014)
DOI: 10.1002/jae



on this issue, although Burgess and Greaves (2013), in a study focused mainly on ethnicity bias, find
some tendency for teachers to under-predict the test scores achieved by children in groups with high
rates of mental health disorders. If this is the case, then the parameter ρ identified by any of the methods
considered here will be larger in magnitude than the true impact of mental health disorder on human
capital formation. However, it will not affect the comparison of results from different modelling ap-
proaches. If, as we find below, methods using classical assumptions to adjust for measurement error
overestimate the impact of mental disorder relative to more defensible methods, then this conclusion
is unaffected by any tendency for teachers to confuse mental health problems with slow educational
progress.
Since the mental health variable is unobserved, its scale is arbitrary and the magnitude of ρ cannot be

interpreted without an appropriate scale normalisation. The identifiable vector β/στ contains the coef-
ficients relevant to Si/στ, and the coefficient of this variable in the education equation would be ρστ.
This is not a helpful normalisation: we would like to be able to rescale the latent variable S to have unit
variance, so that its coefficient can be interpreted as the impact on educational performance of a one-
standard-deviation change in the measure of mental (ill-)health. However, var(Si/στ) equals
β0Vβ þ σ2

u

� �
=σ2

τ rather than 1, where V is the variance matrix of Xi. The scale parameters σu and στ

are unknown and there is no convincing prior information on them. We resolve this by using a range
of normalisations based on alternative assumptions about the population R2 of the relationship

Si =Xiβ +Ui. Given an assumed R2, and estimates of β/στ and V, κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2σ2

τ=β
0Vβ

q
is a known

constant and the rescaling S�i ¼ κSi=στ implies var S�i
� �

≡1. The corresponding coefficient in the
education equation is r = ρστ/κ, which we aim to identify.
The reduced form for educational attainment reveals the identification problem we face:

Ai ¼ Xi ρβ þ δð Þ þ ηi þ ρUið Þ (10)

Even with β known, ρ cannot be uniquely recovered from knowledge of the reduced-form coeffi-
cients (ρβ + δ). We explore three alternative identification strategies for the coefficient ρ. The first uses
prior information on the residual covariances to reveal the sign of ρ. The second—which we include
only to evaluate the performance of the standard latent variable method in this context of biased
reporting—uses an assumption that one observer (either parent, child or teacher) is unbiased (and
therefore under our rational expectations assumption, also known to be unbiased by the psychiatric as-
sessors), with reporting error uncorrelated with educational attainment: essentially the classical mea-
surement error assumptions used in standard latent variable modelling. The third approach uses an
exclusion restriction on the coefficient vector δ, which we implement in two distinct ways.

4.1. Covariance Restrictions

Residual covariances provide information on ρ and this was exploited by Kan and Pudney (2008) in a
study of time use also involving biased repeat observations. Our application differs from that study
since we do not assume that a particular observer or mode of observation is unbiased and, consequently
point identification is not possible here. Let cj be the residual covariance cov(Yij,Ai|Xi) and σVjη be the
covariance between the random component of the measurement error for observer j and the random
component of educational progress. Under our assumptions cj ¼ σVjη þ ρλjσ2

u , implying ρ ¼
cj � σVjη
� �

= λjσ2
u

� �
. If we rule out any negative covariance between the random components of SDQ

and educational attainment, then cj=λjσ2
u is an upper bound on ρ. For parent and child observers, it

seems reasonable to assume no correlation between their error in reporting the child’s mental state
and the random component of the teacher’s educational report, so that σVjη ¼ 0 and therefore sgn(ρ) =
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sgn(cj), j=P,C. A one-sided test of H0 : cj = 0 against H1 : cj< 0 then establishes the sign of ρ. The test
remains valid (but loses power) ifσVjη≥0. In contrast, for teacher observers, we might expectσVTη < 0,
since a tendency to underrate a child’s educational achievement may accompany a tendency to overrate
the child’s degree of mental disorder due to confounding factors reflecting the ‘quality’ of the child–
teacher match. If so, ρ≥cj= λTσ2

u

� �
, leaving the sign of ρ ambiguous. We implement the test by estimating

simultaneously the reduced-form equations ((8) and (10)) for the SDQ scores and education variable, and
using separate one-sided Lagrange Multiplier tests for the residual covariances between the education
equation and each SDQ equation. The results are given in Table IV. All residual correlations
are negative and significant; they would also be highly significant against two-sided alternatives
if adjusted for multiple comparisons by using Bonferroni corrections. Consequently, we have
some evidence that the impact of poor mental health on educational progress is negative. Note
that Table IV is consistent with the idea of correlated educational and mental health assessments
from teachers, since the (negative) residual correlation is larger in magnitude and more significant
for teachers than for parent or child.

4.2. Identification with an Unbiased Observer

The most common approach to estimation of models like (9) consists in using a single SDQ score
(usually from the parent) as a proxy for the unobserved Si, which is equivalent to assuming αj= 0
and var(Vij) for some observer j. Examples include Salm and Schunk (2012) and Bartling et al.
(2012), who use SDQ as a covariate, and Datta Gupta and Simonsen (2010) and von Hinke Kessler
Scholder et al. (2013), who use it as a dependent variable. This approach fails to address either the
classical measurement error problem or the additional problem of biased reporting by parents, children
or teachers. The upper panel of Table V shows the estimates of the mental health education impact that
results from using one of the SDQ measures, scaled to have unit standard deviation, as a crude proxy
for latent mental disorder (full parameter estimates are given in Table A6 of the online Appendix). The
estimates suggest that a one-standard-deviation increase in mental disorder has an average effect of
retarding educational development by 3.1–5.7months or 2.7–6.0months, respectively, for the general
measure of mental health and for hyperactivity alone. Note that this is considerably smaller than
the unconditional mean gap of 15months between those with and without a diagnosed disorder
(see Table I).

A more sophisticated approach to the measurement error problem which is common in the social
sciences is to use the ‘structural equation modelling’ (SEM) framework, combining a set of measure-
ment equations (2), a latent health equation (1) and a ‘structural equation’ for education (9) (see Bollen,
1989, for a review).

A single unbiased observer is sufficient to give identification up to scale of the coefficients β, since
the reduced-form coefficients in (3) are proportional to β if αj= 0. But, in this framework, a repeat

Table IV. Tests of zero residual covariances between SDQ scores and school performance

Parent Child Teacher

General mental health
Residual correlation –0.248 –0.176 –0.332
One-sided t-statistica –17.32 –7.97 –22.96

Hyperactivity
Residual correlation –0.273 –0.156 –0.343
One-sided t-statistica –19.10 –7.06 –23.71

aComputed as correlation� ffiffiffi
n

p
.
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observation is required to identify ρ in addition to β. One possibility is to assume that another of the
non-professional observers is also unbiased, but a more credible strategy is to retain the assumption
of unbiased psychiatric assessments, so that we have two unbiased measures. The further assumptions
required for identification are that the SDQ measurement error is independent of the true mental state
and educational attainment: VijUi, ηi for a specific observer j ∈ {P,C,T}. This gives three sets of
estimates as we take each observer in turn to be the one who is unbiased. Note that ρ is fully identifiable

here, but we report it, in the lower panel of Table V, in the normalised form ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β

0
Vβ þ σ2

u

q
, representing

the effect on the mean educational deficit of a one-standard-deviation increase in latent mental
disorder. We are also able to infer and report the value of R2 in the latent mental health equation.
These estimates would suggest a substantial causal effect in the range 7.9–8.6months’ educational
deficit for a one-standard-deviation increase, using either the general mental health or hyperactivity
measure, and an R2 of around 0.2–0.3 for the latent mental health equation which, as one would expect,
exceeds the R2 statistics for the SDQ proxy regressions, which are depressed by the measurement noise
they contain.6

4.3. Exclusion Restrictions on δ

We now dispense again with the assumption of unbiased observation and consider exclusion restric-
tions as a source of identification. Define b to be the reduced-form coefficient vector, ρβ + δ, for
educational performance. A zero restriction on the kth coefficient in δ implies that the corresponding
coefficient in b is ρβk = (ρστ)(βk/στ) and, since β/στ is identified from the measurement model, the
coefficient (ρστ) relevant to this normalisation is identified uniquely as the ratio of the kth elements
of b and β/στ. The coefficient ρστ can then be rescaled in the form r= ρστ/κ, which is interpretable
as the impact of a one-standard-deviation change in mental health. The main problem with this
approach is finding exclusion restrictions which can be strongly justified a priori—there are few factors
influencing mental health which can confidently be asserted to have no direct causal influence on
educational attainment.

6 Simpler IV methods are also possible and, like the SEM approach, give large estimated impacts. For example, using the paren-
tal SDQ score for general mental health as the (presumed) unbiased measure, with the teacher SDQ as instrument, the estimate of
ρ is� 1.3; using both child and teacher SDQ scores as instruments gives ρ̂ ¼ �0:99but a significant Sargan test statistic of 33.96,
which is consistent with the presence of bias in the parental SDQ score.

Table V. The estimated mental health-education effect: unbiased observer

General mental health Hyperactivity

ρ x SD(Si) SE R2 ρ x SD(Si) SE R2

SDQ proxy Least-squares regression with SDQ proxy
Parent –0.367*** (0.021) 0.172 –0.395*** (0.020) 0.184
Child –0.258*** (0.032) 0.169 –0.224*** (0.032) 0.163
Teacher –0.472*** (0.020) 0.214 –0.497*** (0.020) 0.221

Respondent assumed unbiased Latent factor model with unbiased observer
Parent –0.718*** (0.031) 0.320 –0.704*** (0.030) 0.263
Child –0.660*** (0.034) 0.195 –0.683*** (0.036) 0.216
Teacher –0.676*** (0.032) 0.233 –0.708*** (0.032) 0.271

Note: Standard errors in parentheses; significance:
*10%; **5%; ***1%. All models include the covariates listed in Table II.
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Only one of the covariates Xi is a plausible candidate for a direct zero restriction on δ. Some 6.8% of
sampled children are reported by the mother to have experienced the death of a friend and the reduced-
form coefficients confirm that these events have an impact on SDQ scores (Tables A4–A5 of the online
Appendix). Unlike the loss of a parent (which may change the resources of parental time and resources
invested in the child’s education), or injury or illness experienced by the child him/herself (which may
interrupt schooling and study time), it is reasonable to argue that the loss of a friend has no direct
impact on the child’s education, but only an indirect one through his or her mental state. Two concerns
have been raised about the exclusion of this variable: its high prevalence rate which might indicate
response bias; and the possibility of correlation with socially graded unobserved factors such as
neighbourhood deprivation. Evidence on the first of these is very sparse, but Fletcher et al. (2013)
report an 8% prevalence rate in the USA for the death of a sibling by age 25. Although US child death
rates are higher than those in the UK,7 the network size suggested by most surveys of children’s
friendship relations is typically about 5 or 6 (see Conti et al., 2013, for example), which far exceeds
the number of children per family with children (slightly under 2 for both the USA and UK). Conse-
quently, the survey prevalence rate of 6.8% is broadly consistent with external evidence. There remains
a possibility that child mortality may act as a proxy for unobserved factors, such as neighbourhood
deprivation, imparting an upward bias to our estimate of ρ. While this cannot be settled definitively,
there is some available evidence. Using data from UK neighbourhood statistics for 2010, we find that
a regression of the mortality rate in the 5–14 age group on the official index of multiple deprivation
gives an R2 of 0.024 for males and 0.010 for females. Using our survey data and regressing the death
of a friend variable on observed family characteristics likely to be associated with neighbourhood
deprivation (social tenancy, log income and degree-level education) gives an R2 ranging from
0.0006 to 0.0085; the overall multiple R2 is 0.01. These figures suggest only a modest social gradient
in child mortality and thus limited scope for bias.

The estimates produced by imposing this exclusion are presented in Table VI, scaled to correspond
to R2 levels in the range 0.1–0.4 for the latent mental health equation. Although the standard errors
are larger than we would like, so that the estimated impact is not significantly different from zero, it is
still possible to reject unambiguously the hypothesis of an 8- to 9-month impact for a one-standard-
deviation increase in mental disorder, as suggested by the conventional latent factor analysis.

As an alternative to this direct a priori restriction, we also exploit a restriction on the effect of age
which is suggested by the age-referenced nature of our educational attainment variable, Ai, derived
from teachers’ assessments of the child’s educational age. Let ei, ai and Xi represent, respectively,
the absolute level of the child’s achievement, his or her age, and other personal characteristics, and
write the age-specific achievement norm used by teachers as T(a), so that the child’s educational age

7 Fletcher et al., 2013, report a mortality rate of 59 per 100,000 for the 1–14 age group, while data for England and Wales sug-
gest an average rate for the years relevant to our sample cohorts of around 17 per 100,000.

Table VI. The estimated mental health-education effect: exclusion restrictions

General mental health Hyperactivity

R2=0.1 R2=0.25 R2=0.4 R2=0.1 R2=0.25 R2=0.4

Loss of friend
Scaled estimate –0.129 –0.082 –0.064 –0.137 –0.087 –0.069
SE (0.116) (0.073) (0.058) (0.133) (0.084) (0.066)
Age
Scaled estimate –0.383*** –0.242*** –0.191*** –0.332*** –0.210*** –0.166***
SE (0.134) (0.085) (0.067) (0.117) (0.074) (0.059)
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reported by the teacher is T� 1(ei). Now make the further assumptions that: (i) teachers use the
population average as their norm, so that T(a) =E(e|a); and (ii) achievement is generated by a normal
regression structure: e a;X∼N θ1aþ θ2X;ω2

e

� �

 . Then our education variable is Ai = T
� 1(ei)� ai =

[ei� θ2E(Xi|ai)]/θ1� ai and its conditional distribution is

Ai ai;Xi∼N θ2=θ1ð Þ Xi � E Xi aiÞ� ; ω2
e=θ

2
1Þ



���

 (11)

This implies that Ai is independent of age if the covariates Xi are measured from age-specific means,
implying an exclusion restriction on the education equation. The strong age gradient in the onset of
mental health disorders documented in the psychology literature (Kessler et al., 2007) gives this restric-
tion-identifying power. The sample is large enough to permit the removal of age-specific means to be
done non-parametrically, rather than modelling the relationship between X and age explicitly.
The lower panel of Table VI gives the results from exploiting the age-referenced nature of the edu-

cation variable in this way. It shows that the classical measurement error analysis based on the assump-
tion of an unbiased parent, child or teacher observer exaggerates the causal impact of mental health
problems on the development of human capital through schooling. While the unbiased observer
approach suggests that a one-standard-deviation increase in mental disorder causes on average an
8- to 9-month delay in educational development, the age restriction indicates a much smaller effect
of around 2–5months. Again, there is no evidence of any difference between the impact of general
mental health (covering hyperactivity, emotional and conduct disorders), or hyperactivity alone.
These estimates based on exclusion restrictions both suggest a considerably smaller impact of mental

health on educational progress than would be suggested bymethods based on the assumption of an unbiased
parent, child or teacher observer of the child’s mental state. The age exclusion, in particular, is a natural
assumption tomake, since it exploits the logical structure of our particular measure of educational attainment
to generate an identifying restriction. It is striking that the estimated impact that results is broadly similar to
the result obtained using SDQ variables as crude proxy variables (Table V), while the more sophisticated
latent variable model with an unbiased observer produces considerably larger estimates. Of course, there
is no necessity for this to be a general result, but it underlines the proposition that, outside the unrealistic
world of classical measurement error, the consequences of dealing with partial and error-prone observations
can produce results that differ greatly from the simple reversal of attenuation bias.

5. CONCLUSIONS

We have focused on the role of child mental health as an influence on educational attainment,
addressing a set of problems related to the measurement of the child’s state of mental health. These
measurement difficulties generate two distinct identification problems. The first relates to estimation
of the relationship between mental health and personal and family characteristics: the strong evidence
of bias in the reports given by parents, children and teachers means that the classical conditions for
irrelevance of measurement error in a regression dependent variable are not met. We have overcome
this by using a unique dataset which includes a detailed psychiatric assessment, together with a theory
(essentially rational expectations) of the behaviour of these assessors, to identify a latent mental health
model. However, a second identification problem arises when the educational process is introduced,
since natural measures of mental health generated from this latent model are collinear with other
explanatory covariates used in the education model. We use two alternative exclusion restrictions
which can be argued to be valid theoretically and have sufficient empirical power to contribute useful
identifying information. One is the experience of a death of a childhood friend, which is hypothesised
to influence education only indirectly through its impact on the mental health of the child. The second
is an age restriction which flows from the age-referenced nature of our educational attainment measure.
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We have found that mental disorders are strongly influenced by family history and background,
particularly by the mother’s own mental health and education, and also by major adverse life events
such as the death of a friend or serious illness or injury. The decision-making by expert assessors,
which is the key to these conclusions, places greatest weight on the views of teachers, rather less on
those of parents and little weight on the self-assessments by young people themselves. Diagnostic
behaviour by psychiatric assessors reflects the configuration of information that is available to them
and adjusts for the biases inherent in different types of observer.

The impact of mental disorder on educational attainment is significant and, using our preferred
strategy based on exclusion restrictions, appears to be important—a loss of approximately 2–5months
educational progress for a one-standard deviation increase in ‘true’ latent mental disorder. This is
closer to the estimate generated by a crude proxy-variable regression which ignores the measurement
error problem, than the much larger estimate produced by a multi-indicator latent variable model based
on the assumption that at least one of the non-expert observers is unbiased.

On a methodological level, this study exemplifies four important points. First, the measurement error
in survey reports of children’s mental state is large, not uniform across types of observer (parents,
children and teachers) and far from the ‘classical’ measurement error assumptions embodied in
standard latent factor models. The biases that result from the sort of measurement difficulty addressed
in this paper can be complex and unexpected in structure and direction. Making allowance for this non-
standard form of observation error makes a substantial difference to research findings on issues like the
socio-economic gradient in child mental health.

Second, like many other important research issues in the social sciences, the link between child
mental health and educational attainment is beset by identification difficulties, and the preferred
strategy of using controlled (or ‘natural’ quasi-)experiments is unavailable because of the nature of
the phenomena of interest. Despite this, it has been possible to draw some important conclusions.

Third, this application shows that an attempt to address a measurement error problem inappropriately
may make things worse rather than better. In this case, our preferred estimates of the impact of mental
disorder on educational progress (which exploit credible a priori restrictions and the specific structure of
our measure of educational achievement) are considerably smaller than the range of estimates produced
by a conventional latent variable analysis based on the assumption of an unbiased observer—and are
much closer to estimates from crude proxy variable regressions. If we are interested primarily in the
mental health–education effect, the extra sophistication of the latent variable approach would be detri-
mental. One cannot, of course, rely on the superiority of naive estimates as a general proposition, but it is
important to look carefully at the assumptions underlying more sophisticated approaches.

Finally, we have shown the value of evidence that combines standard survey self-reported information
with deeper expert assessments, bringing us closer to the ideal situation where there exists an unbiased
observer. The UK Survey of the Mental Health of Children and Young People provides a model for this
sort of evidence and its potential is substantial, particularly if the design could be extended to give a
longitudinal picture of the evolution of mental health and human capital accumulation over time.
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