To be presented at the 7th International Symposium on Computer and Information Science 1992

Transformational Derivation in the Programming Logic TK

Martin C. Henson,
Department of Computer Science, University of Essex, Colchester, Essex, ENGLAND.
Department of Computer Science, University of Otago, Dunedin, NEW ZEALAND.
hensm@uk.ac.sx

1 Abstract

We examine transformational programming techniques within the programming logic TK. In par-
ticular we investigate the transformational technique known as type simulation. The internalisation
of this technique within TK is illustrated with respect to a derivation of the o—p-pruning algorithm
from a specification of mini-maxing.

2 Introduction

In this paper we investigate transformational programming techniques within the programming
logic TK. This theory has been elaborated in detail in [HeT88] and some aspects of program de-
velopment within TK are explored in [Hen89a]. Our point of departure here is the transformational
technique known as type simulation [Hen88] which is a generalisation of a idea due to Wand
[Wan80]. We must, for reasons of space, refer the reader to the references for an detailed exposition
of the programming logic TK. For the same reason most of the technical results of Section 4 are
stated here without detailed proof. The interested reader may like to consult [Hen89¢] for these. In
Section 3 we describe the rules for inductive types which are central to our formalisation of trans-
formations. The proofs of these propositions can be found in [Hen92]. In Section 4.1 we provide
an introduction to transformation via type simulations and their formalisation in TK. Section 4.2
elaborates a more detailed account involving mutual induction and the derivation of the o--prun-
ing algorithm.

3 Positive induction

The crucial rules of TK concerning inductive types are as follows:

ze A z € B(E(A, AX.B))
- (=-intro(i)) (E—intro(ii))
ze Z(A, AX.B) ze Z(A, AX.B)

AT NI =T
(Z-elim)

EA,AXB)CT

where X must occur positively in B. Z-elim specialises to the following useful induction rule:

(Vx e A)y(x) (Vxe B({we E(A, AX.B) | y(w)))y(x)

(Vxe E(A, AX.B))y(x)
The introduction rules Z-intro(i) and Z—intro(ii) are quite intuitive but the E-elim rule may require
a little motivation. We illustrate it with a simple example: the S-expressions of LISP.
In Miranda™! [Tur85] we might write:
sexp *::= Leaf *| Node (sexp *) (sexp *)

In TK this would be translated as follows: Sexp = ZE({Leaf} x A, AX.{Node} x X x X) (with A a
free type parameter). Z-elim specialises in this case to:

(Vx e A)y(<Leaf, x>) (Vx,y e Sexp)(y(x) A w(y) = y(<Node, x, y>)

(Vx e Sexp)y(x)

which is the expected principle of S-expression induction. In what follows we adopt a Miranda-
like notation for the TK types we shall need to define.

3.1 Extracting programs from inductive proofs

Programs are recovered from proofs in TK by means of a modified realizability interpretation
[Kle45]. The essential idea is to associate a TK formula e p ¢ with each TK formula @. e p @ is to
be read, roughly, as “program e meets specification @”. The full definition is given by induction
over the structure of TK formulae. Further motivation, explanation and examples can be found in
[Hen89a] and [Hen89b]. Programs are obtained from proofs of such specifications by means of the

following, crucial, proposition.

Proposition 3.1.1 If TK - ¢ then there is a TK term t for which TK —tp @ A tl
Proof. By induction on the length of the derivation TK - ¢.e

3.2 Mutually inductive systems of induction

Our example in Section 4.2 concerns mutual recursion and this arises from mutually inductive
types. We briefly sketch the necessary background. That mutual induction is expressible using a
principle of positive induction 1s well known [Mos74] but what we have to demonstrate is that this
can be integrated smoothly with realizability. What we require is that each family of
mutually inductive types gives rise to a mutually recursive system of realizing combinators in a
natural fashion. For ease of presentation we shall attack binary systems of mutual induction; the
generalisation to arbitrary systems is then quite obvious and unenlightening. The outline of the rest
of the section is as follows. First we consider a pair of mutually inductive type equations for types
Tyand T,. We then define a type T so that T =T, X T;. Next we show that there are two elimination
rules g and W, so that By X W, follows from T-elim (similarly for the introduction rules). Finally
we define two functions A and &, so that 4 < A, is a realizer of T-Elim. Note then that s, and 4,
realize the rules |, and [, as a consequence. The reader is referred to [Hen92] for the technical

details.

1 Miranda is a trademark of Research Software Ltd.

transformational techniques [Hen88] so it seems to be a good candidate for further investigation in
our framework. Higher order accumulator introduction can be specified in TK as follows:

Specification 4.1.1
(VA)VB)(VC)(Vfe A—> B)(Vxe A)Vke B> C)3ye O)(y=k (f x)) -

Let us consider one such specialisation of Specification 4.1.1. Take the domain of f to be:
List(A)::= Nil | Cons A List(A),
for some type A and f = (Irec g h) for some (suitably typed) g and .

Specification 4.1.2
(VA)(VB)(VC)
(Vg € B)(Vhe (List(A) = B) - B)(Vx € List(A))(Vke B — C)3y e O)y = (k (lrec g h x)))
Proof. By List(A)-induction. .
Proposition 3.1.1, applied to this proof, provides us with:
Irek g h Nil k = kg
Irekgh(Consal)k = lIrekghl (ko (h(Consal))
lrecg hl = lIlrekghlid
As an example of this new combinator we observe that from the following instance of Irec:
reverse NIl = Nil
reverse (Consal) = (reversel) + (Cons a Nil)

we can obtain the program:

reverse [rev ! id
rev Nil k k Nil

rev (Consal)k rev [(ko (Az. z + (Cons a Nil)))
since reverse = Irec Nil (A(Cons a l).Az. z + (Cons a Nil)).

It is now possible to demonstrate that the program transformation strategy of first order
accumulation is subsumed by higher order accumulation and type simulation. The first stage is to
find a suitable characterisation of the higher order accumulators appearing in rev. Clearly they are
elements of List(A) — List(A) but we need a finer notion than that. We observe that the
accumulators are constructed by the recursive structure of the program in a very systematic
fashion. We are led to describe the accumulators by an inductive type:

||

Definition 4.1.3

Hacc(X) =E{id}, \Y .{z| (VY)E(z, ¥, X)) = ye Y))

where &(x, y, X) ©4or Ga € X)(x =y o (Az.z + (Cons a Nil)))) .
Lemma 4.1.4

(i) (VX)(Hacc(X) < List(X) — List(X)) (ii) rev € [1(X, List(X) = Hacc(X) — List(X))
Proof. (i) Immediate by Hacc(X)-induction. (ii) By List(A)-induction and Lemma 4.1.4(j).

We define a polymorphic relation on Hacc(X) and List(X) as follows:
Definition 4.1.5 (VX)(Vk € Hacc(X))(Viy € ListX))(k = ly 4o (VID(k 1) =1 + [y)) o

As usual we extend a relation between elements of types to a relation between types by means of:

Definition 4.1.6 Given a binary relation r € A x B we set:
ATB &4 (Vae A)3be B)arb)A(Vbe B)3ae A)arb) «

Theorem 4.1.7 (Simulation)

(VX)(Hacc(X) = List(X))

Proof. We prove the first conjunct by Hacc(X)-induction utilising the associativity of ++. The
second conjunct is quite elementary: take x = Az.z ++ y. .

We use the simulation to formulate a specification:
Specification 4.1.8

(VX)(Viy € List(X))(Vk € Hacc(X))
(3y € List(X) — List(X) — List(X))(V1; € List(X))(k = l1 = @ lgly) = (rev iy k))

Proof. By List(X)-induction and Theorem 4.1.7. B
If we name the program obtained from the proof r we can state:

Corollary 4.1.9 reverse | = r [Nil
Proof. This follows immediately from the base case of Theorem 4.1.7. -

Combining this with the equations available (via Proposition 3.1.1) from the proof of Specification
4.1.8 we finally achieve the expected result:

r [Nil
[
r Ig (COI'IS a 11)

reverse [
r Nil /

r (Cons aly) [,

4.2 The alpha-beta pruning algorithm

We shall aim to obtain a pair of mutually recursive functions prunemax and prunemin each of type
T'ree(Nat) — Nat corresponding to the well known o-B-pruning algorithm. Qur specification will
be based on the concept of mini-maxing. The reader may like to compare our approach with that

of [BiH87].

Ty ::= Leaf Nat| Node List(T,)
To ::= Leaf Nat | Node List(T)

treclfl g1 (Leafn) = fl n
trec1 f1 g1 (Node z) = g; (Node z) (Imap (trec, 1> g>) 2)
trecofr go(Leatn) = fon

trec, f> g (Node z) g1 (Node z) (Imap (trecy f1 g1) 2)
We use this to provide our functional specification of mini-maxing.

trecy id (Az.Av. reduce max - v)
trec, id (Az.Av. reduce min o v)

evalmax
evalmin

We wish these to operate over the type Tree(Nat) where:
Tree(A)::= Leaf Nat | Node List(Tree(A))
so we are led to prove the following proposition.

Proposition 4.2.1 i) Tree(Nat) =T ii) Tree(Nat) = T5
Proof. (S) By Tree(Nat)-induction and monotonicity of Lis«(X). (2) By (T, T5)-induction. e

Applying higher order accumulation yields two new functions, emax and emin as follows:

evalmax t = emaxtid

evalmin t = emintid

emax (Leaf n) k = kn

emin (Leaf n) k = kn

emax (Node Nil) & = k-oo

emin (Node Nil) & = koo

emax (Node (Cons 1))k = emax (Node I) (k o (max (evalmin t)))
emin (Node (Constl)) k = emin (Nodel) (ko (min (evalmax 1))

Following the strategy of Section 4.1 we now look to the accumulators and attempt to find a
simulation. These are formed (from id) by functions of the form: & o (min n) or k o (max n) (for
some n). Such functions act as restricted identity functions which are bounded above and below.
This suggests that accumulators might be simulated by a pair of numbers, representing the lower
and upper bounds of corresponding accumulators. To see that this is more than mere conjecture
requires the following analysis. In what follows, write max as an infix U and min as an infix .

Definition 4.2.2
(Vk € Nat — Nat)(Vn, m € Nati)

(k=<n,m> g (n<mA (Vse Nat)ks=nuU (s N\m)))) .
Fact 4.2.3

(Did =<0,0> () n<m=2>nusNnm)=muUus)Nnm@idnusnn=n .
Definition 4.2.4

We define an inductive type ¥ = ({id}, AX.{z | (Vy)(0(z, y) = y € X))

where: O(x, y) <4ef (Vn € Nat)(x =y o (max n) v x =y o (min n)) .

Lemma 4.2.5 (i) ¥ < Nat — Nat (ii) emax, emin e Tree(Nat) - ¥ — Nat

Proof. (i) Immediate by ‘¥-induction. (ii) By Tree(Nat) and Lemma 4.2.5(i).

Theorem 4.2.6 (Simulation) ¥ = Nat x Nat

Proof. ‘¥-induction and properties of max and min. .
Specification 4.2.7

(Vi € Tree(Nan)(Vk € W)(3yg, y1 € Tree(Nar) — Nat — Nat — Nat)(Vn, m € Nat)
(k =<n,m>= (emax tk)= (gt nm) A (emin t k) = (1t nm))

Proof. By Tree(Nat)-induction and Theorem 4.2.6 B
Let prunemax and prunemin be the functions obtained via Proposition 3.1.1. We then have:

Lemma 4.2.8
(1) prunemaxtnm=n (evalmax t) "m (ii) prunemintnm = n U (evalmin t) N\ m

Proof. Fact 4.2.3(ii) and properties of max and min. »

Using Lemma 4.2.8 and Fact 4.2.3 we obtain the final program:

prunemax (Leaf a) n m = nuvuanm
prunemin (Leaf a) n m = nnawyum
prunemax (Node Nil) n m = n

prunemin (Node Nil) n m = m
prunemax (Node (Cons ¢ 1)) ng m
let n) = (prunemin t ng m) in if (n; = m) m (prunemax | nym)
prunemin (Node (Const)) nmy = |
let m) = (prunemax t n my) in if (eq my n) n (prunemin | n m;)

S Acknowledgements

Thanks as usual are owed to the members of the Essex Constructive Set Theory and Functional
Programming Group. Part of this work was carried out while I was a visiting fellow in the Depart-
ment of Computer Science at the University of Otago in New Zealand. I should like to take this

opportunity to extend my gratitude to my hosts for making my visit so worthwhile. This work was
supported by an SERC research grant: GR/F/02809.

6 References

[BiH87] Bird, R. S. & Hughes, J., The alpha-beta algorithm: an exercise in program trans-
formation, Inf. Proc. Lett., 24, pp 53-57, 1987.

[HeT88] Henson, M. C. & Turner, R., A constructive set theory for program development,
Proc. 8th Conf. on FST & TCS, Bangalore, LNCS 338, pp 329-347, Springer, 1988.

[(Hen88] Henson, M. C., Higher order transformations and type simulations, Comp. J.,
31(6), pp 517-524, 1988.

[Hen89a] Henson, M. C., Program development in the constructive set theory TK, Formal
Aspects of Computing, 1(2), pp 173-192, 1989.

[Hen89b] Henson, M. C., Realizability models for program construction, Proc. Conf. on
Mathematics of Program Construction, Gréningen, LNCS 375, pp 256-272, Springer, 1989.

[Hen89c] Henson, M. C., Transformational programming, type simulations and intensional
set theory, University of Essex, Department of Computer Science report, CSM-121, 1989.

[Hen92] Henson, M. C., Safe positive induction in the programming logic TK, in: Logic Pro-
gramming (ed. Voronkov, A.), LNCS 592, pp 215-231, Springer, 1992.

[Kle45] Kleene, S. C., On the interpretation of intuitionistic number theory, J. Symb. Logic,
10, pp 109-124, 1945.

[Mos74] Moschovakis, Y. N., Elementary induction on abstract structures. North Holland,
1974,

[Tur85] Turner, D. A, Miranda - A non-strict functional language with polymorphic types,
in: Proc. IFIP Int. Conf. on functional programming languages and computer architecture, Nancy,
LNCS 201, Springer Verlag, pp 445-472, 1985.

[Wan80] Wand, M., Continuation based transformation strategies, /. ACM, 27(1),
pp 164-180, 1980.

