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Abstract. We show how a theory of specification refinement and program development can be constructed
as a conservative extension of our existing logic for Z. The resulting system can be set up as a development
method for Z, or as a generalisation of a refinement calculus (with a novel semantics). In addition to the
technical development we illustrate how the theory can be used in practice.

1. Introduction

In this paper we will present a theory of specification refinement and implementation (and hence program)
development based on the schema calculus of Z. We will show how it can be constructed as a conservative
extension of our existing logic for Z (see [6], [7], [8]) and illustrate the use of the theory in practice with a
number of examples.
The basis of our approach is to model a specification as a set of legitimate implementations. Thus, when p
is a program (an implementation) and U is a specification, the proposition:

p A U

which is understood so that:
Jp A U K =df JpK ∈ JU K

expresses the claim that p correctly implements U .
Refinement is then simply containment:

JU0 w U1K =df JU0K ⊆ JU1K

In the approach we develop here, then, we take the unusual step of distinguishing between implementations
and specifications, eschewing the more common view that implementations are special cases of specifications
(e.g. [11]). This distinction, however, lives quite happily with the standard development methodology in which
only refinement appears explicitly. This will be as simple as observing that:

p A U ⇔ {p} w U

An immediate consequence of this distinction is that the relation of implementation becomes for us the basic
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notion, and the relation of refinement is then derived from that. This offers us the opportunity to investigate
a semantics for specifications which would not otherwise be available; moreover, as we will see, it possesses
very satisfactory mathematical and pragmatic properties.

1.1. The specification language and its logic

The specifications we wish to consider are, in general, schema expressions constructed in a similar manner
to the algebra of schemas of the specification language Z. This algebra is one of the major features of Z
and enables specifications to be presented and developed in a highly structured manner (see e.g. [13]). The
algebra becomes a schema calculus when the Z language is extended to a Z logic, as it does in the context of
our earlier work, cited earlier.
The main thrust of this paper is to develop an approach to program development by refinement in which
one may use an expressive language for specifications. The schema algebra of Z is an excellent example of
such a language, and we shall explain in detail how a logical theory of refinement can be combined smoothly
with the logic of the schema calculus.
Although our notation resembles Z, our technical contribution can be viewed in two significantly different
ways. Firstly, the work can be viewed as providing Z with an integrated logic of operation refinement and
program development. Secondly, we can view the atomic schema (the simplest specifications that do not
involve schema operators) as specification statements, as they appear in refinement calculus (e.g. [11]), albeit
with a modified syntax, but much more significantly, with a different (non weakest-precondition) semantics.
We will explore the technical issues at the point where the Z and refinement calculus threads part company
below in sections 3.2 and 3.3.1; in the latter section showing exactly the different semantics required for
atomic Z schemas and for specification statements. Our main focus, in fact, will be on the latter approach
(syntactic rather than logical preconditions), and our examples in section 6 will be based on this model.

1.2. The implementation language and its logic

An implementation of a specification, i.e. one of its members, will be a function with appropriate properties:
roughly it will be a function that takes any state satisfying the preconditions of the specification to a state
that satisfies its postconditions. The language we use to denote functions will be the λ-notation. Thus, the
language and logic for implementations will be a very general one, since the underlying language and the
criteria for being an implementation (and not just any function) are both very general, i.e. not tied to any
one view of implementation.
This generality can be exploited when we have a particular target programming language in mind as the
computational vehicle for our implementations. We can view the language of implementations rather as
we view the λ-notation in the context of denotational semantics, and so we can, on top of the (single)
logic of implementations, have a particular programming language with its semantics given in the usual
(denotational) way via a semantic function. Then, of course, we can derive rules for program development
in our target language via the implementation logic and the semantic function.
Thus, the logic of specifications and implementations we give here can be specialised to a variety target
programming languages. We give an example of this for a simple imperative language in section 5 below,
and our worked examples in section 6 will be based on that.

1.3. Related Work

The point of departure for much of the relevant related work is the observation that Z is a specification
language which lacks a program development method, whereas the refinement calculus is a programming
development method lacking an expressive specification language. It is perhaps unsurprising that such related
work aims to connect these two frameworks in order to provide that which each alone lacks.
Perhaps the earliest attempt at a synthesis along these lines was that of King [9] and the most recent,
comprehensive and formal approach, ZRC, due to Cavalcanti and Woodcock [1] [2]. In this work, Z is
provided with a weakest precondition semantics equivalent to its standard relational semantics, and as
a result can be integrated with the specification statement and refinement calculus more generally. The
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passage from Z to specification statements is mediated by the conversion law bC which can be proved sound
in view of the uniform semantics. ZRC has refinement laws involving schema operators, such as conjunction
and disjunction, but with stringent and unwelcome sideconditions. These are a consequence of the weakest
precondition semantics: recall that the semantics of the specification statement ensures that observations
outside the frame must remain unchanged. This does not fit in well with schema expressions in Z in which
the atomic schema components may have disjoint or overlapping (rather than equal) alphabets. Indeed, a
major motivation for us in adopting the semantics we have employed is that it is a much more appropriate
basis for the refinement of Z specifications. Groves [4] considers the conjunction of specification statements
and introduces special technical devices in order to address the problem of non-equal frames. Our semantic
basis does not force observations outside the alphabet of a schema to remain unchanged and, consequently,
no special measures need be taken in order to handle schema expressions involving non-equal alphabets.
We also take work investigating program development within constructive theories as a natural precursor to
our own. Although ZC is a classical system, the work reported here grew out of earlier investigations based
on constructive logic (see [5] for example). Indeed, the idea of basing a program development framework
upon a relation of membership, while unfamiliar in classical approaches such as the refinement calculus, is
fundamental to approaches based on constructive systems. For example, Martin-Löf made the observation [10]
that the judgement a : A, in his theory of types, could be read either as “a is a proof of the proposition A” or
alternatively as “a is a program that meets the specification A”; this gave initial impetus to the entire research
area. The advantages of constructive program development include very natural and powerful methods for
developing recursive programs inductively. On the other hand, the specification language, while powerful, is
not expressive: specifications are essentially Π0

2 statements. Additionally, the natural programming notation
for this approach to program development is functional rather than imperative.
What we hope to illustrate in this paper is that our approach builds on the advantages of earlier approaches
and avoids some of their limitations. We retain, for example, the powerful links between induction and
recursion from constructive approaches, while at the same time permitting imperative program development.
We also retain the essential core of the refinement calculus (albeit based on a novel, alternative semantics)
while permitting a much more expressive specification language. Moreover, as we explained earlier, we offer
our alternative semantics as a more satisfactory basis for this generalised specification language.

1.4. Organisation and summary of the paper

The paper is organised as follows. In section 2 we provide an overview of the logic of the state schema
calculus. This logic is a conservative extension of the basis logic ZC . Full details may be found in [8] though,
for convenience, we have included a summary in appendix A. The appendix also contains useful information
regarding the notation we have employed in the paper.
In section 3 we describe our semantics for operation schemas, since in this framework the semantics is
distinct from that of the state schema calculus. In particular, we will explore the issues which separate Z
operation schemas from the specification statements of the refinement calculus and provide semantics for
both approaches. Alongside the semantics, we provide full technical details of our operation schema logic (or
calculus). In addition to the usual methods for combining schemas, we introduce novel operations of schema
abstraction and schema application which are critical for the development of procedures.
Section 4 is devoted to the logic of refinement. Here we will establish and explore an inequational logic of
refinement covering the entire operation schema calculus.
In section 5 we develop one possible, and very simple, application of the framework. We describe a sim-
ple programming language, establish its semantics in the underlying logic ZC and then link programs to
specifications through the general notions of refinement and implementation. This leads to a battery of im-
plementation rules tailored to the programming language in question. It should be noted that this language
is but one simple application of the framework we established in the previous sections.
Section 6 is devoted to simple examples. We do not provide large and complex examples, merely illustrat-
ing the theory and its application to the simple programming language PN. We do, however, demonstrate
some aspects of specification, refinement and program development using the schema logic, including simple
examples of promotion.
The paper finishes with some concluding remarks, indications for future work, acknowledgements, references
and an appendix on the core logic ZC .
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2. The state schema calculus

In this section and section 3 below, we extend the core specification logic ZC to cover the language of Z
schemas. In this paper, and in contrast to our earlier work, we distinguish state schemas and operation
schemas. The methods we adopt here for the state schema calculus are those we have previously introduced
and, since the details have been thoroughly investigated before, we now present an overview. The reader is
invited to consult [8] for a comprehensive treatment. The explanation of unfamiliar notation, and further
details of the underlying logic ZC , are give in appendix A

2.1. State schema sets and atomic state schemas

Let T = [· · · zi : Ti · · ·]; then the syntax of basic state schemas is:

SP T ::= [· · · zi : CTi
i · · ·] | [SP T | P ]

These are the state schema sets and atomic state schemas respectively. As usual, we will write schemas of the
form: [[· · · zi : Ci · · ·] | P ] as [· · · zi : Ci · · · | P ]. We allow the obvious generalisation of our alphabet operator
to atomic state schemas and state schema sets: α[S | P ] =df αS and α[· · · zi : CTi

i · · ·] =df α[· · · zi : Ti · · ·].
Note that, as in our earlier work, observations may occur as constants of the appropriate type in propositions
occurring in schemas. In the rules below it is clear that such constants become bona fide terms (leading to
bona fide propositions) in the core logic ZC when eliminated from schemas: a schema proposition P becomes
z .P and so forth. This is, as we will see in detail later in the paper, a very similar phenomenon to the
appearance of program variables in a program when, in the underlying logic, these variables naturally refer
to values in a certain (implicit) state.
The rules for schema sets are:

· · · ti ∈ Ci · · ·
〈| · · · ziVti · · · |〉 ∈ [· · · zi : Ci · · ·]

([]+)
t ∈ [· · · zi : Ci · · ·]

t .zi ∈ Ci
([]−)

and, for atomic schemas:

t ∈ S t .P
t ∈ [S | P ]

(S+)
t ∈ [S | P ]

t ∈ S
(S−

 )
t ∈ [S | P ]

t .P
(S−

 )

2.2. State schema disjunction

When the schemas S0 and S1 have the types P T0 and P T1, the schema expression S0 ∨ S1 has the type
P(T0 g T1).

t
.
∈ S0

t ∈ S0 ∨ S1

(S+
∨

) t
.
∈ S1

t ∈ S0 ∨ S1

(S+
∨

)

t ∈ S0 ∨ S1 t
.
∈ S0 ` P t

.
∈ S1 ` P

P
(S−

∨ )

2.3. State schema conjunction

When the schemas S0 and S1 have the types P T0 and P T1, the schema expression S0 ∧ S1 has the type
P(T0 g T1).

t
.
∈ S0 t

.
∈ S1

t ∈ S0 ∧ S1

(S+
∧ )

t ∈ S0 ∧ S1

t
.
∈ S0

(S−
∧

)
t ∈ S0 ∧ S1

t
.
∈ S1

(S−
∧

)
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2.4. State schema inclusion

In addition our notion of atomic schemas combines with schema conjunction to provide an immediate treat-
ment of schema inclusion by interpreting the separation of declarations in a schema as schema conjunction.
For example, the schema [z : T ; S | P ] is just [[z : T ] ∧ S | P ] and so on.

2.5. State schema existential hiding

If the schemas S0 and S1 have the types P T0 and P T1 with T0 � T1, then the type of the schema expression
∃S0 • S1 is P(T1 − T0).

t ∈ SP T1
1 t

.
∈ SP T0

0 T0 � T1

t
.
∈ ∃S0 • S1

(∃S+)

t ∈ ∃S0 • S1 x ∈ S1, x
.
∈ S0, x

.= t ` P
P

(∃S−)

2.6. State schema preconditions

In our logic, we give a simple and comprehensive definition for the precondition of arbitrary state schema
expressions rather than the usual somewhat complex syntactic account. The introduction and elimination
rules are as follows:

z0 ? z ′1 ∈ S
Pre S z0

(Pre+)

Pre S z z ? y ` P
P

(Pre−)

3. The operation schema calculus

3.1. Priming and Querying

In introducing operation schemas we will, of course, need to refer to special distinguished observations
corresponding to values in an after state, and to inputs.1 Our notational conventions concerning observations
are necessarily very precise and they not quite usual, so we will explain them carefully here.
Suppose that Ob = {z0, z1, · · ·} is the set of all before observations. We set up the set Ob′ = {z′0, z′1, · · ·} of
all after observations with the prime also denoting an obvious bijective mapping between these two sets: so
that z′′ = z and so on. We will refer to z and z′ as co-observations. The priming bijection can be extended
to bindings in an obvious way: 〈| · · · ziVvi · · · |〉′ = 〈| · · · z′iVvi · · · |〉.
We take labels such as z?, which traditionally denote input observations, as certain elements of Ob, since
they are before observations. Note, though, that there are corresponding labels z?′, and so on, in Ob′. But
we will only ever treat labels of this form as input observations: the primed versions are superfluous and will
never be used.
This somewhat tedious attention to detail does have major benefits in the sequel, allowing us to present a
much simpler programming logic than would be the case if we treated, as is more common, priming and
querying as distinct forms of syntactic decoration for labels.

1 Outputs observations (e.g. z!) can also be handled by a simple extension of the methods described here; but we will not need
outputs in this paper.
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3.2. Preconditions and Postconditions

There are two possible approaches to preconditions: the syntactic approach offered by B, Morgan’s refinement
calculus and very many others; and the logical approach adopted by Z. The latter is essentially a postcondition
only approach, in which one induces the weakest condition consistent with meeting the postcondition. If one
is content to use Z for specification and design, the logical approach has much to recommend it. On the other
hand, if one wishes to derive programs, there are many circumstances in which logical preconditions impose
a serious burden: the task of discharging them is, in the worst case, equivalent to deriving a program. Whilst
there may be trivial methods in some cases, often there are not. For example, in deriving a sorting algorithm,
discharging the logical precondition of the specification requires a demonstration that sorted permutations
always exist: but this may be equivalent to the task of deriving a sorting algorithm.
As we indicated in the introduction to this paper, our framework may be set up using either approach, so
the partisan may choose quite freely between a system based on either logical or syntactic preconditions.
The main focus in this paper will be to explore, in depth, the case in which atomic operation schemas have
syntactic preconditions: the case more reminiscent of the refinement calculus. We will also indicate how the
framework may be set up with the usual logical precondition approach of Z. This turns out to be as simple
as changing just one clause in the semantics for operation schemas.
In this paper, then, operation schemas will have the following general structure:

Op
T

Pre

Post

We insist that Pre, the precondition, may only refer to observations on the input state and input observations
listed amongst the schema declarations. There need be no restriction on the observations permitted in Post ,
the postcondition. A notational convention simplifies matters: if the precondition is true then that section
of the schema can be omitted. One must take some care, however, because specifications written to look like
standard Z will not necessarily have equivalent syntactic and logical preconditions. We tend to retain the new
dividing line in elaborating the theory, however, for clarity of presentation.
T , in this context, must always be a schema type and always has the form T in g T out′ where T in contains
declarations of all before observations and T out′ contains declarations of all after observations. We will also
need to refer to T out , the co-observations of T out′ .
Of course, it would be possible to display atomic schemas of this form in a syntactic guise more reminiscent
of the refinement calculus:

Op = w : [Pre,Post ]
with the frame w listing those observations introduced in T above (and other fairly tedious syntactic ad-
justments which distinguish the Z and refinement calculus approaches to indicating before and after state
observations, see e.g. [9]). We have decided not to do this for one particularly important reason concerning
the solution the refinement calculus adopts towards the frame problem: our semantics deliberately approaches
this in a novel way in order to better integrate refinement with the schema algebra (see especially proposition
4.2 below). We fear that the standard syntax for specification statements is so bound up with its standard
semantics (with the corresponding expand frame law, see e.g. [11]) as to be potentially confusing. But of
course this is, ultimately, simply a matter of syntax and notation, and the paper, or future work, could just
as easily be presented in terms of specification statements.

3.3. Logic and semantics

We can now relate functions and specifications. As we promised, the interpretation of operation schemas is to
be the set of functions which implement it; consequently the implementation relation is simply membership:2

2 At this point, then, the implementation relation ( A ) associates a function with a specification (text). Later, the implemen-
tation relation will become purely linguistic, associating a program (text) with a specification (text).
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Definition 3.1.
f A U =df f ∈ JU K

Here, U is an operation schema expression and the semantic function denoted by the brackets is defined by
induction over the structure of schema expressions in the following sections. Implementations, such as f , are
transformations of a global state W. This schema type may vary according to the programming logic one
wishes to establish and essentially determines a sufficiently large universe of observations. That is, all other
(before state) schema types are taken to be subtypes under the relation �. The precise characterisation of
W will play no role in program development and is introduced much the same way that some sufficiently
large set z of locations would be chosen to provide the denotational semantics of an imperative programming
language; indeed we will see, in section 5 below, that W will also play this role.
Refinement of specifications, as we have previously indicated, is the subset relation on sets of implementations:

Definition 3.2.
U0 w U1 =df JU0K ⊆W→W JU1K

Proposition 3.3. The following rules are derivable:
f A U0 ` f A U1

U0 w U1
(w+)

and:
U0 w U1 f A U0

f A U1
(w−)

That is: refinement preserves implementation.
We shall need a conditioned version of the implements relation for situations in which we consider choice.

Definition 3.4.
f AC U =df ∃ g A U • g =C f

We also permit the following idiom:
f AP U =df f A {z |z .P}U

The rules are immediate:

Proposition 3.5. The following introduction and elimination rules for conditioned implementation are
derivable.

g A U g =C f
f A CU

f A CU y A U , y =C f ` P
P

3.3.1. Atomic operation schemas

We begin with the atomic operation schemas.

Definition 3.6.
J[T | P | Q ]K =df {f ∈ W → W | ∀ zW • z .P ⇒ z .(f z )′.Q}

Note that the domain and range of the functions extend the observations made explicit in the schema. In
particular, given our description of the global state W above, there is an assumption that T � W g W′.
Furthermore, under this definition, the implementations may effect arbitrary transformations of those values
which are outside the precondition of the schema, or even outside its alphabet αT in . This second point is
crucial, and, as we indicated earlier, distinguishes our approach from those, like Morgan’s refinement calculus
[11], for which a stronger frame axiom holds. See proposition 4.2 in section 4.1 below.
Finally, note that implementations are, naturally, transformations from W to W whereas the specification, as
is usual in Z notation, establishes a connection between observations in W and observations in W′ (note the
prime). The reader should recall that priming establishes a bijection between before and after observations,
and as a consequence the term (f z )′ is a binding in W′ as required.
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Proposition 3.7. The following rules are derivable for implementation of atomic operation schemas:

z .P ` z .t ′.Q
λz • t A [T | P | Q ]

(A+)

and:
f A [T | P | Q ] t .P

t .(f t)′.Q
(A−)

As we indicated in the introduction, and then discussed in section 3.2, our framework can be set up using
standard, single predicate, Z operation schemas. The semantics of operation schemas would modified as
follows:

Definition 3.8. Let U be an atomic schema of the form [T | P ].

JU K =df {f ∈ W → W | ∀ zW • Pre U z ⇒ z ? (f z )′ ∈ U }
In this definition Pre U z holds if z is a binding in the precondition of the schema U (see [8]). The same
relaxed frame axiom applies in this interpretation. The basic rules are, however, slightly different:

Proposition 3.9. The following rules are derivable for implementation of atomic operation schemas of
standard Z form:

Pre [T | P ] z ` z ? t ′ ∈ [T | P ]
λz • t A [T | P ]

(A+)

and:
f A [T | P ] Pre [T | P ] t

t ? (f t)′ ∈ [T | P ]
(A−)

As usual, we permit declarations which involve sets rather than simply types. We find it clearer, and more
systematic, to use the colon exclusively for type judgements and the membership relation exclusively for set
membership judgements, so our notation for these more general declarations is not standard.

Definition 3.10.

[x , x ′ ∈ C P T | P | Q ] =df [x , x ′ : T | x ∈ C ∧ P | x ′ ∈ C ∧ Q ]

This definition, in fact, describes only a simple case of the notational device. The general version is easy to
construct, though much less easy to read. The reader should have no difficulty with more general circum-
stances.

3.3.2. Freezing frames

In this section we introduce an operation for freezing the values of observations across an operation schema.
This will be an important operation in establishing reasonable programming logics and provides a natural
reasoning technique in our more permissive regime in which the strong frame expansion axiom does not hold.
The schema:

Ψx : T • U
is that set of implementations in U for which the value of the observation x does not change.

Definition 3.11.
JΨx : T • U K =df {f ∈ JU K | ∀ zW • (f z ).x = z .x}

Naturally, this can be generalised to arbitrary lists of observations by means of:

Ψx0 : T0, x1 : T1 · · · xn : Tn • U =df Ψx0 : T0 • (Ψx1 : T1 · · · xn : Tn • U )

Note that we obviously have:
Ψx : T • U w U
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But we will be especially interested in establishing conditions under which this can be strengthened to an
equivalence.

3.3.3. Operation schema conjunction and disjunctive choice

The definition of conjunction is both obvious and simple.

Definition 3.12.
JU0 ∧ U1K =df JU0K ∩W JU1K

Proposition 3.13. The following rules are derivable for operation schema conjunction:

f A U0 f A U1

f A U0 ∧ U1

( A +
∧ )

f A U0 ∧ U1

f A U0

( A −
∧

)
f A U0 ∧ U1

f A U1

( A −
∧

)

This definition, despite its simplicity, has rather complex properties. Naturally, it covers the case where
we wish to ensure that an implementation meets two conditions. However that is ambiguous: there is a
conjunctive interpretation when those conditions have to be met over a common domain, that is, when the
preconditions of the component schemas are consistent (they overlap as sets of states); there is also a disjunc-
tive interpretation when the preconditions are contradictory (distinct sets of states): such implementations
are choices, or conditionals.
We will see this more clearly below in section 4.2 when we see the range of refinement inequations which
follow from this definition. For notational clarity we will write the connective as a disjunction in those
circumstances in which the preconditions of the component schemas are contradictory.

3.3.4. Operation schema existential quantification

We give the semantics for hiding two labels related by priming.

Definition 3.14.
J∃ z, z′ : C • U K =df {f | ∃ g ∈ JU K • f = λ σ • (gσ)[z/σ.z]}

The definition ensures that the meaning is the set of implementations of U which ensure that the value of
the observation z is left unchanged. This means that its unprimed and primed values remain the same, which
is enforced by the substitution [z/σ.z].

Proposition 3.15. The following rules are derivable:

g A U f = λσ • (g σ)[z/σ.z]
f A ∃ z, z′ : C • U

( A +
∃ )

f A ∃ z, z′ : C • U y A U , f = λσ • (yσ)[z/σ.z]`P
P

( A −
∃ )

By analogy with ordinary quantification, which introduces the terms bound and free with respect to variables,
we introduce the terms hidden and visible for this form of quantification with respect to observations. These
terms can be extended to derivations, so that we will say that occurrences of the observations x and x′ are
hidden in a derivation whose conclusion is ∃ x, x′ • U (otherwise they are visible).

3.3.5. Operation schema composition

Definition 3.16.
JU0

o
9 U1K =df {f | ∃ f0 ∈ JU0K • ∃ f1 ∈ JU1K • f = f0 ◦ f1}
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Proposition 3.17. The following rules are derivable:

f0 A U0 f1 A U1

f0 ◦ f1 A U0
o
9 U1

( A +
o
9
)

f0 ◦ f1 A U0
o
9 U1 y0 A U0, y1 A U1, f = y0 ◦ y1` P

P
( A −

o
9

)

3.3.6. Operation schema abstraction and application

We need to introduce notions of schema abstraction and application in order to deal with program develop-
ment using procedure definitions and procedure calls. In order to provide a semantics for these new objects
we first introduce a mechanism for currying and uncurrying functions over the global state W. This requires
a generalisation of the standard concepts from cartesian products to schema types.
First of all we fix [z : T ] to be some subtype of W. This may be expressed by the following equation:

W = W− g [z : T ]

For notational convenience we use σ to range over W.

Definition 3.18. Let f ∈ W → W. We define

curry[z:T] f ∈ T → W → W

by means of
curry[z:T] f tT σ =df f σ[z/t ]

This enables us to curry operation schemas.3

Definition 3.19. Let C ∈ P(W → W).

curry[z:T] C =df {curry[z:T] f | f ∈ C}

We are now in a position to provide the semantics for schema abstractions:

Definition 3.20.
Jλz : T • U K =df curry[z:T] JU K

Note that objects of the form λz : T • U are not operation schemas (they have the wrong type). However,
we may define a new form of operation schema by applying schema abstractions to appropriate arguments.

Definition 3.21. For any schema abstraction η and term t of appropriate types:

Jη[t ]K =df {λσ • f (σ.t) σ | f ∈ JηK}

Finally we require the inverse operation of uncurrying.

Definition 3.22. Let f ∈ T → W → W. We define:

uncurry[z:T]f ∈ W → W

by means of
uncurry[z:T]f σ = f σ.z σ

We are able to prove a beta-like equation for our lambda abstraction and application over operation schemas.
First we need to introduce a syntactic notion of substitution for atomic operation schemas.

3 We use standard informal set definitions here (complex expressions where the bound variable should be used) as they are
easier to read than the strictly formal notation which requires use of the existential quantifier. In the proofs based on these
definitions, the reader will see the strictly formal versions.
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Definition 3.23. Let t be a term such that αt and αD are disjoint, and let D0 be the declaration corre-
sponding to the alphabet of observations αt .

[D | P | Q ][z/t ] = [D ; D0 | P [z/t ] | Q [z/t ]]

With this in place we can move on to beta-reduction.

Proposition 3.24. Let U =df [D | P | Q ].

(λz • U )[t ] = U [z/t ]

Proof.
J(λz • U )[t ]K =
{g | ∃ f • g = λσ • f (σ.t) σ ∧ f ∈ Jλz • U K} =
{g | ∃ f • g = λσ • f (σ.t) σ ∧ ∃ h • f = curryzh ∧ h ∈ JU K} =
{g | ∃ f , h • g = λσ • f (σ.t) σ ∧ f = curryzh ∧ h ∈ JU K} =
{g | ∃ h • g = λσ • curryzh (σ.t) σ ∧ h ∈ JU K} =
{g | ∃ h • g = λσ • h σ[z/σ.t ] ∧ h ∈ {f | ∀σ • σ.P ⇒ σ.(f σ)′.Q}} =
{g | ∃ h • g = λσ • h σ[z/σ.t ] ∧ ∀σ • σ.P ⇒ σ.(h σ)′.Q} =
{g | ∀σ • σ.P [z/t ] ⇒ σ.(g σ)′.Q [z/t ]} =

The last of these steps makes use, in one direction, of the following:

∀σ • σ.P ⇒ σ.(h σ)′.Q ⇒
σ[z/σ.t ].P ⇒ σ[z/σ.t ].(h σ[z/σ.t ])′.Q ⇔ (lemma A.1)
σ.P [z/t ] ⇒ σ.(h σ[z/σ.t ])′.Q [z/t ] ⇔
∀σ • σ.P [z/t ] ⇒ σ.(h σ[z/σ.t ])′.Q [z/t ]

Definition 3.23 can easily generalised to arbitrary schema expressions by recursion over their structure. Then
we have the following.

Proposition 3.25.
(λz • U )[t ] = U [z/t ]

Proof. By induction over the structure of U with proposition 3.24 supplying the base case. We will refer
to this equation, when used left to right, as β-reduction.

We will drop the target observation in substitutions, and the types in schema abstractions, when these are
clear from the context.

4. Refinement Logic

4.1. Basic inequations

The following inequations for refinement are derivable:

Proposition 4.1. Weakening preconditions:
(i)

zT in

.P1 ` z .P0

[T | P0 | P ] w [T | P1 | P ]
(w+

pre)

Strengthening postconditions:
(ii)

zT .P0 ` z .P1

[T | P | P0] w [T | P | P1]
(w+

post)

Additionally, we have the following expand frame rule:
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Proposition 4.2.

[T0; T1 | P | Q ] = [T0 | P | Q ]
(exp)

Note that these schemas are equal, that is they are the same set of implementations. This is very different
from the situation in, for example, [11] in which implementations may not change the values of observations
outside the frame. Our law indicates that a program which implements a specification is unconstrained
both outside the specification’s precondition and outside its frame. This is much more convenient when
specifications may be constructed using schema operations such as conjunction in which the frames do not
necessarily coincide, as we explained above in the introduction and in sections 3.2 and 3.3.1 above.
Naturally there are consequences of our more relaxed regime, since stability outside the alphabet (or frame)
cannot be assumed. This is where the frame freezing operation becomes important, so important in fact that
we introduce a constraint on programming logics built on our framework:

Principle 4.3. All programming logics should satisfy the frame freezing principle: Whenever δ is a deriva-
tion with conclusion p A U and x′ an observation such that x′ is not visible in δ, then p A Ψx : T • U .

4.2. Conjunction and choice logic

Our first inequation expresses the conjunctive behaviour of the connective.

Proposition 4.4.

[T0 | P0 | Q0] ∧ [T1 | P1 | Q1] w [T0 g T1 | P0 ∧ P1 | Q0 ∧ Q1]

Proof. We treat the equation as:
U0 ∧ U1 w U

Then:

f A U0 ∧ U1

f A U0

z .P0 ∧ z .P1
1

z .P0

z .(f z )′.Q0

f A U0 ∧ U1

f A U1

z .P0 ∧ z .P1
1

z .P1

z .(f z )′.Q1

z .(f z )′.(Q0 ∧ Q1)
f ∈ U 1

In this derivation, and those that now follow, we have omitted steps that involve merely rewriting by
substitution, for example, steps using the identity z .(P0 ∧ P1) = z .P0 ∧ z .P1.

Proposition 4.5.

[T0 g T1 | P0 ∨ P1 | Q0 ∧ Q1] w [T0 | P0 | Q0] ∧ [T1 | P1 | Q1]

Proof. We treat the equation as:
U w U0 ∧ U1

Then:

f A U
z .P0

1

z .(P0 ∨ P1)
z .(f z )′.Q0 ∧ z .(f z )′.Q1

z .(f z )′.Q0

f A U0
1

f A U
z .P1

2

z .(P0 ∨ P1)
z .(f z )′.Q0 ∧ z .(f z )′.Q1

z .(f z )′.Q1

f A U1
2

f A U0 ∧ U1

The final inequation expresses the disjunctive choice inherent in the connective.
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Proposition 4.6.

[T0 | P0 | Q0] ∧ [T1 | P1 | Q1] w [T0 g T1 | P0 ∨ P1 | Q0 ∨ Q1]

Proof. We treat the equation as:
U0 ∧ U1 w U

Then:

z .P0 ∨ z .P1
()

f A U0 ∧ U1

f A U0 z .P0
()

z .(f z )′.Q0

z .(f z )′.(Q0 ∨ Q1)

f A U0 ∧ U1

f A U1 z .P1
()

z .(f z )′.Q1

z .(f z )′.(Q0 ∨ Q1)
z .(f z )′.(Q0 ∨ Q1)

()

f A U
()

Conjunction is monotonic with respect to refinement.

Proposition 4.7.
U0 w U1

U0 ∧ U w U1 ∧ U

4.3. Composition logic

For simplicity of presentation we consider a special case. This is easily generalised.

Proposition 4.8.
[x, x′ : T | P0 | Q0] o

9 [x, x′ : T | P1 | Q1] w
[x, x′ : T | P0 ∧ ∀ u : T • Q0[x′/u] ⇒ P1[x/u] | ∃ v : T • Q0[x′/v ] ∧ Q1[x/v ]]

Proof. Treat the equation as:
U0

o
9 U1 w U

Then:

f A U0
o
9 U1

f = y0
o
9 y1

1

δ0....
y1 A U1

1

δ0....

δ1....
(y0 z ).P1

(y0 z ).(y1 (y0 z ))′.Q1

z .(y0 z )′.Q0 ∧ (y0 z ).(y1 (y0 z ))′.Q1

z .(y1 (y0 z ))′.∃ u : T • Q0[x′/u] ∧ Q1[x/u]
y0

o
9 y1 A U 2

f A U
f A U 1

where δ0 is:

y0 A U0
1

z .P0 ∧ z .∀ u : T • Q0[x′/u] ⇒ P1[x/u]
2

z .P0

z .(y0 z )′.Q0

and δ1 is:

z .P0 ∧ z .∀ u : T • Q0[x′/u] ⇒ P1[x/u]
2

z .(y0 z )′.Q0 ⇒ (y0 z ).P1
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Composition is monotonic with respect to refinement:

Proposition 4.9.

U0 w U2 U1 w U3

U0
o
9 U1 w U2

o
9 U3

4.4. Existential hiding logic

Here we state and prove two refinement rules involving hiding.

Proposition 4.10.

∃ x, x′ : T • [x, x′ : T ; D | P | Q ] w

[D | ∃ u : T • P [x/u] | ∃ u, v : T • Q [x, x′/u, v ]]

Proof.

∃ g A U0 • f = λz • (g z )[x/z .x]
def

δ....
z .(f z )′.∃ u, v : T • Q [x, x′/u, v ]

f A U1
2

f A U1
1

where δ, putting t = λz • (y z )[x/z .x], is:

f = t 1
z .∃ u : T • P [x/u]

2

y A U0
1 z .P [x/w ]

3

z .(y z )′.Q [x/w ]
z .(y z )′.∃ u, v : T • Q [x/w ][w , x′/u, v ]

z .(y z )′.∃ u, v : T • Q [x, x′/u, v ]
z .(y z )′[x′/z .x].∃ u, v : T • Q [x, x′/u, v ]

z .(t z )′.∃ u, v : T • Q [x, x′/u, v ]
z .(t z )′.∃ u, v : T • Q [x, x′/u, v ]

3

z .(f z )′.∃ u, v : T • Q [x, x′/u, v ]

Proposition 4.11.

∃ x, x′ : T • [x, x′ : T ; D | P | Q ] w

[D | ∀ u : T • P [x/u] | ∃ u, v : T • Q [x, x′/u, v ]]

Proof.

∃ g A U0 • f = λz • (g z )[x/z .x]
def

δ....
z .(f z )′.∃ u, v : T • Q [x, x′/u, v ]

f A U1
2

f A U1
1
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where δ is:

f = λz • (y z )[x/z .x]

y A U0
1

z .∀ u : T • P [x/u]
2

z .P
z .(y z )′.Q

z .((y z )[x/z .x])′.∃ u, v : T • Q [x, x′/u, v ]
z .(f z )′.∃ u, v : T • Q [x, x′/u, v ]

1

Existential quantification is monotonic with respect to refinement:

Proposition 4.12.
U0 w U1

∃ z : T • U0 w ∃ z : T • U1

Our final rule allows the introduction of hidden state. It is analogous to a rule for introducing a local variable
in refinement calculus (e.g. [11]).

Proposition 4.13. The following rule is derivable. Let y and y’ be fresh observations:

∃ u, v : T • Q1

∃ y, y′ : T • [D ; y, y′ : T | P | Q0 ∧ Q1[u, v/y, y′]] w [D | P | Q0]

Proof. Since, by the premise, we know that ∃ u, v : T • Q1 holds, we may infer that:

[D | P | Q0] = [D | P | Q0 ∧ ∃ u, v : T • Q1]

We may move the quantifier without loss of generality giving us:

[D | P | Q0] = [D | P | ∃ u, v : T • Q0 ∧ Q1]

Then we use 4.11 to obtain:

∃ y, y′ : T • [D ; y, y′ : T | P | Q0 ∧ Q1[u, v/y, y′]]

as required. Note that y is fresh, so does not occur in P in particular, and so:

P ⇔ ∀ u : T • P [y/u]

in this case.

5. An Example Programming logic

Given our logic for specification implementation above, we can, as promised, now specialize this for some
target programming language. We choose a typical imperative language in what follows.

5.1. The programming language PN

PN is a very simple language for computing over the natural numbers. As a consequence of our mathematical
treatment of schema types, and our insistence that observations in Z are constants, we can model the variables
of our programming language directly as (unprimed) observations.
A command will correspond directly to an implementation of a specification, and so its meaning will be a
transformation of the global state W. We will reserve the symbol σ (with, if necessary, diacritical additions)
for bindings that range over the global state. The semantics of programs, then, amounts to a translation
into the term language of ZC . For technical reasons, which will be evident when we consider the semantics
of recursive procedures, we will permit ZC variables of appropriate type (for example the type W → W
that represents commands) to appear in the programming language. As might be expected, these variables
translate to themselves under the semantic function, for example:

q
vW→Wy

= v .



16 M. C. Henson and S. Reeves

Our simplest command is skip, which as usual leaves the state unchanged:

JskipK σ =df σ

Next we have simultaneous assignment:

J· · · xi · · · := · · · expi · · ·Kσ =df σ[· · · xi/ JexpiKσ · · ·]

Command sequencing is obviously composition of state transformations:

Jcmd0; cmd1K =df Jcmd1K ◦ Jcmd0K

Blocks introduce local hidden state:

Jbegin var x; cmd endKσ =df (JcmdKσ)[x/σ.x]

We permit a conditional command:

Jif exp then cmd0 else cmd1Kσ =df elimB(JexpKσ)(Jcmd0Kσ)(Jcmd1Kσ)

Simple procedures are quite straightforward because our model of the state combines both ordinary variables
and input parameters.

Jproc p[z] cmdK =df JcmdK
For simple procedures we have the following straightforward result.

Lemma 5.1.
Jp[exp]K = Jcmd [z/exp]K

Note that the syntactic substitution replaces programming language variables by expressions (right-values).
Since the programming language contains an assignment statement we should point out that though this
notion of substitution is otherwise obvious, we do not, of course, replace left-value instances of z by the
expression.
We also wish to provide simple primitive recursive procedures.

Jproc p[z] cases z in 0 : cmd0 | m + 1 : cmd1 endcasesK =df

uncurryz(elimN Jcmd0K (λn • λv • Jcmd1[m/n][p[m]/v ]K))
And finally procedure calls:

Jp[exp]K σ =df curryz JpK (JexpKσ) σ

The expressions of PN are given as follows:

exp ::= True | False | exp = exp · · · etc.
| 0 | 1 | 2 · · · etc. | exp + exp · · · etc.
| x | y | z · · · etc.

The semantics of expressions (their value in a state) is very straightforward since the syntax is arranged to
pick out a subset of the syntax of the language of predicates that may appear in a Z schema.

JexpKσ =df σ.exp
Having now completed the semantics for the programming language we can finally make good the semantics
for the implementation relation:

Jcmd A U K =df JcmdK ∈ JU K
It is now possible to introduce a number of rules for program development specifically for PN.

5.2. Skip

Trivially, we have rules for the skip command.
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Proposition 5.2. The following rules are derivable for the skip command:

skip A [D | P | Q ] σ.P
σ.σ′.Q

( A −
skip) σ.P ` σ.σ′.Q

skip A [D | P | Q ]
( A +

skip)

Proof.

skip σ = σ

skip A U σ.P
σ.(skip σ)′.Q

σ.σ′.Q
and:

skip σ = σ

σ.P....
σ.σ′.Q

σ.(skip σ)′.Q
skip A U

Recall that σ′ is not a variable with a diacritical prime, but a term: the variable σ subject to the priming
operation. Thus σ and σ′ are the same binding (global state) modulo the priming of their observations.
We can also show that skip acts as a left and right identity for composition, for example:

cmd ; skip A U
cmd A U

( A id−
skip)

5.3. Assignment

Proposition 5.3. The following rule (in which no after state identifier may occur in the expressions expi)
is derivable for simultaneous assignment to the variables xi :

σ.P ` σ.σ[· · · xi/σ.expi · · ·]′.Q
· · · xi · · · := · · · expi · · · A [· · · xi , x′i · · · : N ; D | P | Q ]

( A +
:= )

5.4. Conditional

Proposition 5.4.
(i) if exp then cmd0 else cmd1 =exp cmd0

(ii) if exp then cmd0 else cmd1 =¬exp cmd1

An introduction rule for conditional commands:

Proposition 5.5.
cmd0 A expU0 cmd1 A ¬expU1

if exp then cmd0 else cmd1 A U0 ∧ U1

( A +
if )

Proof. We will write c for if exp then cmd0 else cmd1, c0 for cmd0, c1 for cmd1 and e for exp.

cmd0 A expU0 c =exp cmd0
(.)(i)

c A U0

cmd1 A ¬expU1 c =¬exp cmd1
(.)(ii)

c A U1

c A U0 ∧ U1
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5.5. Sequencing

Given the semantics of sequencing in the programming language and that of composition of specifications
in the specification language we obtain the following directly:

Proposition 5.6.
cmd0 A U0 cmd1 A U1

cmd0 ; cmd1 A U0
o
9 U1

( A +
; )

5.6. Blocks

The implementation of existentially quantified operation schemas, concerned as they are with hiding obser-
vations, will be implemented by the block or the introduction of local program variables which, on leaving
the block, are returned to their previous denotations. We have, for each programming language variable (Z
observation) z:

Proposition 5.7.
cmd A U

begin var z ; cmd end A ∃ z, z′ : N • U
( A +

block)

5.7. Procedures

5.7.1. Non-recursive procedures

In this section we only deal with the simpler non-recursive case, beginning with an introduction rule.

Proposition 5.8. Let n be a fresh programming language variable. Then:

p[n] A (λz : N • U )[n]
p A U

Proof. In the proof we omit the typing information (for z and σ and so on) since it is clear from the
context and simplifies the presentation. Since p is a simple non-recursive procedure we assume it has the
following form: proc p[z] cmd . Note that Jp[n]K = λσ • curryz JpK (JnKσ) σ = λσ • curryz JpK (σ.n) σ, and
that J(λz • U )[n]K = {λσ • f (σ.n) σ | f ∈ Jλz • U K} or more formally {g | ∃ f • g = λσ • f (σ.n) σ ∧
f ∈ Jλz • U K}. So, from the premise, which amounts to Jp[n]K ∈ J(λz • U )[n]K we can infer that: ∃ f • λσ •
curryz JpK (σ.n) σ = λσ • f (σ.n) σ ∧ f ∈ Jλz • U K. So, for some arbitrary y0 we have:

λσ • curryz JpK (σ.n) σ = λσ • y0 (σ.n) σ ∧ y0 ∈ Jλz • U K ()

¿From the second conjunct of () we have: y0 ∈ curryz JU K which is y0 ∈ {curryz f | f ∈ JU K} or more
formally y0 ∈ {h | ∃ f • h = curryz f ∧ f ∈ JU K} from which we have ∃ f • y0 = curryz f ∧ f ∈ JU K. So, for
some arbitrary y1 we have:

y0 = curryz y1 ∧ y1 ∈ JU K ()
Substituting the first conjunct of () into the first conjunct of () we obtain: λσ • curryz JpK (σ.n) σ =
λσ • curryz y1 (σ.n) σ. By extensionality, and the fact that curryz is injective, we conclude that y1 = JpK.
Substituting this into the second conjunct of () we obtain JpK ∈ JU K which is, by definition, p A U as
required.

Corollary 5.9.
cmd [z/n] A U [z/n]

p A U
(proc+)

Proof. A trivial consequence of proposition 5.8 by lemma 5.1 and proposition 3.25.

Turning now to the elimination rule.
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Proposition 5.10. The following rule is derivable:

p A U
p[exp] A (λz • U )[exp]

Proof. We have to establish that:
Jp[exp]K ∈ J(λz • U )[exp]K

which amounts to:

∃ f • λσ • curryz JpK (σ.exp) σ = λσ • f (σ.exp) σ ∧ f ∈ Jλz • U K

This follows if:
curryz JpK ∈ Jλz • U K

which amounts to:
∃ f • curryz JpK = curryz f ∧ f ∈ JU K

and this follows providing that:
JpK ∈ JU K

which is the premise:
p A U

Again, in view of lemma 5.1 and proposition 3.25, we have a corollary.

Corollary 5.11.
p A U

cmd [z/exp] A U [z/exp]
(proc−)

5.7.2. Recursive procedures

Now the more complex case: procedures which are primitive recursive. We can still prove the introduction
rule for this form of procedure.

Proposition 5.12. Let n be any programming language variable. Then:

p[n] A (λz • U )[n]
p A U

Proof. Note that:
Jp[n]K = λσ • elimN Jcmd0K h (σ.n) σ

where h =df λn • λv • Jcmd1[m/n][p[m]/v ]K and:

J(λz • U )[n]K = {g | ∃ f • g = λσ • f (σ.n) σ ∧ f ∈ J(λz • U )K}
Hence, the premise is equivalent to:

∃ f • λσ • elimN Jcmd0K h (σ.n) σ = λσ • f (σ.n) σ ∧ f ∈ J(λz • U )K

so, for arbitrary σ, and fresh y0 we have:

elimN Jc0K h = y0 ∧ y0 ∈ J(λz • U )K ()

Now, from the second conjunct of (), we see that:

∃ f • y0 = curryz f ∧ f ∈ JU K

or, for fresh y1:
y0 = curryz y1 ∧ y1 ∈ JU K ()

Substituting the first conjunct of () in the first conjunct of () yields:

elimN Jcmd0K h = curryz y1
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So
uncurryz (elimN Jcmd0K h) = uncurryz (curryz y1)

which is JpK = y1. But y1 ∈ JU K, from the second conjunct of (), hence JpK ∈ JU K, that is, p A U , as
required.

The elimination rule also holds under the more general definition for recursive procedures:

Proposition 5.13. The following rule is derivable:

p A U
p[exp] A (λz • U )[exp]

Proof. We have to establish that: Jp[exp]K ∈ J(λz • U )[exp]K which is:

∃ f • elimN Jcmd0K h (σ.exp) σ = λσ • f (σ.exp) σ ∧ f ∈ Jλz • U K

where h =df λn • λv • Jcmd1[m/n][p[m]/v ]K. This follows if we can show that:

elimN Jcmd0K h ∈ Jλz • U K

in other words, that:
∃ f • elimN Jcmd0K h = curryz f ∧ f ∈ JU K

this in turn, follows if:
uncurryz (elimN Jcmd0K h) ∈ JU K

but this is just JpK ∈ JU K, which is the premise p A U .

As usual, we may combine this with a β-reduction of the schema application term leading to an alternative
version of the rule:

Corollary 5.14.
p A U

p[exp] A U [z/exp]

The most important rule is the introduction rule for recursive synthesis.

Proposition 5.15. The following introduction rule for recursive procedure introduction is derivable:

cmd0 A (λz • U )[0] p[m] A (λz • U )[m] ` cmd1 A (λz • U )[m + 1]
proc p[z] cases z in 0 : cmd0 | m + 1 : cmd1 endcases A U

(rp+)

Proof. The conclusion is JpK ∈ JU K, which, by proposition 5.12 will hold if:

Jp[n]K ∈ J(λz • U )[n]K

for arbitrary n. Note that:
Jp[n]K = λσ • elimN Jcmd0K h (σ.n) σ

where h =df λn • λv • Jcmd1[m/n][p[m]/v ]K). Also note that:

J(λz • U )[n]K = {g | ∃ f • g = λσ • f (σ.n) σ ∧ f ∈ Jλz • U K}

So we have to show:

∃ f • λσ • elimN Jcmd0K h (σ.n) σ = λσ • f (σ.n) σ ∧ f ∈ Jλz • U K

We proceed by induction on the number σ.n.
In the base case we have to show that:

∃ f • λσ • elimN Jcmd0K h 0 σ = λσ • f 0 σ ∧ f ∈ Jλz • U K

which follows if:
∃ f • Jcmd0K = λσ • f 0 σ ∧ f ∈ Jλz • U K
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or if:
Jcmd0K A {g | ∃ f • g = λσ • f 0 σ ∧ f ∈ Jλz • U K}

that is:
cmd0 A (λz • U )[0]

which is the first premise.
For the induction case, let k = σ.m.
First note the following equivalence:

λσ • elimN Jcmd0K h (k + 1) σ =

λσ • (λn • λv • Jcmd1[m/n][p[m]/v ]K) k (elimN Jcmd0K h k) σ =

λσ • (λn • λv • Jcmd1[m/n][p[m]/v ]K) (JmK σ) Jp[m]K σ =

λσ • Jcmd1[m/n][p[m]/v ]K [n/(JmK σ)][v/ Jp[m]K] σ

Jcmd1[m/n][n/m][p[m]/v ][v/p[m]]K =

Jcmd1K
That is:

λσ • elimN Jcmd0K h (k + 1) σ = Jcmd1K ()
Now we have to show, assuming:

∃ f • λσ • elimN Jcmd0K h k σ = λσ • f k σ ∧ f ∈ Jλz • U K ()

that:
∃ f • λσ • elimN Jcmd0K h (k + 1) σ = λσ • f (k + 1) σ ∧ f ∈ Jλz • U K ()

This follows by showing that () follows from the assumption of the second premise of the rule, and that ()
follows from the conclusion of the second premise of the rule. The second premise’s conclusion states that:

Jcmd1K ∈ J(λz • U )[m + 1]K

Which, in view of the fact that σ.(m + 1) = σ.m + 1 = k + 1, is:

Jcmd1K ∈ {g | ∃ f • g = λσ • f (k + 1) σ ∧ f ∈ Jλz • U K}
which is:

∃ f • Jcmd1K = λσ • f (k + 1) σ ∧ f ∈ Jλz • U K
In view of () we can write this as:

∃ f • λσ • elimN Jcmd0K h (k + 1) σ = λσ • f (k + 1) σ ∧ f ∈ Jλz • U K

which is () as required.
The second premise assumption states that:

Jp[m]K ∈ J(λz • U )[m]K

which, since σ.m = k , is:

λσ • curryz JpK k σ ∈ {g | ∃ f • g = λσ • f k σ ∧ f ∈ Jλz • U K}
or:

∃ f • λσ • curryz JpK k σ = λσ • f k σ ∧ f ∈ Jλz • U K
or, using the semantics of the procedure p, is:

∃ f • λσ • curryz(uncurryz(elimN Jcmd0K h)) k σ = λσ • f k σ ∧ f ∈ Jλz • U K

which simplifies to:

∃ f • λσ • elimN Jcmd0K h) k σ = λσ • f k σ ∧ f ∈ Jλz • U K

which is () as required.
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At this point our programming logic for PN is established, and we finish by showing that it satisfies principle
4.3 the frame freezing principle.

Proposition 5.16. The logic for PN satisfies principle 4.3.

Proof. This is formally an induction on the structure of derivations. The key point, however, is this: in
the semantics for PN the only command that can alter the state is the assignment command and the only
rule involving the introduction of assignment commands is the rule ( A +

:=). This rule, for an assignment to
x, involves the co-observation x′ explicitly. So, if x′ is not visible in the alphabet of an arbitrary derivation
δ, then there is no instance of an assignment to x in that derivation which lies outside a sub-derivation δ0

whose conclusion has the form ∃ x, x′ • U . The semantics of existential hiding ensures that the state is not
changed at x by any of its implementations, hence the state at x is not altered by any implementation of the
derivation δ0. Since x′ is not visible in δ there can be no other instances of assignment to x apart from those
just considered. So the state is not changed by any implementation of the derivation at x. This establishes
the principle.

5.8. Proof-theoretic simplifications

In imperative programming languages, such as PN, the state is an implicit variable, only making an appear-
ance in the semantics of the language. Similarly, in schemas, the observations have values in an implicit
state (binding); this point was discussed in section 2.1 (and discussed at length in our other papers e.g. [6],
[8]) where we remarked that the states become explicit in derivations which ultimately take place in the
underlying logical system ZC .
It would be very much more pleasant if we could avoid mention of the state entirely, even in derivations
which eventually require calculation in the core logic. In fact this is possible, since the states in question are
always arbitrary and before and after states are always related by priming. So we may treat observations as
terms in the proofs, in the presence of additional axioms that enforce equality between two observations if,
and only if, they are identical. Let us now be more precise about this.

Definition 5.17. Let ZC+ be the system ZC with the following additional axioms for all observations x.

P `Z+
C
x = x

Lemma 5.18. For any state σ, and term t :

σ.σ′.t = σ.unprime t

Proof. By induction on the structure of terms.

Proposition 5.19. Let δ0 be a ZC derivation whose conclusion is σ.P `ZC σ.σ′.Q . There exists a Z+
C

derivation δ1 with conclusion P `Z+
C

unprime Q . The converse is also true.

Proof. This is an induction on the structure of the derivations (in both directions). We illustrate with
two cases of the proof from left to right. First one of the induction cases. Consider a ZC derivation whose
conclusion is σ.P `ZC σ.σ′.(Q0 ∧ Q1) by virtue of (∧+). We therefore have two ZC derivations with con-
clusions σ.P `ZC σ.σ′.Q0 and σ.P `ZC σ.σ′.Q1. Ex hypothesi we have two Z+

C derivations whose con-
clusions are P `Z+

C
unprime Q0 and P `Z+

C
unprime Q1, whence, by (∧+) we have a Z+

C derivation of
P `Z+

C
unprime (Q0 ∧ Q1) as required. Now let us look at the crucial atomic case. Suppose we have a

ZC derivation whose conclusion is σ.P `ZC σ.σ′.(x0 = x1) for some observations (possibly primed) x0 and
x1. By distribution of the substitution, and lemma 5.18, this can be written as σ.P `ZC σ.unprime x0 =
σ.unprime x1. We also have σ.P `ZC σ.x0 = σ.x1 without loss of generality, if we suppose that the observa-
tions are not primed. Since the state σ is arbitrary the only way this can hold is if the two observations are
identical. Hence we have a derivation immediately from the new axioms of Z+

C with conclusion P `Z+
C
x0 = x1

as required.

In the programming logic we have introduced we then obtain simpler rules as follows:
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Proposition 5.20. The following rules are derivable for the skip command:

skip A [D | P | Q ] P
unprime Q

( A −
skip) P ` unprime Q

skip A [D | P | Q ]
( A +

skip)

Proof. Straightforward, in view of proposition 5.19

Proposition 5.21. The following rule (in which no after state identifier may occur in the expressions expi)
is derivable for simultaneous assignment to the variables xi :

P ` Q [· · · x′i/expi · · ·]
· · · xi · · · := · · · expi · · · A [· · · xi , x′i · · · : N; D | P | Q ]

( A +
:= )

Proof. Suppose we have a ZC derivation whose conclusion is:

σ.P `ZC σ.σ[· · · xi/σ.expi · · ·]′.Q

Then this is equivalently:
σ.P `ZC σ.σ′.Q [· · · x′i/expi · · ·]

By proposition 5.19 we have an equivalent Z+
C derivation with conclusion:

P ` Q [· · · x′i/expi · · ·]

as required.

The following are also straightforward.

Proposition 5.22. Weakening preconditions:
(i)

P1 ` P0

[T | P0 | P ] w [T | P1 | P ]
(w+

pre)

Strengthening postconditions:
(ii)

P0 ` P1

[T | P | P0] w [T | P | P1]
(w+

post)

6. Examples

6.1. Two simple derivations from a single specification

We begin with a trivial example specification, illustrating that it is possible to derive distinct programs
which meet it. In this initial example we will show full details. In the later examples we will suppress some
of the trivial steps.
Consider the following specification. The state is:

S =df [x : N]

The operation schema is:

Add
∆S
z? : N

x′ = x + z?
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6.1.1. Simple procedure

(Addλz?
)[n] reduces, using β-reduction, to the following schema:

Add∗
∆S
n : N

x′ = x + n

Then we can use a simple non-recursive procedure and addition. Formally we would have:

x + n = x + n
(ref)

x:= x + n A Addλz?
[n]

( A +
:=)

p A Add
(proc+)

where:

proc p[z?] x:= x + z?

6.1.2. Recursive procedure

Alternatively, we can obtain a recursive procedure. We need to note the following special cases of (Addλz?
)[n]

(Add [z?/n] or Add [n] when the parameter is clear from the context).
First Add [0]:

∆S

x′ = x

and then Add [n + 1]:

∆S
n : N

x′ = (x + n) + 1

The latter can be expressed as the composition of two simpler schemas, Add [n]:

∆S
n : N

x′ = x + n

and:

Succ
∆S

x′ = x + 1

That is, we can show that:

Add [n] o
9 Succ w Add [n + 1]
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Of course, we can also write the derivation formally in the logic:

x = x (ref)

skip A Add [0]
Add [n] o

9 Succ w Add [n + 1]
p[m] A Add [m]

x + 1 = x + 1
x:= x + 1 A Succ

p[m]; x:= x + 1 A Add [n] o
9 Succ

p[m]; x:= x + 1 A Add [m + 1]
p A Add

where the procedure p is thus given as follows:

proc p[z?] cases 0 : skip | m + 1 : p[m]; x:= x + 1 endcases

These derivations are less easy to read than their elaborations, though they are easy to construct from them.
So, in future examples we will not provide the formal derivations.
Note that we could define:

if n > 0 then cmd fi =df cases 0 : skip | m + 1 : cmd endcases

in which case the program could be written:

proc p[z?] if n > 0 then p[m]; x:= x + 1 fi

The idea here of introducing new syntax by definitional extension is likely to be of importance in the future
development of the framework. The example here is very rudimentary. We will see a more significant example
in the next section.

6.2. Factorial

In this example we demonstrate how to derive two simple recursive programs from the standard definition.
As a consequence we illustrate many of the techniques available in the framework.
The factorial function is, as usual, specified as follows:

fact(0) = 1
fact(n + 1) = (n + 1) ∗ fact(n)

The initial specification is:

Fact
x, x′ : N
z? : N

x′ = fact(z?)

6.2.1. First development

The strategy in this case will be to introduce an accumulator.

Fact∗
x, x′, y, y′ : N
z? : N

y′ = z? + 1
x′ = fact(z?)

By 4.2 and 4.1(ii) we have:
Fact∗ w Fact

Next we formulate the curried version of Fact∗, (λz? • Fact∗)[n], which, at input n, is, by β-reduction,
Fact∗[n]:
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n, x, x′, y, y′ : N

y′ = n + 1
x′ = fact(n)

The point of this is to prepare the way for the construction of a program by recursion on n, more exactly,
by a recursive procedure f . In preparation, we first obtain Fact∗[0]:

x, x′, y, y′ : N

y′ = 1
x′ = 1

and, with similar simplification, Fact∗[m + 1]:

m, x, x′, y, y′ : N

y′ = m + 2
x′ = fact(m + 1)

The first of these can be refined to a simultaneous assignment:

x, y:= 1, 1

Fact∗[m + 1] can be further decomposed into the composition of Fact∗[m] and:

Step
x, x′, y, y′ : N

x′ = x ∗ y
y′ = y + 1

Now, the assumption from rule (rp+) allows us to conclude that Fact∗[m] is implemented by f [m] and Step is
clearly implemented by just another simultaneous assignment x, y:= x ∗ y, y+ 1. The program all this yields
is:

proc f [z?] cases 0 : x , y:= 1, 1 | m + 1 : f [m]; x, y:= x ∗ y, y + 1 endcases

6.2.2. Second development

Our first development demonstrates something unusual about our framework: the ability to very easily
derive a procedure which introduces global side-effects. We can also derive a program which ensures the
accumulation variable is part of a local state.
This second development is really very important because it amounts to a signal for the future elaboration
of our applications framework: we will require an extension of our programming language to allow recursive
procedures with local variables. Now these could, of course, be added to the syntax of the programming
language, their semantics provided and rules for using them derived. This has not been our methodology
in the past: we began our research in this area by introducing a core logic ZC which we have not altered
despite the construction of a significant logic for the schema calculus and, in this paper, for refinement
and program derivation. If we continue to follow our logical strategy in our applications area we should
rather see whether or not the new programming constructs we might need can be introduced by conservative
extension by definitions. If this can be achieved the relevant semantics and necessary rules will be available in
a systematic way from the existing base system. In the example we are concerned with here we are interested
in adding a new form of procedure which has the form:

proc p[z?] begin var x; cases 0 : cmd0 | m + 1 : cmd1 end

Note that this new form of procedure is not a simple complex of existing programming idioms: the body of
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the block is not a command for example. We take this new syntax to be defined by means of:

proc p[z?] begin var x; p0[z?] end

where:
proc p0[z?] cases 0 : cmd0 | m + 1 : cmd1[p/p0] end

Rather than derive general rules for this new idiom in this paper we will now simply derive our program
along the lines of its definition above. This will indicate in general terms, by means of a special case, how
those rules can be formed. We will cover this in detail, alongside other similar novel features, in future
publications.
So we begin by deciding to implement Fact by means of a simple procedure p:

p A Fact

By (proc+), we will need to find a command cmd such that:

cmd [n] A Fact [n]

We now make the observation that:
∃ u, v • v = n + 1

holds for any n. We use this as the premise for 4.13 and obtain the refinement:

Fact†[n] w Fact [n]

where Fact† is:
∃ y, y′ • [x, x′, y, y′, z? : N | x′ = fact(z?) ∧ y′ = z? + 1]

Fact†[n] can be implemented by means of a block as usual. That is:

begin var y; cmd0 end A Fact†[n]

and it remains for us to construct a command cmd0 so that:

cmd0 A [x, x′, y, y′, n : N | x′ = fact(n) ∧ y′ = n + 1]

It so happens that our previous derivation comes to our aid at this point, because the schema here is simply
Fact∗[n]. Now we know that f A Fact , and therefore, by (rp−), f [n] A Fact [n]. So we can take cmd0 to be
f [n].
Summarising our development we have:

proc p[z?] begin var y; f [z?] end

where
proc f [n] cases 0 : x, y:= 1, 1 | m + 1 : f [m]; x, y:= x ∗ y, y + 1 endcases

which, according to our new idiom, is:

proc p[z?] begin var y; cases 0 : x, y:= 1, 1 | m + 1 : p[m]; x, y:= x ∗ y, y + 1 end

As we mentioned above, it would be appropriate to introduce special tailored rules for this idiom. This
example indicates how that could be done, but we will leave further investigation for the future.

6.3. Using choice

In this example we demonstrate how to derive a simply recursive program from a course of values definition.
This example illustrates the use of disjunctive choice.
The Fibonacci numbers are, as usual, specified as follows:

fib(0) = 1
fib(1) = 1
fib(n + 2) = fib(n + 1) + fib(n)

The initial specification is:
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Fib
y, y′ : N
z? : N

y′ = fib(z?)

The strategy for obtaining a simply recursive program for this specification is to introduce another accumu-
lator:

Fib∗
x, x′, y, y′ : N
z? : N

y′ = fib(z?)
x′ = fib(z?− 1)

Clearly we have:
Fib∗ w Fib

by frame expansion and strengthening postconditions.
Preparing to derive a recursive program by (rp+) we next we formulate the curried version of Fib∗, (λz? •
Fib∗)[n] or, by β-reduction, Fib∗[n] which is:

[x, x′, y, y′, n : N | y′ = fib(n) ∧ x′ = fib(n− 1)]

Leading to Fib∗[0]:
[x, x′, y, y′ : N | y′ = 1 ∧ x′ = 1]

and: Fib∗[m + 1]:
[x, x′, y, y′, m : N | y′ = fib(m + 1) ∧ x′ = fib(m)]

The first of these can be refined to a simultaneous assignment:

x, y := 1, 1

The second schema can now be expressed as a disjunction by splitting the (implicit) true precondition into
two cases: zero and successor. We use inequation 4.6 for this.

U0 ∨ U1 w Fib∗[m + 1]

where U0 is:
[x, x′, y, y′, m : N | m = 0 | y′ = 1 ∧ x′ = 1]

and U1 is:
[x, x′, y, y′, m : N | ∃ u • m = u + 1 | y′ = fib(m + 1) ∧ x′ = fib(m)]

For commands cmd0 and cmd1 which meet U0 and U1 we implement the disjunction by:

if m = 0 then cmd0 else cmd1

We can weaken the precondition of U0 to obtain:

U2 =df [x, x′, y, y′, m : N | y′ = 1 ∧ x′ = 1]

which we know can be implemented by a simultaneous assignment, as above. U1 can be further refined into
the composition of:

U3 =df [x, x′, y, y′, m : N | ∃ u • m = u + 1 ∧ y′ = fib(m) ∧ x′ = fib(m− 1)]

and:
Step =df [x, x′, y, y′, m : N | x′ = y ∧ y′ = x + y]

We can now introduce a sequence of commands into our program in which the obvious simultaneous assign-
ment:

x, y := y, x + y
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appears as the second component. That is:

U3
o
9 Step w U1

And this will, for a suitable command cmd2, be refined to:

cmd2 ; x, y := y, x + y

We demonstrate this in more detail by observing that:

∃ u • m = u + 1 ∧ y′ = fib(m) ∧ x′ = fib(m− 1)

is:
∃ u • m = u + 1 ∧ y′ = fib(u + 1) ∧ x′ = fib(u)

Composing with Step yields:

[x, x′, y, y′, m : N | ∃ u • n = u + 1 ∧ y′ = fib(u + 1) + fib(u) ∧ x′ = fib(u + 1)]

or:
[x, x′, y, y′, m : N | ∃ u • n = u + 1 ∧ y′ = fib(u + 2) ∧ x′ = fib(u + 1)]

or:
x, x′, y, y′, m : N | ∃ u • m = u + 1 ∧ y′ = fib(m + 1) ∧ x′ = fib(m)]

which is U1, as required.
We similarly weaken the precondition of U3 to obtain:

[x, x′, y, y′, m : N | y′ = fib(m + 1) ∧ x′ = fib(m)]

which is just Fib∗[m], and can be implemented by the recursive call that is available as an assumption from
the second premise of the rule (rp+).
The program this yields is:

proc fibonacci [z?]
cases 0 : x, y := 1, 1

m + 1 : if m = 0 then x, y := 1, 1
else fibonacci [m] ; x, y := y, x + y

endcases

Alternatively, this can be combined with a similar analysis to our derivation in section 6.2.2 to make the
accumulator in this procedure local rather than global.

6.4. An example using promotion

6.4.1. Specification

We now wish to use the specification Fact above, together with its implementation, to specify and then
implement an operation over a global state. In the global state we have two numbers. This can be represented
by the cartesian product N× N.
The global operation simply generalises the local operation by applying it to the first of the pair. The
promotion schema as usual explains how the local and global state spaces are to be connected:

Promote
x, x′ : N
w, w′ : N× N

w′.1 = x′

w′.2 = w.2

and the global operation is:

GlobalFact =df ∃ x, x′ : N • Fact∗[z?/w.1] ∧ Promote



30 M. C. Henson and S. Reeves

6.4.2. Refinement

Fact∗[w.1] ∧ Promote can be refined, by 4.5, to:

FP
x, x′ : N
w, w′ : N× N

x′ = fact(w.1)
w′.1 = x′

w′.2 = w.2

This can then be refined, by 4.8, to the composition of:

FP0

x, x′ : N
w, w′ : N× N

x′ = fact(w.1)
w′ = w

and:

FP1

x, x′ : N
w, w′ : N× N

w′.1 = x
w′.2 = w.2
x = x′

Now we know from the previous example that f A Fact , and by frame freezing we know that f A Ψw • Fact .
Note that (Ψw • Fact)[w.1] = FP0. So, by 5.14:

f [w.1] A FP0

We also have:
w.1:= x A FP1

so, by further use of ( A +
o
9
) and the refinement we know that:

f [w.1]; w.1:= x A FP

and finally, by using ( A +
block) we have:

begin var x; f [w.1]; w.1:= x end A GlobalFact

6.5. Promotion continued

An related but distinct example of promotion along the lines of the previous example is now explored.
Suppose that the global operation is specified by means of:

GF =df ∃ x, x′ • Fact ∧ Promote

We aim to implement this using a simple procedure:

proc p[z?]cmd

for some command cmd . This can be achieved, using (proc−), if we can derive:

cmd [n] A (λz? • GF )[n]
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Now using β-reduction and the definition of substitution, this is equivalent to:

cmd [n] A ∃ x, x′ • Fact [n] ∧ Promote

since z? only appears in Fact . Now this can be achieved, using ( A +
block), taking cmd [n] to be the block

begin var x; cmd0 end and providing that:

cmd0 A Fact [n] ∧ Promote

We next observe that this specification can be refined, by 4.5 to:

FP∗

x, x′, n : N
w, w′ ∈ N× N

x′ = fact(n)
w′.1 = x′

w′.2 = w.2

Now, by 4.8, this can be refined to:
Ψw • Fact [n] o

9 FP1

where FP1 was defined in the previous example; hence we know that:

w.1:= x A FP1

We also know, by the frame freezing principle and (proc−), that:

f [n] A Ψw • Fact [n]

since f A Fact . So, using ( A +
o
9
) and the refinement, we have:

f [n]; w.1:= x A Ψw • Fact [n] o
9 FP1

Assembling this program from the derivation leads to:

proc p[z?] begin var x; f [z?]; w.1:= x end A GF

and the example is complete.

6.6. Comments on the examples

We hope these few examples serve to illustrate our approach to refinement and program development.
Although the reader will need to see, or to undertake, many more examples in order to fully evaluate our
framework, our examples do involve a reasonable use of schema algebra and the facilities permitted in
the programming language. What we are very happy to have achieved is a satisfactory integration of the
refinement and derivation logics within our earlier general logic for the schema calculus. All this is achieved
on the basis of the core logic ZC , which remains unmodified.
Naturally, in providing such a logical framework the nature of the specifications, or at least their role, changes.
In the core logic, or even in that logic extended as it was in [8] for the schema calculus, specifications remain
essentially a formalisation of requirements. The logic then permits those requirements to be analysed and their
consequences understood and explored. In moving to include logics for refinement and program derivation,
specifications become, additionally, records of design: the structures introduced or eliminated along the way
dictating something of the structure which leads eventually to an implementation.
Another important feature of the framework is the modularity it permits. In our example concerning pro-
motion it is evident that the program development, just like the specification itself, can be factored into
entirely separate components; the development of an implementation of a local operation can proceed quite
independently of the development of the promotion. This fulfills two important properties: extensionally,
the independent program development fragments come together to produce a correct implementation of the
entire specification; and intensionally, the algorithmic choices made in the development of the local operation
carry over into the implementation of the specification as a whole.
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Finally we should comment on the portfolio of rules for refinement and derivation that are at our disposal
in this paper. We have only included the most basic and critical rules. One of the reasons we have chosen
the examples we have is to at least show our methodology for further extending our set of rules. This was
most clearly indicated in our second derivation of the factorial program. As far as possible we will aim to
introduce new constructs, as we have relentlessly done in this paper and our previous work, by conservative
extension by definitions. In this way the basic system remains small and tractable, and additional semantics
and rules are easily derived from that.

7. Conclusions and future work

The first four sections of this paper comprise a general framework for schema-based specification refinement
and program development. We describe a novel semantics based on sets of implementations which we argue
is suitable for refinement in the presence of schema operators. We further show that this semantics can be
applied to specifications in a standard Z notation, and also in a manner more reminiscent of the refinement
calculus. It is the latter approach that we deal with in most detail, though retaining a Z-like notation for
the presentation and development. The two final technical sections of the paper are devoted to applications
of the framework. We firstly connected the framework to a simple programming language and established a
programming logic for it. We then explored some simple examples in this application area.
Much remains to be explored before definitive conclusions can be drawn. We can, at this stage, point to the
novel semantics and the integrated approach to specification refinement and program development it leads
to. A thorough comparison of the new semantics with other approaches, in particular the standard semantics
based on weakest preconditions, must be undertaken, possibly making use of or connections with relevant
sections of [3]. It is likely that these comparisons will benefit from consideration in an abstract setting, quite
separate from details of the framework as described here, and in examining these issues more generally,
including the variety of relational approaches to refinement.
More prosaically, though importantly, we have, in the applications sections of the paper, only explored a
very impoverished programming language and undertaken rather simple illustrative examples. There is much
work of generalisation to undertake in this area.
Finally we should point out that the refinement relation explored in this paper is restricted to operation
refinement only (simulations are absent because they are identity functions). Naturally the framework should
be generalised to include data refinement. Again, the sensible precursor to this will be a thorough investigation
of data refinement in the context of the novel semantics, and in comparison to other approaches, in a more
abstract setting.
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A. The specification logic ZC
A.1. Language

In this appendix we shall describe the simple specification logic ZC from [8]. This is included for convenience
only and the reader may need to consult the earlier paper at least in order to fully understand our notational
and meta-notational conventions.
ZC is a typed theory in which the types of higher-order logic are extended with schema types which are
unordered, label-indexed tuples. For example, if the Ti are types and the zi are labels (constants) then:

[· · · zi : Ti · · ·]

is a (schema) type. The symbols �, f and g denote the schema subtype relation, and the operations of
schema type intersection and (compatible) schema type union.
The terms of ZC are evident from the logic below. We write tT to indicate that the term t has type T . We
use the meta-variable C for terms which are sets. Of particular note are the bindings, the terms of schema
type. The bindings of type [· · · zi : Ti · · ·] have the form 〈| · · · ziVtTi

i · · · |〉. We use the ? operation to denote
binding concatenation: it is only defined when the alphabets of its two argument bindings are disjoint. We
also make use of a meta-language substitution for bindings:

b[z0/v ].z1 =df

{
v when z0 = z1

b.z1 otherwise

We employ the notation b.P and b.t (generalising binding selection) which is adapted from [12]. Suppose
that {z0 · · · zn} is the alphabet set of t , then t .P is P [z0/t .z0] · · · [zn/t .zn ]. An important lemma for us in
this paper is:

Lemma A.1.
b.P [z/t ] ⇔ b[z/b.t ].P

Proof. By induction over the structure of propositions and terms.

If the binding b has type [· · · z : T · · ·] then the priming operation means that the binding b′ has type
[· · · z′ : T · · ·]. We extend this operation to function applications over schema types: if f ∈ [· · · z : T0 · · ·] →
[· · ·m : T1 · · ·] and z ∈ T0 then f z ∈ [· · ·m : T1 · · ·] as expected, but (f z )′ ∈ [· · ·m ′ : T1 · · ·] (note the prime
here). Finally, we need to define unprime P which is the proposition P in which all primed observations are
unprimed.

A.2. Logic

The judgements of the logic have the form Γ `ZC P where Γ is a set of formulæ.
The logic is presented as a natural deduction system in sequent form. Derivations in the logic, above, were
presented in pure natural deduction form.
All data (entailment symbol, contexts, type etc.) which remains unchanged by a rule are omitted. In the rule
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(∃−), the variable y may not occur in C ,P0,P1 nor any other assumption. We begin with the usual rules
for ZC .

P0

P0 ∨ P1
(∨+

 )
P1

P0 ∨ P1
(∨+

 )
P0 ∨ P1 P0 ` P2 P1 ` P2

P2
(∨−)

P ` false
¬P

(¬+) P ¬P
false

(⊥+) ¬¬P
P

(¬−)
false
P

(⊥−)

P [z/t ]
∃ z • P (∃+)

∃ z • P0 P0[z/y ] ` P1

P1
(∃−)

Γ,P ` P
(ass)

Γ ` P1

Γ,P0 ` P1
(wk)

t = t (ref)
t = t ′ P [z/t ]

P [z/t ′]
(sub)

〈| · · · ziVti · · · |〉.zi = ti
(V=

 )
〈| · · · ziVt .zi · · · |〉 = t [···zi :Ti ···]

(V=
 )

(t , t ′).1 = t
(()= )

(t , t ′).2 = t ′
(()= )

(t .1, t .2) = t
(()= )

P [z/t ]
t ∈ {z | P} ({}+)

t ∈ {z | P}
P [z/t ]

({}−)

t0 = t1
t0 = t1

(ext)
tT .zi = ti

(t � T ′).zi = ti
(�=) (zi ∈ αT ′; T ′ � T )

elimN t0 t1 Zero = t0
(elimN

)
elimN t0 t1 (Succ z ) = t1 z (elimN t0 t1 z )

(elimN
)

elimB True t0 t1 = t0
(elimB

)
elimB False t0 t1 = t1

(elimB
)

where:
t0 = t1 =df ∀ z : t0 • z ∈ t1 ∧ ∀ z : t1 • z ∈ t0

The usual side-conditions apply to rule (∃−).
The symmetry and transitivity of equality and numerous equality congruence rules for the various term
forming operations are all derivable in view of rule (sub).

A.3. Carrier sets

We need to introduce a carrier set for each type.
We begin with the type of natural numbers. Since we will wish to exploit the inductive structure of this
basic type we will make the following definition:4

Definition A.2.

N =df {xN | ∀ zP N • Zero ∈ z ∧ (∀ yN • y ∈ z ⇒ Succ y ∈ z ) ⇒ x ∈ z}
Then the rules for the set of natural numbers will then be as expected.

Proposition A.3. The following introduction and elimination rules for natural numbers are derivable:

Zero ∈ N
z ∈ N

Succ z ∈ N
P [z/Zero] x ∈ N,P [z/x ] ` P [z/Succ x ]

z ∈ N ` P

4 The notational ambiguity heralds no danger, since only sets appear as terms.
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For convenience we write 2 for Succ Succ Zero, and so on.
The carrier for the type of booleans is easily given.

Definition A.4.
B =df {zB | z = True ∨ z = False}

Proposition A.5. The following introduction and elimination rules for booleans are derivable:

True ∈ B False ∈ B
z ∈ B z = True ` P z = False ` P

P

The carriers of the other types, are then given structurally, in the obvious way.

A.4. Typed set theory

Set-theoretic relations and operators, such as containment, union, intersection and complement, are all easily
definable within each type, and we will make free use of these when necessary. For example:

Definition A.6.
CT

0 ∪T CT
1 =df {zT | z ∈ C0 ∧ z ∈ C1}

Functions are as usual sets of ordered pairs. We write C0 → C1 to denote the usual subset of P(C0 × C1)
that satisfies totality and unicity. We need to make extensive use of lambda notation to define particular
functions. Our syntax for these is traditional: λzT0 • tT1 is the element of T0 → T1 that associates each v in
T0 with the value t [z/v ] in T1. Note that all our term formation constructors preserve termination, hence
these lambda abstractions denote total functions. In particular, recursion is only available via the primitive
recursion operator elimN over the type of natural numbers.
The composition of two functions f0 and f1 (of appropriate type) is written f0 ◦ f1 and is defined to be
λz • f1(f0z ), as usual.

A.5. Filtered Sets

We shall also need to extend filtering from bindings to sets of bindings.

Definition A.7. Let T0 � T1.

C P T1 � T0 =df {zT0 | ∃ xT1 • x ∈ C ∧ z = x � T0}
Proposition A.8. Let T0 � T1.

tT1 ∈ C P T1

t � T0 ∈ C � T0
(∈+

� )
t ∈ C P T1 � T0 x ∈ C , t = x � T0 ` P

P
(∈−� )

for fresh x .

A.6. Restricted equality

In many contexts we need to compare bindings over a common restricted type.

Definition A.9. Let T � T0 and T � T1.

tT0
0 =T tT1

1 =df t0 � T = t1 � T

The following versions of reflexivity, symmetry and transitivity are obvious:

Lemma A.10.

t � T =T t
(refl�)

t1 =T t0
t0 =T t1

(sym�)
t0 =T0 t1 t1 =T1 t2

t0 =(T0fT1) t2
(trans�)
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When the type in question is that of one of the terms being compared, we can avoid the subscript.

Definition A.11.

tT0
0

.= tT1
1 =df t0 � (T0 f T1) = t1 � (T0 f T1) (T1 � T0 or T0 � T1)

Proposition A.12. Let T0 � T1.
tT0
0

.= tT1
1 ⇔ t0 =T0 t1

A similar restricted form of membership is very useful for establishing the state schema calculus.

Definition A.13. Let T0 � T1.
tT1

.
∈ C P T0 =df t � T0 ∈ C

A.7. Restricted extensional equality

Definition A.14.
f =C g =df ∀ z ∈ C • f z = g z

Whence:

Definition A.15.
f =P g =df f ={z |z .P} g

Generally we have:

Proposition A.16. The following rules are derivable:

z ∈ C ` f z = g z
f =C g

and
f =C g t ∈ C

f t = g t

Also:

Proposition A.17. The following rules are derivable:

z .P ` f z = g z
f =P g

and
f =P g t .P

f t = g t


