
An analysis of operation refinement in Z

Moshe Deutsch (mdeuts@essex.ac.uk)
Martin C. Henson (hensm@essex.ac.uk)

Department of Computer Science, University of Essex, UK

Steve Reeves (stever@cs.waikato.ac.nz)
Department of Computer Science, University of Waikato, NZ

Abstract

In this paper we analyse and compare several notions of operation refinement for specifications in Z. In
particular we show that three theories: relational completion, proof-theoretic and functional (models)
are all equivalent.

1 Introduction

In [5] the notion of refinement underlying data refinement is based on the totalisation of lifted sets of bindings.
In [4] a notion of refinement is suggested that is based upon preconditions and postconditions (this idea was
also taken up in [2] and in [3]). The former is essentially a model-theoretic approach, involving the addition
of an extra undefined element; the latter is a proof-theoretic approach, based upon the interaction of the
various predicates involved. In this paper we demonstrate that the two approaches are equivalent. We
then introduce a third model of refinement based on the sets of functions (that is, essentially, deterministic
implementations) which can, in a natural way, be said to meet specifications.
Our mathematical account takes place in ZC the core Z-logic of [1]. The only modification we need to make
is to include the new undefined terms which are explicitly needed in the approach taken in [5]. Specifically:
the types of ZC are extended to include terms ⊥T for every type T . There are, additionally, a number of
axioms which ensure that all the new ⊥T values interact properly, e.g.

⊥[l0:T0···ln :Tn]= 〈| l0V ⊥T0 · · · lnV ⊥Tn |〉
In other words, ⊥[l0:T0···ln :Tn] .li =⊥Ti (0 ≤ i ≤ n). Note that this is the only axiom concerning undefined
bindings, hence, binding construction is non-strict with respect to the ⊥T values.
Finally, the extension of ZC which introduces schemas as sets of bindings and the various operations of the
schema calculus is undertaken as usual (see [1]) but the carrier sets of the types must be adjusted to form
what we call the natural carrier sets which are those sets of elements of types which explicitly exclude the
⊥T values:

Definition 1.1 The natural carriers for each type are defined by closing:

N =df {zN | z 6=⊥N∧ z = z}
under the operations of cartesian product, powerset and schema set.1

1The notational ambiguity does not introduce a problem, since only a set can appear in a term or proposition, and only a
type can appear as a superscript.

As a result the schema calculus is hereditarily ⊥-free: the undefined constant cannot appear in any term
belonging to an operation schema. This is critical in the proof of proposition 2.3(ii) below.
This extended ZC system is summarised in appendix A, but the reader may need to consult [1], particularly
for the full details of the notational and meta-notational conventions we employ.
We finish this introduction with an overview of the Z notion of precondition, and how this is formalised in
ZC . In section 2 we describe W-refinement, based on [5] and in section 3, S-refinement, based on [4]. Then
in section 4 we show that these two approaches are in fact equivalent. We then go on to show that there
is a fairly natural model of refinement, based on containment of implementation functions, which is also
equivalent. The paper concludes with some final remarks.
Z is distinguished from many other formal methods by offering a notation for specifications employing only a
single predicate. In view of this, preconditions are the weakest conditions which guarantee that the predicate
overall is met. The notion is easily formalised in the ZC :
Definition 1.2

Pre U P(T ingTout′) xT in

=df ∃ z ∈ U • x =T in z

Proposition 1.3 The following rules are derivable for preconditions:

z ∈ U z =T in x
Pre U x

Pre U x y ∈ U , y =T in x ` P
P

2

2 W-Refinement

In this section we review W-refinement (written U0 ww U1, named for Jim Woodcock): this notion, adapted
from [5], is introduced by showing how it can be formalised in (the extended) ZC .
The lifted totalisation of a set of bindings can be defined as follows:

Definition 2.1 •
U PT = {zT | Pre U z ⇒ z ∈ U }

Then we can prove the following.

Proposition 2.2 The following introduction and elimination rules are derivable for lifted totalised sets.

Pre U t ` t ∈ U

t ∈ •
U

(•+)

and:
t ∈ •

U Pre U t
t ∈ U

(•−)

2

Proposition 2.3

(i) U ⊆ •
U

(ii) ⊥T∈
•

U PT

(iii) ¬Pre U P(T ingTout′) tT
in

0 ⇒ t0 ? tout
′

1 ∈ •
U

2

Propositions 2.3(i), (ii) and (iii) demonstrate that definition 2.1 is consistent with the intentions described
in [5] chapter 16.

W-refinement is then defined so that U0 ww U1 =df

•
U0 ⊆

•
U1 . Obvious introduction and elimination rules,

written (ww
+) and (ww

−) follow from this.

3 S-Refinement

This notion can be captured by forcing the refinement relation to hold exactly when preconditions are
not strengthened and post-conditions are not weakened. S-refinement, named for Mike Spivey, is written
U0 ws U1 and is adapted from [4] and [2]. The definition is that which directly leads to the following rules:

Proposition 3.1

Pre U1 z ` Pre U0 z Pre U1 z0,Post z0 ? z1 ∈ U0 ` z0 ? z1 ∈ U1

U0 ws U1
(ws

+)

U0 ws U1 Pre U1 z
Pre U0 z (ws

−

)

U0 ws U1 Pre U1 z0 z0 ? z1 ∈ U0

z0 ? z1 ∈ U1
(ws

−

)

2

4 W-Refinement and S-Refinement are equivalent

We begin by showing that W-refinement satisfies the two S-refinement elimination rules. Firstly the rule for
preconditions.

Proposition 4.1 The following rule is derivable.

U0 ww U1 Pre U1 t
Pre U0 t

Proof. Consider the following derivation:

Pre U1 t

U0 ww U1

¬Pre U0 t 1

t? ⊥∈
•

U0

2.3(iii)

t? ⊥∈
•

U1

t? ⊥∈ U1

false
Pre U0 t 1

2

Turning now to the second elimination rule in S-refinement.

Proposition 4.2 The following rule is derivable.

U0 ww U1 Pre U1 t0 Post U0 t0 t1
Post U1 t0 t1

Proof.

Pre U1 t0

U0 ww U1

t0 ? t1 ∈ U0

t0 ? t1 ∈
•

U0

t0 ? t1 ∈
•

U1

t0 ? t1 ∈ U1

2

We are now in a position to prove the following theorem.

Theorem 4.3
U0 ww U1

U0 ws U1

Proof. This follows immediately, by (w+
s), from propositions 4.1 and 4.2. 2

We now show that S-refinement satisfies the W-elimination rule.

Proposition 4.4

U0 ws U1 t ∈
•

U0

t ∈
•

U1

Proof.

U0 ws U1 Pre U1 t 2
t ∈

•
U0

U0 ws U1 Pre U1 t 2

Pre U0 t
t ∈ U0

t ∈ U1

t ∈
•

U1

2

2

Theorem 4.5
U0 ws U1

U0 ww U1

Proof. This follows immediately, by (w+
w), from proposition 4.4.

Theorems 4.3 and 4.5 together establish that the theories of S-refinement and W-refinement are equivalent.
The model of schemas introduced in W-refinement not only totalises the schema as a set of bindings, it
also introduces the ⊥T values and extends the domains and co-domains accordingly. The totalisation then
stipulates chaotic behaviour outside the precondition and additionally for the ⊥ values.
Why is it necessary to include the new values? What are the consequences of totalisation without lifting? It
is not possible to prove versions of proposition 4.1 with non-lifted totalisation. Note that the proofs of those
results made explicit use of ⊥T values. Indeed the following is an explicit counterexample:

Proposition 4.6 Let Chaos =df [| false], True =df [| true] and write
¦
U for the non-lifted totalisation of

U . Then ¦
True =

¦
Chaos

2

It is an immediate consequence that this more permissive notion of refinement does not, for example, insist
that preconditions do not strengthen.

5 R-refinement

A third approach to refinement is to consider specifications as sets of implementations and then to define
refinement as containment of implementations.
We begin, by way of an intermediate stage, by defining the set of total functions compatible with an operation
schema.

Definition 5.1
Û =df {C | C ⊆ •

U ∧ unicity(C) ∧ total(C)}

Then we have:

Definition 5.2
f Ar U =df f ∈ Û

And then R-refinement is simply U0 wr U1 =df Û0 ⊆ Û1.

6 R-refinement and W-refinement are equivalent

We begin by showing that R-refinement satisfies the W-refinement elimination rule.

Proposition 6.1 The following rule is derivable.

U0 wr U1 t ∈
•

U0

t ∈
•

U1

Proof.

z0 ? z1 ∈
•

U0

∃ f • z0 ? z1 ∈ f ∧ f ⊆
•

U0 ∧ unicity(f) ∧ total(f)
AC

δ....
z0 ? z1 ∈

•
U1

z0 ? z1 ∈
•

U1

1

Where δ stands for the following branch:

U0 wr U1

y ⊆
•

U0

1
unicity(y)

1
total(y)

1

y ∈ Û0

y ∈ Û1

y ⊆
•

U1 z0 ? z1 ∈ y 1

z0 ? z1 ∈
•

U1

2

Theorem 6.2
U0 wr U1

U0 ww U1

Proof. This follows immediately, by (w+
r), from proposition 6.1. 2

We now show that W-refinement satisfies the R-refinement elimination rule.

Proposition 6.3
U0 ww U1 f ∈ Û0

f ∈ Û1

Proof.

U0 ww U1

f ∈ Û0

f ⊆
•

U0 z0 ? z1 ∈ f 1

z0 ? z1 ∈
•

U0

z0 ? z1 ∈
•

U1

f ⊆
•

U1

1 f ∈ Û0

unicity(f)
f ∈ Û0

total(f)

f ∈ Û1

2

Then we have:

Theorem 6.4
U0 ww U1

U0 wr U1

Proof. This follows immediately, by (w+
r), from proposition 6.3. 2

Theorems 6.2 and 6.4 together demonstrate that W-refinement and R-refinement are equivalent.

7 F-refinement

We define the notion of F-implementation as follows:

Definition 7.1
f Af U =df (∀ z • Pre U z ⇒ z ? (f z) ∈ U) ∧ tfun(f)

Then we can prove the following.

Proposition 7.2 The following introduction and elimination rules are derivable.

Pre U z ` z ? (f z) ∈ U tfun(f)
f Af U

(A+
f)

f Af U Pre U z
z ? (f z) ∈ U

(A−f
)

f Af U
tfun(f)

(A−f
)

2

Proposition 7.3

(i) f Af U ⇒ f ⊆ •
U

(ii) f Af U ⇒ unicity(f)
(iii) f Af U ⇒ total(f)

2

Theorem 7.4
f Af U
f Ar U

Proof. This follows immediately, by (A+
r), from proposition 7.3 (i), (ii) and (iii). 2

Proposition 7.5
(i) f Ar U ∧ Pre U z ⇒ z ? (f z) ∈ U
(ii) f Ar U ⇒ tfun(f)

2

Theorem 7.6
f Ar U
f Af U

Proof. follows immediately, by (A+
f), from proposition 7.5 (i) and (ii). 2

Then we have: f Af U ⇔ f Ar U , followed immediately from 7.4 and 7.6.
We define wf using Af in the obvious way. So we get the following corollary:

Corollary 7.7
U0 ww U1 ⇔ U0 wf U1

2

8 Conclusions

The analysis we have provided explores three, prima facie different approaches to operation refinement:
one based on the completion of a relation, one based directly weakening preconditions and strengthening
postconditions and the third based on sets of reasonable deterministic implementations. Perhaps surpris-
ingly these three approaches turn out to be equivalent. The proofs demonstrate clearly the nature of the
relationships involved. Of special note, our analysis explains exactly why lifting, as well as totalisation is
required in the relation completion approach.
In future work we will explore similar relationships for notions of refinement based on the alternative notion
of preconditions: that they are firing conditions and may not be weakened. It is, furthermore, well-known
that the relational approach to refinement does not provide good monotonicity properties for the schema
operators of Z. This must be fully investigated in the current framework, and alternative models developed
which have more useful properties.
This work was partially supported by the British Council and the EPSRC (grant GR/L57913).

References

[1] M. C. Henson and S. Reeves. Investigating Z. Journal of Logic and Computation, 10(1):1–30, 2000.

[2] S. King. Z and the Refinement Calculus. In D. Bjørner, C. A. R. Hoare, and H. Langmaack, editors, VDM ’90
VDM and Z—Formal Methods in Software Development, volume 428 of Lecture Notes in Computer Science, pages
164–188. Springer-Verlag, April 1990.

[3] B. Potter, J. Sinclair, and D. Till. An introduction to formal specification and Z. Prentice Hall, 2nd. edition,
1996.

[4] J. M. Spivey. The Z notation: A reference manual. Prentice Hall, 1989.

[5] J. Woodcock and J. Davies. Using Z: Specification, Refinement and Proof. Prentice Hall, 1996.

A The specification logic ZC
In this appendix we shall describe the simple specification logic ZC from [1]. This is included for convenience only
and the reader may need to consult the earlier paper at least in order to fully understand our notational and meta-
notational conventions.
ZCis a typed theory in which the types of higher-order logic are extended with schema types which are unordered,
label-indexed tuples. For example, if the Ti are types and the li are labels (constants) then:

[· · · li : Ti · · ·]

is a (schema) type. The symbols ¹, f and g denote the schema subtype relation, and the operations of schema type
intersection and (compatible) schema type union. We let U (with diacriticals when necessary) range over operation
schema expressions. These are sets of bindings linking, as usual before observations with after observations. We
can always, then, write the type of such operation schemas as P(T in g T out′) where T in is the type of the input

sub-binding and T out′ is the type of the output sub-binding. We will also write bindings belonging to operation

schemas in partitioned form: zT in

0 ? zTout′
1 ∈ U P(T ingTout′). In this way reasoning in Z becomes no more complex than

reasoning with binary relations.
Amongst the usual terms such as bindings, sets, pairs and numbers etc. we have the terms ⊥T at every type.
The judgements of the logic have the form Γ `ZC P where Γ is a set of formulæ.
The logic is presented as a natural deduction system in sequent form. Derivations in the logic, above, were presented
in pure natural deduction form. We omit the rules which establish the underlying classical logic.

All data (entailment symbol, contexts, type etc.) which remains unchanged by a rule are omitted. In the rule (∃−),
the variable y may not occur in C ,P0,P1 nor any other assumption. We begin with the usual rules for ZC .

〈| · · · liVti · · · |〉.li = ti
(V=

) 〈| · · · liVt .li · · · |〉 = t [···li :Ti ···]
(V=

)

(t , t ′).1 = t
(()=)

(t , t ′).2 = t ′
(()=)

(t .1, t .2) = t
(()=)

P [z/t]

t ∈ {z | P} ({}+)
t ∈ {z | P}

P [z/t]
({}−)

t0 ≡ t1
t0 = t1

(ext)
tT .li = ti

(t � T ′).li = ti
(�=) (li ∈ αT ′; T ′ ¹ T)

where
t0 ≡ t1 =df ∀ z ∈ t0 • z ∈ t1 ∧ ∀ z ∈ t1 • z ∈ t0

The usual side-conditions apply to rule (∃−).
The symmetry and transitivity of equality and numerous equality congruence rules for the various term forming
operations are all derivable in view of rule (sub).
In addition to these rules, the extended theory we need in this paper has the following axioms which ensure that the
⊥T values interact appropriately:

⊥[l0:T0···ln :Tn]= 〈| l0V ⊥T0 · · · lnV ⊥Tn |〉 ⊥T0×T1= (⊥T0 ,⊥T1) ⊥PT= {zT | z =⊥T}
In [1] we showed how to extend ZC to the schema calculus. For example:

[S | P] =df {zT | z ∈ S ∧ z .P}
defines atomic schemas, and:

S
PT0
0 ∨ S

PT1
1 =df {zT0gT1 | z ∈ S0 ∨ z ∈ S1}

defines schema disjunction.
In the extended theory we have described, it is crucially important that the ⊥T values are excluded from the schemas.
This is achieved by defining the natural carrier sets for each type:
The natural carriers for each type are defined by closing:

N =df {zN | z 6=⊥N∧ z = z}
under the operations of cartesian product, powerset and schema set. The notational ambiguity does not introduce a
problem, since only a set can appear in a term or proposition, and only a type can appear as a superscript.
The full carriers are defined for all types as follows:

T⊥ =df {zT | z = z}
Given this, we modify the defintions for the schema expressions accordingly, for example:

[S | P] =df {z ∈ T | z ∈ S ∧ z .P}
defines atomic schemas, and:

S
PT0
0 ∨ S

PT1
1 =df {z ∈ (T0 g T1) | z ∈ S0 ∨ z ∈ S1}

defines schema disjunction.
As a consequence, all bindings in the schema calculus are hereditarily ⊥-free. We used this in the proof of theorem
4.1, for example.
In many contexts we need to compare bindings over a common restricted type.

Definition A.1 Let T ¹ T0 and T ¹ T1.

tT0
0 =T tT1

1 =df t0 � T = t1 � T

