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Abstract

In thelasttwo yearsthe schemaheoryfor GeneticProgramming GP) hasbeenapplied
to the problemof understandinghe length biasesof a variety of cross@er and mutation
operatoron variablelengthlinear structuresln theseinitial paperspperatorsverestudied
in isolation. In practice,however, they aretypically usedin variouscombinationsandin
this papemwe presenthefirst schemaheoryanalysisof the comple interactionsof multiple
operatorsln particularwe applythe schemaheoryto the useof standardsubtreecrosseer,
full mutation,andgrow mutation(in varyingproportions}o variablelengthlinearstructures
in the one-then-zeroproblem. We thenshav how the resultscanbe usedto guidechoices
aboutthe relative proportionof theseoperatorsin orderto achieve certainstructuralgoals
duringarun.

1 Intr oduction

Most (if not all) GP operatorshave a variety of biaseswith respecto both the syntaxandthe
semanticof the treesthey produce. Thesebiasescanwork againstor in favor of the biases
implied by thefitnessfunction,which makesunderstandinghesebiase<rucialto understanding
thebehaior of andrelationshipsamongthe variousoperators.

Theseinteractionscan be quite comple, however, and understandinghem can be quite
difficult. While thereis a considerablditerature examining the interactionsof mutationand
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crosseer in areadike GeneticAlgorithms (GAs), thereis muchlessreportedwork on thein-
teractionsof operatoran GeneticProgramming(GP). Notableexceptionsinclude the work of
O'Reilly [O'Reilly, 1995, Banzhafand Nordin [Banzhafetal.,1996], and Luke and Spector
[Luke andSpectoy1997, Luke andSpector1998 Luke, 2000]. Thesestudiesareprimarily ex-
perimentalin nature,andall suggesthatthe problemof understandingperatorinteractionss
comple. It wouldthusbepotentiallyusefulto have atheoreticabpproacho theseproblemghat
might allow usto betterunderstanaperatorinteractionsandchoosecombinationf operators
in amoreprincipledmanner

In the last few years the schematheory for Genetic Programming (GP) has made
huge progress,becomingnot only an exact theory (under the infinite populationassump-
tion) but also applicableto a variety of operatorsusedin practice, including: one-point
crosseer [Poli, 2000 Poli, 2001b, Poli, 2000a Poli, 2001a], standardand other subtree-
swapping crosseers [Poli, 2001h PoliandMcPhee2001b, McPheeandPoli, 2001, differ-
ent types of subtree mutation and headlesschicken crosseer [Poli andMcPhee2001a
McPheeetal., 200]], andthe classof homologousrosseers[Poli andMcPhee20014.

In [Poli andMcPhee2001h McPheeandPoli, 2001]we shoved how theserecentdevelop-
mentsin GP schematheory can be usedto betterunderstandhe biasesinducedby the stan-
dard subtreecross@er when geneticprogrammingis appliedto variable length linear struc-
tures. In particularwe shaved that subtreecross@er hasa very strongbiastowardsoversam-
pling shorterstringsand, in somesensesworks againstbloat. In [Poli andMcPhee2001a
McPheeetal., 2001 we derived exact schemaequationsfor subtreemutationon linear struc-
tures,usingboththefull andgrow methodgo generatehe new, randomsubtreeslteratingthose
equationson both a flat fithesslandscapend a needle-in-a-haystacétyle problem, calledthe
one-then-zeroproblem,we shavedthatbothof thesesubtreamutationoperatordave strongbi-
aseswith regardto the populations lengthdistribution. Similar to the biasof subtreecrosseer,
we found that thesemutationoperatorsare strongly biasedin favor of shorterstringsin both
thesefithnessdomains.

In this paperwe combinethe schematheoryfor differentoperatorsand apply themto the
problemof betterunderstandinghebehaior producedy theirinteraction.Studyingthesecom-
plex interactionsis particularly easyusing the schemaformalizationbecausave simply have
to usethe weightedsum of the schemaequationggeneratedor eachoperatorin isolation. We
alsoshov how thetheorycanbe usedto designcompetentGP systemdsy guidingthe choiceof
combinationf operatorgogethemwith their parametesetting.

The work reportedhereis all on GP with linear structuregnot unlike thoseusedin, e.g.,
[O’'Neill andRyan,2001,Burke etal., 1999), althoughthe schemaheoryon whichit is based
is muchmoregeneral We have choserin theseapplicationdo focusonlinearstructurepecause
the theoreticalanalysisis more manageablandthe computationsare moretractable. This has
yieldeda numberof importantresultsfor the linearcaseandpreliminaryresultsfurther suggest
thatmary of thekey ideasherearealsoapplicable(atleastin broadterms)to thenon-lineartree
structuregypically usedin GP

In Sec.2 we will introducethe schematheoremfor GP using linear structures,standard
cross@er andmutation,andwe will shov how easilythe theoryfor differentoperatorscanbe
integrated.We thenapplythetheoryin Sec.3 to the one-then-zeroproblemandusethetheory
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to bothpredictandbetterunderstandhe changesn thedistribution of fit individualsandof sizes
(Sec.4). We finishwith someconclusionsaandideasfor futureresearci{Sec.5).

2 Schematheory for GP on linear structures

2.1 Operators

In this paperwe will considethreecommonGP recombinatioroperatorsthe standardsubtree-
swappingGP crosseer operatorandthe full andgrow mutationoperators.Eachoperatoracts
by removing a non-emptysuffix of anindividual andreplacingit with a new suffix, with the
productionof thatsuffix beingthe primarydifferencebetweerthe operators.

More formally, in a linearstructureGP where F is the setof non-terminalnodesand7 is
the setof terminalnodes,ndividualscanbe seenassequencesf symbolscyc; . .. cy_1 Where
¢; € Ffori < N—1andcy_; € 7. Eachof theoperatorsthen,startsby removing anon-empty
suffix ¢;c;+1 ... cn—1 (Wherej is choseruniformly suchthat0 < j < N) andreplacingit with a
new non-emptystring?!

In the caseof crosseer, the new string is takento be a suffix d;d;4, . ..dx—; of another
parentdyd; ...dx:_1, Wherej' (which could differ from j) is chosenuniformly suchthat0 <
j' < N'".

Both full andgrow mutationgeneratehe new suffix randomly andthey differ in how the
new randomsubsequencesegeneratedandin particularhow theirsizesaredeterminedIn full
mutation,the subsequencbkasa specifiedlength D; thusnon-terminalsare selecteduniformly
from F until lengthD — 1 is reachedatwhich pointaterminalis selectediniformly from 7. In
grow mutation,on the otherhand,onechoosegrom the setof all functionsandterminalsevery
time, only terminatingthe creationof the subsequenc&henaterminalis chosenthusfor grow
mutationthereis noa priori limit onthesizeof theresultingsequences.

2.2 Schematheory definitions

In this sectionwe will present seriesof crucialdefinitionsthatallow usto represenschemata,
andcountandbuild instance®f schemata.

Justaswe defineda linear GP structureto be a sequencef symbols,we will alsodefine
a linear GP schemaasthe samekind of sequencec; . ..cy_; exceptthata new “don’t care”
symbol‘="is addedto both F and7 .2 Thusschemataepresensetsof linearstructuresyhere
thepositiondabelled'=" canbefilled in by arny elemenof F (or T if it is theterminalposition).
A few examplesof schemaare?

Therequirementhatsufixesbe non-emptywhile prefixesareallowedto be emptycomesfrom standardgrac-
ticein GP, It does,however, createa numberof mild but anng/ing asymmetriesvhich often clutter up the analysis
(seee.g.,[Rowe andMcPhee2001).

2This new ‘=" symbolplaysa role similar to that of the ‘# “don’t care” symbolin GA schematheory For
historicalreasonshowever, ‘# hasbeenassignedainothemmeaningin the moregeneralversionof the GP schema
theory[Poli, 20014.

3We will usethesuperscriphotationfrom theoryof computationwherez” indicatesasequencef n z's.
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e (=)N: Thesetof all sequencesf length V.
e 1(=)* Thesetof all sequencesf lengtha + 1 startingwith a 1.
e 1(0)*: Thesingletonsetcontainingthe symbol1 followedby a 0’s.

Now thatwe canrepresenschematawe present seriesof definitionsthatallow usto count
instance®f schemata.

Definition 1 Proportion in population. ¢(H, t) is the proportionof stringsin the populationat
time ¢ matchingschemaH. For finite populationsof size M, ¢(H,t) = m(H,t)/M, where
m(H,t) is thenumberof instance®f H attimet.

Definition 2 Selectionprobability. p(H,t) is the probability of selectinganinstanceof schema
H from the populationat time ¢. This s typically a functionof ¢(H, t), the fitnessdistribution
in the population,andthe detailsof the selectionoperatorsWith fithessproportionateselection,
for example,p(H,t) = ¢(H,t) x f(H,t)/f(t), wheref(H,t) is the averagefitnessof all the

instance®f H in thepopulationattime ¢ and f(¢) is theaveragdfitnessin thepopulationattime
t.

Definition 3 Transmissionprobability. «(H,t) is the probability that the schemaH will be
constructedn the procesof creatingthe populationfor time ¢ + 1 outof the populationattime
t. Thiswill typically beafunctionof p(K, t), the variousschematas thatcouldplay arolein
constructingH, andthe detailsof the variousrecombinatiorandmutationoperatorseingused.

To clarify which operatomwe areworking with, we introducespecializedorms of the trans-
missionprobabilityfunction«, namely

e o, isthetransmissiorprobabilityduespecificallyto crosswer,

e oy, Iis the transmissionprobability due specificallyto subtreemutationusing the full
method,and

® oo IS the transmissiorprobability due specificallyto subtreemutationusingthe grow
method.

We cannow modelthe standardevolutionaryalgorithmasthe transformation

mutation

S(H, 1) " p(H, 1) "X o H, 1) "2 §(H, ¢ + 1).

Herethe arravs indicatethat somenew distribution (on the RHS of the arrow) is generatedy
applyingthespecifiedoperation(sjo thepreviousdistribution (onthe LHS). So,for example the
procesf selectioncanbe seenasa transformatiorfrom the distribution of schematay(H, t)

to the selectionprobability p(H,t). A crucial obsenation is that, for an infinite population,
¢(H,t+1) = a(H,t) for t > 0, which meanswe caniteratethesetransformationso exactly
modelthe behaior of aninfinite populationovertime.
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To formalizethecreationof instance®f alinearschemave define

u(H,i, k) = 0001---0i—1(:)k_i

I(H,yi,n) = (=)" Yeiciyr...en

Hereu(H, 1, k) is theschemaof lengthk matchingtheleftmosti symbolsof H, andi(H,i,n) is
theschemaf lengthn matchingtherightmostN — i symbolsof H.* Theimportantpropertyof
u andl is thatif you usestandarccross@er to cross@er any instanceof u(H, i, k) at position:
with anyinstanceof [( H, i, n) atpositionn — N +1, theresultwill beaninstanceof H, providec
k+n > N,and0 1 (N —n) < i < N | k. Further thesearethe only waysto usestandard
crosseer to constructinstanceof H, sothesedefinitionsfully characterizéhe mechanisnfor
constructingnstance®of H.

2.3 The schematheorem

[McPheeandPoli, 2001, McPheeetal., 2001]provide schemaheoremdor eachof ourthreeop-
eratorsvhenusedin isolation. Herewe extendtheseresultsto the casewhereall threeoperators
canbeusedin the samerun, eachwith specifiedproportions.Sincewe useexactly oneoperator
to generatary givenindividual, the probability thatwe constructaninstanceof a schemdi.e.,
a(H,t)) is simply the sum of the probabilitiesof eachspecificoperatorconstructingsuchan
instancegachweightedby thelik elihoodof choosingthatoperator This leadsto thefollowing:

Theorem4 Schematheorem for the combinedoperators. For GP on linear structuresusing
standad crosswer with probability p,., full mutationwith probability pe,, for length D and
grow mutationwith probability perow, Sud that p,, + pru. + Perow = 1, Wehave

a’(Ha t) = P X axo(H7 t) + Deu X aFULL(Hu t) + Dorow X Q’GFUW(Ha t)

whee
1 . .
wlHt) = Y (> Y. plulH.ik),8) x p(i(H,in).1)),
ﬁ;g 0N N—n)<i<Nlk
k+n>N
1 . )
o (Ht) = > (EXp(co...cil(z)k%,t)xa(N-z:D)>
OSZ‘C<>J(\)I,LI¢
1 ) )
Qoo Hyt) = ) (Exza(co...ci1(:)“,t)><qNZ1><(1—q)),
OSZ‘C<>J(\)I,LI¢

q=|F|/(|F|+|T|)andd(b) = 1 if b is trueand 0 otherwise

44 and! arebasedon operators/ and L (see,e.qg.,[Poli, 20018) which matchthe upperandlower partsof
generalnon-linear GP schemata.
SWe will uset asabinaryinfix maxoperatoyand, asabinaryinfix min operator




Herewe simply reportthe generalkexpressiondor the quantitiesa,,, ey, andaggoy for the
linear casewithout providing ary proofs. The interestedreadercan find these,togetherwith
extensve characterizationsf the behaior of cross@er and mutationwhenusedseparatelyin
[McPheeandPoli, 2001, McPheeetal., 2001].

3 The one-then-zepsproblem

We will now applythe Schemarheoremto the one-then-zars problem We will startby defin-
ing andmotivating the problem,andthenshav how the schemaheoremcanbe usedto better
understandhe effectsof multiple operatorinteractionon this problem.

3.1 One-then-zepsproblem definition

In this problemwe have 7 = {0,1} and7 = {0}, whereboth0 and1 aretakento be unary
operatorsThisgivesusaproblemthatis essentiallyequivalentto studyingvariablelengthstrings
of O’sand1l’s, with the constraintthatthe stringsalwaysendin a 0. Fitnessin this problemwill
belif thestringstartswith a1 andhaszeroselsavhere,i.e.,thestringhastheform 1(0)® where
a > 0; fitnesswill be0 otherwise.

Oneof thereasondor studyingthis problemis thatunderselectionandcrosseer only this
probleminducesbloat[McPheeandPoli, 2001], while this doesnot happenunderthe full and
grow mutationoperatordMcPheeetal.,200]. The key advantageof this problemis thatin
orderto fully andexactly describethe length-eolution dynamicsandthe changesn solution
frequeng of infinite populationsijt is necessaryo keeptrack of only two classe®f schemata:
thoseof the form (=)" andthoseof the form 1(0). Unfortunatelymostproblemsarenot so
restrictedandoneis typically forcedto trackthe proportionof mary (possiblyintractablymary)
moreschemata.

To applythe schemaheoremto the one-then-zeroproblemonethenonly needto calculate
the probabilitiesa,((=)", 1), a.(1(0)% 1), ar ((=)V, 1), ar (1(0)%, 1), acon((=)",t) and
asrow(1(0)%, t). Thesecanbe calculatedrom theequationseportedabose andarealsoprovided
in explicit form in [McPheeandPoli, 2001, McPheeetal., 200]], sowe will notre-derve these
resultshere.

If we assumeaninfinite population,we cannumericallyiteratethe equationsn the Schema
Theoremto betterunderstandhe behaior of aninfinite GP populationon this problem. Track-
ing thesedistributionsovertime becomesxpensve in termsof computationaéffort. A crucial
point, though,is thattheseequationsonly needto be run once,and have no stochasticeffects.
They areexact calculationsof the relevant quantities(up to the limitations of the floating point
representationgandoncecomputecheednever be computedagain.Thisis in contrasto typical
empiricalresultsin evolutionarycomputationywherecombination®f large populationsandmul-

5We have found, though,thatignoring valuesof o belov somesmall threshold(we have used10~1°) seemdo
have little impacton the numericresultsand cangreatly speedup the calculationssinceit significantly slows the
growth of the numberof stringsthatneedto betracked.



Final distributions for operators in isolation
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Figure 1. Thedistributionsof lengthsafter 50 generationsvhenusingthe threerecombination
operatorson their own on the one-then-zeroproblem. The tail of the crosseer distribution
continuegpastthe right handside of the graph,with lengthsabove 300 still having proportions
above 10710,

tiple runsarenecessaryo smoothout the stochastieffects,andeventhenthereis no guarantee
thatany two setsof runswill have similar behaior.

4 One-then-zeosresults

We know (see, e.g., [McPheeandPoli, 2001, PoliandMcPhee2001h McPheeetal., 2001,
PoliandMcPhee20013) that eachof theseoperatorshassignificantbiaseswhenusedon its
own, andFig. 1 summarizesomeof the earlierresultsby presentinghe final lengthdistribu-
tionsfor eachof the operatorsvhenactingaloneon the one-then-zeroproblem. This makesit
clearthatthethreeoperatorsall have very differentlengthbiaseswhich suggestshatthey may
indeeddemonstraténterestingoehaiors whenusedin combination.

We cannow iteratedthis new combinedschemaequationto studythesecombinedinterac-
tionsandtheir biasesandto usesuchresultsto guidethe choicesof the proportionsof operators
to helpsatisfya variety of goals.As anexamplein this paperwe will consider:



1. Avoid both bloatingandshrinking, by having the averagesize after 50 generationde as
closeaspossibleto theinitial averagesize.

2. Avoid both bloating and shrinking (as above), but also maximizethe numberof correct
individuals.

3. Maximizethe proportionof smallsolutions(asopposedo just shortstrings).

4. Reacha statewheretheproportionof 1(0)%° exceed<D.01asearlyaspossible.

In all theserunswe will be applyingthe threeoperatordiscussectarlier (standardsubtree
crosseer, full mutation,andgrow mutation)ontheone-then-zerogroblem.A depthlimit D = 5
will beusedfor full mutation.Ourinitial populationwill consistof equalproportiong10%each)
of thestrings1(0) for 1 < 4 < 10; thustheaveragdengthin theinitial populationis 6.5.

To studytheinteractionof the operatorsyve iteratedthe schemaquationdrom Theorem4
66 differenttimes,usingeachof the legal combinationsof proportionsof (standardxrosseer,
grow mutation,and full mutationwith valuesvaluesfrom the set{0,0.1,0.2,0.3,...,0.9,1}.
We'll usetriples of the form (xo, full, grow) to indicatea combinationof parametersettings
wherethefirst is alwaysthe proportionof crosser, the secondhe proportionof full mutation,
andthethird the proportionof grow mutation.

While the majority of theseiterationshadcorvergedafter 50 generationstherewereseveral
which had not. Thesewere typically thosewith sufiiciently high cross@er probabilitiesthat
bloatwasoccurringandthe averagelengthswereclearly still growing after 50 generationsAs
an example,the configuration(0.8, 0, 0.2) hasan averagelength of 7.98 after 50 generations,
andis thusnot a terrible solutionto the problemof avoiding bloat and shrinkageasdefinedin
Section4.1 below. It seemshighly likely, however, thatif we wereto continueiterating the
equationswith theseparametergor another100 generationsve would get higher and higher
averagelength,therebydoing a worseandworsejob of meetingthe goal of avoiding bloatand
shrinkage.Thisisn’t necessarilya concern however, sinceactualGP runsalwayshave afinite
numberof generationsThusif we know we're likely to run our GPfor 100generationsye can
iteratetheseschemaequationsndtry to find settingsthatmeetour goals(whateverthey happen
to be)attheendof 100generationsegardlessof whetherfurther geneationswouldtake usaway
fromour goals

It shouldalsobe notedthattheinitial uniform distribution of lengthsis very unstablen the
sensdghatany combinationof operatorswill generatea very differentdistribution immediately
in thefirst generationAs anexample thesettingg0.1,0.7,0.2) have anaveragdengthafter 50
generationghat’svery closeto theaveragdengthin theinitial distribution(6.5). Thedistribution
itself (shavn in Figure3) is far from uniform, however. This seemdo be a generalpropertyof
“interesting” operatorsnamelythatthey have a “f avored” lengthdistribution thatthey move to
guite quickly, andwhile fithesscanmodify thattendeng, it rarely eliminatesit entirely.

4.1 Avoid bloat and shrinkage

In our first examplethe goal will be to avoid both bloating and shrinkageby searchingfor a
collectionof parametesettingssuchthatthe averagelengthafter 50 generationss ascloseas
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XO | Full | Grow | Diff. from 6.5 | Prop.fit
01] 07| 0.2 0.081 0.19
0.2 06| 0.2 -0.045 0.26
03| 05| 0.2 -0.131 0.31
04] 04| 0.2 -0.147 0.37
05| 03| 0.2 -0.045 0.43

Tablel: Parametesettingsfor thefive runsthatcameclosestio having the sameaverageength
after 50 generationssthe averagelength of the initial distribution. “XO” is the proportionof
crosseer, and“Full” and“Grow” arethe proportionsof full andgrow mutation. “Diff. from
6.5” is the differencebetweenrthe actualfinal averagelengthfor this setof parameteraindthe
initial averagelength(6.5); negative valuesmeanthatthefinal averageengthwaslessthan6.5.
“Prop. of fit” is the proportionof theindividualsproducedn thelastgeneratiorthatwerefit.

possibleto theinitial averagesize.

Outof our66 runs,five hadafinal averagditnessthatwaslessthan0.15awayfrom theinitial
averageof 6.5 (seeTablel); the next closestcombinationof parametesettingshadan absolute
differenceof over 0.23. Notethatin eachcasethe proportionof grow mutationwas0.2. In fact
the 20 runswhosefinal averagelengthswere closestto 6.5 all had small non-zeroproportions
for grow mutation(betweer0.1and0.4), whereaghatsetof runshadfull mutationproportions
rangingfrom 0 to 0.9, and crossw@er proportionsrangingfrom 0 to 0.8. Thosecombinations
wherethe proportionof crosseer wasover 0.5, however, all hadaveragelengthsthatwerestill
climbing after 50 generationssoit’s likely thatthey would continueto diverge from 6.5 if we
iteratedthe equationdor moregenerationsThusthe crucialfactorsfor long-termsize stability
seemto bea smallnon-zergoroportionof grow, andacross@er proportionof atmost0.5sothe
sizesdon't bloatabove 6.5.

Most (but not all) of therunswherethe proportionof grow was0.2 hadfinal averagdengths
closeto 6.5; the smallestaveragelength after 50 runs was 6.36 (for (0.4,0.4,0.2)), and the
largestwas7.98(for (0.8, 0, 0.2)). Asdiscussedbove, however, thoseparametesetswith higher
crosseerproportiongrobablyhadnt corvergedafterjust50runs,andtheirfinal averagesvould
probablycontinueto grow if we iteratedmoregenerationsTakingthatinto accountherangeof
final averagelengthsis quite small,beingfrom 6.35to 6.46 whenthe proportionof grow is 0.2
andthe proportionof cross@eris at most0.5.

Looking at Figure 2, we canseethatin eachof thesecasegherewasan initial jump awvay
from 6.5 (causedby the instability of the initial uniform length distribution), followed by a
fairly rapid cornvergenceto an averagevalue closeto 6.5. The slowestto cornverge was the
casewherewe had50% crosseer, andthat curve in factlooks similar to the bloating seenin
[McPheeandPoli, 2007, with anasymptotecloseto 6.5.

Figure 3 shaws the final distribution of lengthsfor eachof thesefive parametersettings.
While eachof thesedistributionshasan averagelengththatis nearlyequalto thatof theinitial
uniform distributions, none of thesedistributionsis remotely uniform. They insteadexhibit
combinationsof featuresseenin earlierstudiesof usingsinglerecombinatioroperatorson this
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Avg length over time near 6.5

Average length

Generation

Figure2: Averagelengthsover time for the five collectionsof parametessettingsleadingto a
final averageengthclosesto theinitial averagdength(6.5).

problem.In eachcase for example we seeapeakatlength=5whichis dueto full mutationwith
depth5, andthe heightof the peakis clearly correlatedo the full mutationprobability.

4.2 Avoid bloat and shrinkage, maximizing correct proportion

In theprecedingexamplewe lookedfor parametesettingghatavoidedbothbloatandshrinkage.
It's possible however, thatthis goalwasmetat the expenseof correctnessA givencollection
of parametesettingscould, for example,generatehe desiredaveragesize,but have a very low

proportionof fit individuals. Thiswouldin turn greatlyreducethe effective populationsizesince
mostof the generatedndividualscannever be selectedor recombination.

We canassesshis by looking at the proportionof correctindividualsin the final genera-
tion for eachsetof parametewvalues,andwe indeedseethat thereare substantialdifferences
amongthesefive runs(seeTable 1), with the valuesrangingfrom 0.19to 0.43. It's alsoclear
that increasedorobabilitiesof crosseer correspondwith increasedproportionof fit individu-
als. This is not surprisingsince increasedprobabilitiesof crosseer also correspondo de-
creasedprobabilitiesof full mutation, and full mutationis rarely going to producea fit off-
springin this problem[McPheeetal., 2001]. Cross@erontheotherhand,hasa high probability
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Final distributions with average length 6.5

02 (0.1, 0.7,0.2)

1 (0.2, 0.6, 0.2)

; \—(0.3,05,0.2)
0.15 - \[—(0.4,0.4,0.2)

(0.5, 0.3, 0.2)

Proportion in population

Figure3: Finallengthdistributionsof thefive parametesettingswhosefinal averagdengthwas
closesto theinitial averagelength(6.5).

of generatingcorrectoffspring, especiallywhen given two correct,fairly long individuals as
parents[McPheandPoli, 2001].

Anotherapproacho optimizing thesetwo criteriawould be to startby identifying the runs
with high proportionof fit individualsin the final generation,and then choosingfrom those
the parametersettingsthat also lead to final averagelengthsnear6.5. The settingswith the
highestproportionof fit individualsare thosewith high crosseer probabilities,but theseruns
alsohave the highestfinal averagelengths(becausdiigh crosseer probabilitiesleadto bloatin
the problem)[McPheeandPoli, 2001]. Oneof the bestsettingsis (0.8, 0.0, 0.2), which hasa
final averagelengthof 7.98 (nearly1.5 nodedongerthanthe original averageof 6.5) but afinal
proportionof fit individualsof 0.65(about0.22higherthanthe proportiongeneratedby (0.5,0.3,
0.2)).

4.3 Maximize proportion of small solutions

Now considerthe casewherewe wantto minimize the averagesize of thefit individuals(i.e.,
thoseof the form 1(0)® for « > 0). Therearequite a few combinationsof parametesettings
that leadto averagesize of fit individualsthat are just above 3. The threesmallestare (0, O,
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1), (0.1,0,0.9),and(0.2,0, 0.8) with final averagesizesof fit individuals3.02,3.04,and 3.07
respectiely, suggestinghat(on this problem)the bestway to make shortcorrectsolutionsis to
primarily usegrow mutation,with smallamountsof crosseer beingacceptablaswell. Adding
smallamountsof full mutationdoesnt leadto muchbiggeraveragesizes(the averagesizefor
(0,0.1,0.9), for example,is 3.13) despitethe factthat depthmutationalwaysgeneratestrings
of lengthatleastl + D (or 6 in our case).Thisis probablydueto thefactthatfull mutationwill
very rarely (with probability1/32) generateorrectindividualsin this problem.

If onewantedto further maximizethe proportionof fit individuals,thenthe threecandidate
combinationshave progressiely increasingproportionof fit individuals;the highestis (0.2, 0,
0.8), which hasa proportionof 0.41. If we look morebroadly we find that (0.6, 0, 0.4) hasa
somavhathigherproportionof fit individualsafter 50 generation$0.49), with the averagesize
of fit individualsbeingonly slightly higher(3.54).

4.4 Find solutionsof length 31 quickly

For ourfinal examplewe will consideithegoalof finding solutionsof theform 1(0)3° asquickly
aspossible.Thereareavariety of motivationsfor this sortof goal,but onemight bethatinstead
of only having atwo level fithessfunction,we might have a threelevel fithessfunction:

e Fitnesd0: Individualsthatdon't have the“one thenzeros”pattern.
e Fitnessl: Individualsof theform 1(0)?, a # 30.
e Fitness2: Individualsof theform 1(0)3°.

If we furtherassumethatourrunwill terminateassoonaswe discover atargetindividual 1(0)3°,
thendynamicsof sucha run areidenticalto the original one-then-zeroproblem, exceptthey
terminateupondiscovery of atargetindividual.

Thuswe canuseour schemaheory resultsto find out what parametessettingslead most
quickly to the discovery of a targetindividual. Becauseof the infinite populationassumption,
however, we may find that early in a run thereis a very small, but still positive, proportion
of tamget individuals, yet with such small proportionsthe likelihood is miniscule of actually
generatingatamgetindividual thatquickly in a“real” (finite population)run. We will, therefore,
look for the collectionof parametesettingsthatfirst achiezesa proportionof targetindividuals
exceeding).01.

Only four of our testedparametersettingsever obtain a proportionof at least0.01 target
individuals (seeTable 2), with all crosseer (1, 0, 0) reachingthe target the mostquickly (in
26 generations)Adding smallamountsof full mutationstill allows the goalto be satisfied but
evenaproportionof 0.3is enoughto increaseéhe numberof generation®y 12. Grow mutation
clearlyinterfereswith this goal,asnoneof thefour parametesettingsthatachieve thegoalhave
ary grow mutation.

If werelaxthetargetproportionto 0.001thereareatotal of 12 parametesettingshatachiese
this new goal. Of theseonly four have non-zerogrow mutationprobabilities,all of which are
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XO | Full | Grow | Firstgento 0.01
1.0| 0.0| 0.0 26
09| 01| 0.0 28
08| 02| 0.0 32
0.7 03| 0.0 38

Table2: Parametersettingsfor the four runsthateventuallyachiere a proportionof 0.01target
individuals 1(0)°. The first threecolumnsare asin Table1. “First gento 0.01” is the first
generatiorfor agivencollectionof parametesettingswherethe proportionof targetindividuals
exceeded.01.

thelowestpossiblevalue(0.1). Similarly, all but threeof thesel2 settingshave crosseer prob-
abilities exceeding0.5, althoughone (0.3, 0.7, 0) managedo reachthe target of 0.001in 21
generationslespitethe low crosswer probability. It’s interestingto note, however, thattwo of
the settingswith non-zerogrow mutationprobabilities((0.7,0.2,0.1) and (0.6, 0.3, 0.1)) both
reachedhe goalmoreslowly (in 23 and29 generationsespectrely) despitehaving muchhigh
crossw@er probabilities.

It’s not terribly surprisingthatcrosseeris usefulin increasinghelengthof fit strings,since
we've previously seenthatcrosseer canleadto bloat(presumablydueto replicationaccurag)
[McPheeandPoli, 200]. Further onewould expect both mutationoperatorso at leastslow
down the processof generatinga target string containingthirty 0’'s (andthushaving length31)
(See[Rowe andMcPhee 2007 for details):

e Givenastringof lengthl, full mutationgenerategon average)a string of lengthroughly
/2 + D, sofull mutationtendsto generateshorteroffspringoncel > 2D. SinceD = 5 in
our examplesfull mutationwill tendto reducethe sizeof stringsoncetheir lengthsbegin
to exceed10.

¢ Givenastringof lengthl, grow mutationin the one-then-zeroproblemswill generatéon
average)a string of lengthroughly (/2 + 3. Thusgrow mutationwill tendto reducethe
sizeof stringsoncetheirlengthsbegin to exceed6.

What's perhapsmore surprisingis that grov mutationinterfereswith the processof find-
ing a target string so much more than full mutationdoes. The likely reasonis that grow
mutation is more likely to producefit offspring than mutation (see [McPheeetal., 2001,
Rowe andMcPhee200] for details). Becauseof the infinite populationassumptiongener
ating unfit offspring hasno substantiakffect on the dynamicsof the system,asdoing so has
no effect on the selectionprobabilities. Generatingshort, fit individuals,however, will change
the dynamicsby increasingthe probability that shortindividualsare selectedas parentsin the
next generationln our casdits likely thatgrow mutationcreatesa sufficient numberof short,fit
stringsthatit cansignificantlyhamperthe procesof generatindit stringsof length31.
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5 Conclusionsand futur e work

It’s clear then,thatthereis a fairly complex setof interactionsbetweernthesethreerecombina-
tion operatorsmakingit quite difficult to guessa priori what proportionsof operationsvould
aid in satisfyinggoalsthat might be importantin a particulardomain. For this problem,how-
ever, we wereableto iteratethe schemaequationson mary differentcombinationsof operator
proportionsgeneratinga usefulmapof theinteractions.

In this paperthe numberof differentcombinationof proportionswvassmallenoughto make
manualsearchegor desirablevaluesfeasible. With more operatorsor a larger variety of dif-
ferentproportions,the numberof combinationsvould quickly grow out of control, making it
prohibitive to iteratethe equationdor every combinationandthensearchthe resultsby hand.
Sincethis is essentiallyjjust a anothemparametepptimizationproblem,onepossibilitywould be
to applyaGA, althoughin mary casesomethingsimplerlik e ahill-climber would probablyalso
work. Anotherpossibility (which could potentiallydramaticallyreducethe numberof different
combinationghat would needto be iterated)would be to usefactorial designof experiments
[FeldtandNordin, 200(Q.

Probablythe mostimportantobsenationhereis thatthereis clearlyno “best” setof operator
proportions,andthatthe desirabilityof a combinationof operatorswill dependritically onthe
particulargoals. It is thereforeparticularlyimportantthatwe have toolsthathelp usunderstand
notonly the generalinteractionsof operatorshut alsounderstandhe morespecificinteractions
in orderto guideour choices.
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