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1 Introduction

1.1 Motivation

The use of robots is steadily increasing, particularly in manufacturing. Most industrial robots operate
in strictly controlled environments. Those which are mobile navigate using beacons, markers or wires
embedded into their surroundings([12, pg 8], with pre-installed knowledge of the use and position of the
navigational aids.

There are, however, applications for autonomous mobile robots for which continuous, unsupervised
operation over long periods of time (several days without interruption) is desirable, for instance surveil-
lance, monitoring or cleaning tasks. These operations would typically be conducted in environments
which are designed for human comfort and utility e.g. offices.

For reasons of cost and efficiency it is not practical to modify such an environment to allow robot
operation. In such an unmodified environment, using pre-installed knowledge is problematic for the
following reasons:

1. Perceptual discrepancy. Robot sensors do not necessarily respond well to the same environmental
features a human sees well. A human operator may not be supplying the robot with the most useful
data.

2. Inflexibility. Pre-installed competences may not be applicable to situations which were not foreseen
at the time of coding.

3. Temporal invariance. Non-learning behaviours may not cope well with environmental changes over
time.

4. Spatial invariance. Pre-installed knowledge often enables the robot to operate only in known envi-
ronments.

5. Brittleness. Inaccurate modelling can produce incorrect operation.
6. Cost. Pre-installing models is time-consuming and costly.

7. Technical complexity. Modelling typically requires skilled operators.

It is, therefore, preferable for the robot to use machine learning techniques to acquire competences
in interaction with its environment. Learning will allow the robot to exploit salient features of the
environment, minimising the need for modifications to the environment. Additionally, if the robot has
the ability to learn continuously it can adapt to changes in the environment, an exteremly useful ability
when operating in an area in which humans will be working.

1.2 Purpose of the Experiments

Machine learning has regularly been applied to robot control (see [12] for a review), but, to our knowledge,
always in condensed learning scenarios. A condensed scenario is a learning situation in which almost all
stimuli presented to the robot are relevant to the competence being learned. Such condensed learning
scenarios are suitable for acquiring competences under controlled conditions, but are likely to fail in
real-world scenarios of continuous long-term operation, where many perceived stimuli are “irrelevant” to
a specific competence.

Staged competence acquisition is an approach which allows the robot to overcome these problems by
controlling when a competence is learned, and at what rate (see [13] for a further discussion).

The first trials with staged competence acquisition were conducted in [8]. During these trials compe-
tences for short and middle range navigation were developed which would allow a robot to wander within
a limited area and when low on power return to a charging station and re-charge.

The experiments reported here continue these trials, expanding the number of competencies with an
obstacle avoidance competence and seeking to establish the repeatability, reliability and utility of the
competences. From the results of these experiments, decisions about the use of the competences within
a continuous operation scenario are made and whether they can provide a basis from which which the
problems with continuous operation and learning can be explored.



2 Method

2.1 Staged Competence Acquisition

Staged competence acquisition ([8]) is a learning process in which the complex behaviour of a robot is
decomposed into simpler competencies. The robot acquires each competence when it is in the correct
position within the environment and at the correct time of operation. Each competence is acquired until
the required functionality can be produced through combination of these simple competencies. Some
inspiration for this is drawn from biological systems, such as the stages of child development [17]. During
this project staged competence acquisition used a single variable, the operational time of the robot to
control the learning of the individual competences.

2.2 Robot Functionality

The robot used in the research, Strange, is capable of self re-charging from a specially designed charging
station (see section 3.1).
The functionality required from the robot was:

¢ Wander randomly around the experimental area. When the on-board batteries reach a certain level
of discharge return to the charging station, connect and re-charge the batteries. After re-charging
resume wandering (figure 1).
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Figure 1: The functionality required of the robot Strange: Wander randomly and when batteries are low
return to the charging station

For the duration of these experiments, the robot would be confined to the area shown in figure 1. This
meant that there was a finite limit to mapping. It also meant that there were effectively two phases of
robot operation. A learning phase during which movement and navigation competencies were developed
and a wandering phase during which the effectiveness of the learning phase could be evaluated. The
robot functionality describes the robots required behaviour during the wandering phase, i.e after all the
competences have been acquired.

2.3 Robot Competencies

In order to gain the functionality the robot needed the following competences:



e Connect to charger. This is a reflex-like fixed behaviour which simply moves the robot forward
until it makes contact with the charging station, whereupon the robot halts and charges.

e Avoid obstacles. To allow the robot to wander within the experimental environment without be-
coming trapped, or damaging either the robot or the environment.

e Short range navigation to the immediate proximity of the charger. Required when the robot is near
the charging station to orientate the robot towards the charging station and then move forwards.
Some performance measure is required to asses when the robot has moved close enough to the
charging station for the connect to charger function to move the robot into final contact.

e Middle range navigation to the short range navigation area. Produces heading and distance data
which allows the robot to find a vector which will return to some point within the short range
navigation area (close to the charging station) from anywhere within the experimental area.

The first of these competencies connect to charger has no learning component. The other three
competencies will use machine learning techniques to acquire their functionality. These competencies
have a logical order in which they must be learnt:

e Whilst learning obstacle avoidance the robot will move randomly. The position of the robot will
therefore be unknown once the obstacle avoidance competence acquisition has begun. Therefore
the competence cannot be learned until the robot is capable of determining its position within the
environment, or it will lose the charging station position before mapping has begun and be unable
to return.

e Using middle range navigation to home to the general area of the charging station will serve no
purpose if the robot is then incapable of assuming the correct heading to charge.

The order in which the competencies should be acquired is therefore:

e Short range navigation to immediate proximity of the charging station;
e Middle range navigation to the short range navigation area;

e Avoid obstacles.

However, if the robot is to map the whole environment for the middle range competence then it
needs to start mapping while the short range competence is still being learnt. Therefore middle range
navigation competence learning is active concurrently with short range navigation learning.
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Figure 2: Competence Staging for the Robot Strange the plot is the learning rate against operational
time in activity units

Figure 2) shows the three competences and when they are trained during the operation of the robot.
The training of all three competences will be directly related to the slope of the graph at the operational
time. Each competence curve is a function on the operational time. The operational time was not mea-
sured in fixed units of time, such as seconds, but in units of robot activity, (henceforth call activity units).
An activity unit is a single robot action such as a translational movement, or a rotation. This abstraction



away from a direct reading of time allows much greater flexability and robustness, removing the need to
factor in absolutes of hardware performance such as different processor speeds or the robot’s operational
speed. Using activity units the speeds could be changed without needing to recalculate the activation
function. The types of function and value of required constants were derived from experimentation. The
competences are discussed in greater detail in the following sections.

2.4 Short Range Navigation to the Immediate Proximity of the Charging
Station

For the robot to charge successfully it must approach the charging station in the correct orientation so
that the robot can engage the contacts and begin charging.

An insect-learning model was used as inspiration for this competence. Honey bees undertake orienta-
tion flights, at the start of these flights the insects spend some time hovering close to the nest to ensure
that the nest entrance can be recognised from many angles of approach ([5], [4], and [6]). During this
hovering period the insect associates images from the compound eyes with the approach vector to the
nest entrance.

In a similar manner, the robot would use a neural network to associate environmental information
(sonar readings) within the area close to the charging station with vector data which would enable the
robot to move towards the charging station.

This was implemented by placing the robot close to the charging station, facing it. The robot then
backed out and stopped. Sonar readings were taken and then associated with the heading and distance
data (captured through robot odometry) from the vector just travelled. The robot then returned to its
starting point.

These vector movements were performed in a fan shaped pattern (figure 3) with the charging station
at the focus of the fan and the vector movement along the ‘spokes’. This pattern is created by insert-
ing a rotation between translational movements. The pattern was defined as a table of rotational and
translational data. The length of the ‘spokes’ of the pattern increased with operational time.

(O Phase of movement

O Short Range (RBF)
Sonar Readings—taken once

® \iddle Range (SOFM) Sonar
Readings. Robot repeats vector
pattern approx 10 times.

— Bi-directional vector
—-—-- Area limits

Figure 3: Robot movement while learning short range and middle range navigation

This could have been accomplished with random vector movements which would have been more
‘natural’ but could have lead to the over training of some areas and neglect of others. The selected
approach is therefore more robust.

2.4.1 Implementing Short Range Navigation with a Radial Basis Function Network

The short range navigation competence required a network which trained rapidly and could map a
continuous function across the area directly in front of the charging station. A Radial Basis Function
(RBF) Network was selected because it fulfills both criteria ([15]).

The RBF network is composed of an input layer, a single hidden layer and an output layer. There are
two sets of weights, the hidden layer weights between the input and hidden layer, and the output weights
between the hidden and output layer.
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Figure 4: Radial Basis Function Network: Used for Short Range Navigation

The network used in the experiment had sixteen input units, one for each sonar sensor of the robot, 14
units in the radial basis layer, and two output units providing distance from, and angle to, the charging
station.

While the network was being trained the robot took 14 sonar readings while moving in a fan shaped
pattern close to the charging station (see figure 3). These readings were used as the weights of the 14
nodes in the the hidden layer. The readings were also presented to the network through the input layer.
For each node in the hidden layer, the Euclidean distance between the input and the hidden node’s
weights was calculated. A Gaussian function was then applied to the generated value (equation 1). The
is the most common radial function used with RBFs (figure 5).

n= e~z &

where h is the output of a hidden node, i is the input vector, w is the weight vector and o is a constant
factor.

The result of applying the function is to generate a non linear mapping between the hidden layer and
the node.

The output units weights were then trained using a supervised learning schema, the Perceptron
Learning Rule (equation 2).

@(t+ 1) = (1) +0(t)(T — O)F, (2)

where t is the time at which the following was true, O is the observed output value, T is the target
value and 7 is the input vector(in this case the output value from the hidden weight). @(z) is the weight
vector at time z. 7 is a learning variable which is expressed as a function of time because it can be varied
with time. Indeed, this property of the Perceptron Learning Rule was exploited during the project. The
Perceptron Learning Rule is applied to all weights in the output layer.

The output layer is a simple linear mapping. Each node in the output layer multiplies the output
vectors from the hidden layer by the output weight vector (equation 3).

0=7-1, (3)

where o is the output of the output node, 7 is the vector output from the hidden layer and « is the
output layer weight vector. It is important to note that the results of all hidden node outputs are used
(figure 5), unlike the ‘winner takes all’ architecture of nets like the SOFM. This is the mechanism by
which the RBF is able to form a smooth mapping across the function.



Figure 5: RBF Continuous Function: Left:An RBF with a 2 dimensional input space. Each dot is a ‘position’
which is used as the value of the weights of a hidden layer node. For values generated at the point x the
output of the RBF is the ‘distance’ between the dots and x. One of the group of circles associated with an
RBF node showing the Gaussian function shape

When the robot is using the network to provide data to return to the charging station a sonar reading
is taken and supplied as input to the network. The output data (distance and heading) is then used to
moev the robot toward the charging station.

2.5 Middle Range Navigation to the General Area of the Charging Station

In order to return from some point in the experimental area to the general area of the charging station
the robot associates environmental features with a vector to the short range navigation competence’s
operational area. Several navigation competencies have been identified in social insects which serve as
examples of how environmental landmarks are used.

Desert ants (cataglphyis cursor) live in an environment which often has few permanent local land-
marks, and yet the ant needs to be able to determine a return vector to the nest when foraging. One of
the ant’s methods of navigation uses a permanent feature of the environment [18]. In addition to their
two compound eyes, the ants are equipped with three more primitive eyes called ocelli. These are placed
on the ‘forehead’ between the compound eyes. The ocelli are sensitive to polarised light, each at different
rotations. With the ocelli the ant can determine the position it is facing, giving it a ‘compass sense’.
By combining this information with internally generated distance measurements, the ant can determine
both the direction and distance of the nest from any point. Once the ant is within close proximity to the
nest it can then use information from the compound eyes to recognise the opening to the nest.

Development of middle range navigation for the robot was based on this model. When the robot is
learning how to return to the charging station it will use an odometrically generated heading and path
data to determine distance and bearing from the charging station. The robot will then use a neural
network to associate sensor readings at a given point with the homing vector information.

Since the middle range navigation competence is similar to the short range competence (but operating
over a much larger area) this competence will use a similar fan shaped learning pattern. This is discussed
further in the next section.

2.5.1 Implementing Middle Range Navigation with a Self Organising Feature Map

On the basis of previous successful implementations of middle range navigation ([11], [16] and [9]), the
middle range navigation competence was implemented using a self-organising feature map (SOFM).



To robot was moved during learning in a fan shaped pattern, similar to the one introduced in sec-
tion 2.4. The pattern differed because the area covered by the middle range navigation competence is
much larger and because training the SOFM is incremental, i.e the robot revisits sonar reading positions.
The robot was moved along straight lines from a position close to the charging station, within the short
range navigation area, out to the edge of the mapping environment (figure 3). At certain points along
the lines the robot halted, took sonar readings and then trained the SOFM by associating the sonar
information with odometrically generated data, a homing vector back to the short range navigation area.
The robot repeated the fan shaped pattern a number of times (in the case of this particular experiment
the robot repeated the pattern 6 times).

The SOFM consists of a multidimensional array of nodes, in this case a two dimensional array of 8
by 8 (determined by experimentation. The weights of each node are equivalent to the size of the input
vector.

In order to train a SOFM to create a mapping between two groups, an input is created which consists
of two vectors, each vector contains values from one member of each group. In this experiment the vectors
consist of data captured during robot movement. The first of these vectors is the sixteen sonar values
and the second vector is a homing vector consisting of two values, a heading to, and distance from the
short range navigation area.

This is a similar training approach to the one described by Owen and Nehmzow [16].

When executed the SOFM uses a competitive process, a ‘winner takes all’ mechanism to determine
output. The node with the smallest Euclidean difference between its weights and the inputs is detemined
to be the winner(equation 4).

i = argmin||z — w;|[,j =1, -, n, (4)
where ¢ is the index of the winning node, arg min is a function which selects the smallest argument,
z is the input vector, w; is each of the weight vectors for all the nodes in the network.

If the SOFM is still learning, the winning node and the surrounding nodes within a set neighbourhood
of that node undergo learning, in order to create clusters.

Learnin .
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Sonar trandational data
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Figure 6: Using the SOFM as a mapping function between sonar data readings and vector data

When learning is finished, and the SOFM is to be used for data retrieval, the input vector is the sonar
values, read at the robot’s current position and zeroes, instead of the homing vector values (see figure 6).
The output vector has the same format as the input vector, so the second group values (homing vector)
are simply read from that portion of the output vector of the winning node (see [12, pg 121]).



2.6 Avoid Obstacles

Once the robot has mapped the environment it needs to be able to move freely within the environment
without colliding, or becoming entangled with objects.

Many experiments have been conducted with insects to show how sensory input can trigger motor
actions. An example is cockroach wall following, where directional change is mediated by antennal contact
with objects ([3]).

The robot can use sensors to gain information about possible obstacles. A neural network can be used
to associate sensory readings with motor actions. Once the neural network is trained the robot takes a
sonar reading and uses this as input to the network. The output of the network is the appropriate motor
action required to move the robot avoiding obstructions ([10]).

Initially a Radial Basis Function Network had been used to implement the obstacle avoidance com-
petence. However, on very rare occasions the robot collided with the wall. The problem appeared to lie
with the way that the Radial Basis Function operated. The output layer had been two ‘motor neurons’
i.e. each output node drove one of the motors. The output had been thresholded at zero so that the
output value was interpreted as forward (zero and positive) or backwards (negative). Since each output
node was generated from a summation of the weighted values of the four nodes in the hidden layer occa-
sionally values of ‘forward’ would occur in both nodes even when there was an obstacle ahead. When this
occurred one value would be ‘strongly’ forward and the other only ‘marginly’ so. Using a fraction of the
output as the motor speed only increased the problem with the robot often following graceful arcs into
the wall. Further tests are to be conducted with the RBF in obstacle avoidance to quantify the problem.

Because of the problems with the RBF a pattern associator was used for obstacle avoidance. The
pattern associator was implemented in a simple and robust manner. This technique has been used many
times before and a description appears in Nehmzow [12, pg. 58].

Basically, if there was no obstruction the robot moved forward. As the robot approached objects they
were detected with the robot’s five forward facing sonar units. If the range to the object was less than
40 cm the robot then tried different combinations of motor direction combinations until its path was no
longer blocked. The network was then trained to associate the successful motor combination with the
initial sonar pattern.

2.7 Integrating the Competences

The individual competences now need to be placed into a single framework from which their learning can
be controlled. The framework will control when learning for a competence is active and, in the case of
the SOFM (middle range navigation competence), what the learning rate is.

When robot operation starts the RBF (short range navigation) learning rate needs to be high and
learning needs to be active, decreasing rapidly. The SOFM learning rate needs to be small initially, to
increase and then again decrease subsequently. Obstacle avoidance is acquired after the navigation com-
petences have been gained. These requirements have been implemented by controlling the learning rate
of all networks using activation functions that take the robot’s operational time ¢ as its only parameter.
These functions are shown in figure 2.

2.7.1 The Activation Function for the Short Range Navigation Competence

When first switched on the robot acquires the short range navigation competence. This requires the
learning rate to be near 1.0 at the start of operation, to stay high for the first two minutes and then to
fall rapidly below the activation threshold. An exponential function (equation 5) with negative slope was
used to produce this, the activation curve A, is given in figure 2 and equation 5.

A =e e, (5)

In equation 5, ¢ is the operational time of the robot in units of activity and ¢ is a constant (¢ = 500).
Short range navigation learning was only active if A, was above 0.3 the activation threshold, which was
determined by experimentation.



2.7.2 The Sensitisation Function for the Middle Range Navigation Competence

Unlike the RBF, whose learning is completely inhibited below a value of A, = 0.3, the SOFM learning
stayed active throughout the entire operation of the robot. The SOFM learning rate As, however, was
modulated by equation 6 (see figure 2).

A, = e—((k=0)/a) (6)

Again, t is the operational time of the robot, k and d are constants (k = 154 and d=70) and A is the
learning rate for the SOFM.

As can be seen from figure 2, the SOFM learning rate is initially very low. It peaks after about 2
minutes operational time, and then decreases again.

The constants were chosen so A; would be greater than 0.5 when the robot was moving within the
short range navigation area over those positions specifically selected for SOFM learning. The value of A
would peak at 1.0 when the robot was half way through the SOFM learning period and then drop back
to 0.5 as the robot left the short range navigation area. Achieving this required a value for & of 154 (RBF
training time plus SOFM training time) and a value for d of 70 (half SOFM training time).

2.7.3 The Activation Function for the Obstacle Avoidance Competence

Once the navigation competencies have finished learning, the obstacle avoidance competence needs to be
activated. Like the short range navigation competence the obstacle avoidance activation function is used
as a ‘switch’ to turn learning on and off. When the value of A, is above 0.3 Obstacle Avoidance is active
(see figure 2).

The obstacle avoidance activation function A, used the same equation as the middle range navigation
competence, but with different constants, equation 7 (see figure 2).

((k=1)%)
Ao=e ) (7)

Again, t is the operational time of the robot, k and d are constants (k = 280 and d=80) and J, is the
activation function for obstacle avoidance.

2.7.4 Fusion of the Middle and Short Range Navigation Competence Homing Vector

When the robot is attempting to home to the charging station both the short and middle range navi-
gation competence will generate homing vectors. However, due to the position of the robot within the
experimental area, both, one or neither of these homing vectors will prove adequate for homing (see fig-
ure 7). In order to arbitrate between the values and decide which are valid, some measure of confidence
is required. These are obtained from the competence’s networks.

In the short range navigation’s RBF network, the output of each unit in the RBF layer is proportional
to the Euclidean distance of that unit’s weight vector and the currently perceived input vector. In other
words: if any RBF unit’s output is high, it means a familiar input vector is presented to the network
(i.e. the “confidence” value is high). Therefore the integrated activation of all RBF units was used as a
confidence value in the network’s prediction of distance and direction to the charging station.

In the middle range navigation competence’s winner-takes-all SOFM network, the Euclidean distance
between the winning node and the input vector can be used as a measure of confidence.

To make both confidence values numerically comparable, the SOFM confidence value is modified with
the same operations as those applied to an RBF node. A further complication arises because the RBF
value is a summation of the distance of the input vector from all nodes, not simply the nearest as in the
SOFM. Analysis of the results of some simple experiments suggested that, in order to make the values
comparable, the RBF value should be halved. This modification of both confidence values allows the
results to be compared directly.

Several tests were conducted. Fourteen of the confidence values from these tests are displayed in
figure 7.

At this stage visual inspection of the homing vectors and associated confidence values was used to
assess what confidence value would signify an estimated heading within 10 degrees of the true heading.
A confidence threshold of 0.03 was chosen. This confidence threshold did allow the occasional homing

10



R 0.060 ——={
S0.064
RBF data
R0.025| \@
$0.020 . SOFM & RBFdata @
G-_R 0.200 S
R002% | ——=2 S0.242 !
S0.101 ;
SOFM data )
R 0.024 .
S0.282
No relisble data

50 cm

Figure 7: Left: Confidence values at 14 robot positions. ”R” indicates confidence values of the short
range navigation competence’s RBF network. ”S” indicates confidence values of the middle range
navigation competence’s SOFM network. Right: Approx limits of confidence values > 0.03, the
confidence threshold

vector with a heading error of greater than 10 degrees to be generated, but also maximised the areas
covered by the short and middle range navigation competence.

When used during robot homing to the charging station, the confidence values generated by the
networks are examined. Confidence values below the confidence threshold of 0.03 are ignored because
the associated homing vector will be too inaccurate to enable the robot to home. If only one of the
confidence values is above the confidence threshold of 0.03 the homing vector from that network alone
is used. If both RBF and SOFM values are acceptable and one confidence value is a factor of 2 greater,
then the homing vector from that network alone is used. Otherwise the data from both nets are used
proportionally, see equations 8 and 9.

(rot, -c;)  (rots-cs)
t = 8
Trot fysed (Cr +Cs) (Cr +cs) 3 ( )

with 70t ¢yseq being the final assumed direction to the charger, rot, and rot; being the assumed
direction to the charger as indicated by the RBF net and the SOFM alone, and ¢, and ¢, the confidence
values of the RBF net and the SOFM respectively.

dist, - ¢, distg - ¢
(dist, - c.) | (dists -er) o)
(¢r + ¢s) (cr +¢s)

with distfuseq being the final assumed distance to the charger, dist, and dist, being the assumed

distance to the charger as indicated by the RBF net and the SOFM alone, and ¢, and ¢, the confidence
values of the RBF net and the SOFM respectively.

diStfused =

3 The Experimental Setup

3.1 Experimental Hardware

The Nomad Scout is a mobile robot designed for research in robotics ([14]). It has a sixteen-sided
body with a Polaroid sonar device in each facing (see [14, pg. 47] and [2, pg. 99]). A differential drive
mechanism, with built in odometry, provides movement. Low level control of basic hardware functions are
provided by a Motorola MC68332 processor running at 16 MHz which has a serial interface for external
high level control.

When this robot was used in earlier experiments ([8]), it was using a prototype Amubot robot controller
board for high level control. Through the board the robot also gained the ability to accurately measure
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the level of battery charge. The Amubot board also had a fluxgate compass which provided magnetic
heading information. Unfortunately this board proved unreliable and is currently out of service. For the
experiments described within this report

High level control was provided by a laptop computer placed on top of Strange, connected through
the serial interface. With its large storage capacity, the use of the laptop as high level controller enabled
the easy capture and analysis of data.

The Nomad Scout robot Strange has been modified so that it can connect to a specially designed
charging station and recharge without human supervision. The charging station was designed as an
MSc project by Roy Henderson [7]. The station is of simple and robust design with a wide capture
area, necessities when Strange, weighing 23 kg has to periodically perform a controlled collision with the
station, possibly with less than perfect precision.

Figure 8: left to right: the anode contact, Strange contact, cathode contact, two views across the
Experimental Area

The charging station consists of a horizontally orientated board with copper plating on its lower face,
this is the station’s anode. Beneath it, two sprung cylindrical cathodes are mounted directly to the wall
(figure 8). To connect to the charging station, Strange was fitted with a cathode and an anode. The
cathode is a strip of metal ribbon pinned to a short pole which is attached to the top of the Scout. The
anode is a piece of flexible copper plate with an adhesive back stuck along the upper edge of the front
half of the robot’s body (figure 8).

Although Strange can still self-charge without the Amubot board, it cannot accurately measure the
charge rate. Also the laptop cannot yet be charged from the robot (a 20 volt line will be added in the
future to enable this). For the experiments in this report, charge was undertaken when the robot had
halted in contact with the cathodes (not live) of the charging station. The robot and laptop were then
connected by hand to their respective charging equipment.

3.2 Experimental Procedure: Sonar Balancing

During the experiments the robot uses its internally generated odometry to provide both heading and
a measure of distance moved. As the number of robot movements increases so does the error between
the actual movement of the robot and the internally generated measure of movement. While odometry
error is quite small with the Nomad Scout, over prolonged operation it can become a serious problem.
In the experiments reported here translational odometry only needs to be accurate enough to record a
single distance, a movement outwards so that the robot can then move back to the original position. This
relative movement is used for both for training and homing purposes and is easily within the capability
of the robot. Rotational error is a much greater problem since the robot uses absolute values of rotation
to provide the robot with its heading and to rotate the sonar values before they are presented to the
neural networks. Since an absolute value is used the cumulative effect of errors in rotation will have a
severe effect on the accuracy of the results.

In order to compensate for the rotational error the robot uses an external measure with which to
periodically ‘reset’ the rotational odometry of the robot. When the robot is first activated it is placed
45 cm from the charging station, facing towards it. The sonar is activated and the values of the sonars
to the immediate left and right of the robots forward face (sonar numbers 15 and 1) are checked to see if
they are equal. If they are not equal the robot is rotated to reduce the difference (figure 9). Once both
sonars read the same the robot’s internal odometry heading is set to 180 degrees. This will be refered to
as sonar balancing in further discussions.
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Figure 9: Sonar Balancing: The robot is rotated until the values of sonar 1 and 15 are equal

While operating, the robot then relies on the odometry heading alone. When a successful re-charge has
occurred the robot is facing the charging station and a wall of known orientation. The robot then carries
out the same sequence as before balancing the values of sonar 1 and 15 and then resetting the heading
odometry to 180. This means that after each charge the robot’s heading is reset, which is more than
accurate enough for operation in the experimental area. The major problem with using the odometric
heading is loss of bearing due to collision with obstacles. If the robot becomes rotated in a manner which
is not recorded by odometry it would be difficult for the robot to regain the correct orientation. For this
reason some time has been spent ensuring that emergency stopping mechanisms and obstacle avoidance
prevent the robot from striking objects.

4 Experiments with Repeatability of Learning for the Short and
Middle Range Navigation Competencies

Before conducting experiments with continuous operation a number of tests were carried out to establish
what level of repeatability the learning techniques for short and middle range navigation possessed. If the
results obtained in the repeatability experiments were close, this would suggest that the learning technique
produces similar results each time it is trained and therefore produces comparable performance. This is
important because if the accuracy of the network output varies wildly then it is difficult to make any
claims about the usefulness and generalisability of the technique. The networks saved from one of the
repeatability experiments (selected at random) were used for the continuous experiment, so that the
overall accuracy of the vectors generated during the trial could be directly compared with the results
from the repeatability experiment.

4.1 Experimental procedure

This experiment was conducted three times. The networks had the same learning parameters in each
trial and each was conducted in the same experimental area, shown in figure 10.

4.1.1 Learning Phase: Short and Middle Range Navigation Learning

At the start of each experiment the robot was placed 45 cm from the charging station, facing the station,
aligned so that a forward movement would result in connection between the robot and the station.
The robot initially moved away from the charging station, reversing directly without turning, and then
moved back towards the station in the fan-like pattern of ever increasing size (described in section 2.4).
At this stage the robot had not developed sensory motor knowledge through learning with the Obstacle
Avoidance competence. If an obstacle was detected in the robot’s path (360 degree sonars allowing
the detection of objects when moving backward or forward) the robot merely stopped and the next
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Figure 10: Areas of operation for the competences

movement in the fan shaped pattern was attempted. If this movement was in the same direction as the
previous attempt this vector movement would be rejected and the next one attempted. This functionality
was included to prevent collision with objects in the robot’s path and also provides a control method
for experimenting with learning problems which may arise when there are objects placed within the
environment,.

During this first phase short range navigation was learnt, controlled by the activation function A,.
Middle range navigation learning had also begun, controlled by the sensitisation function As;. This phase
lasted for about two minutes.

The process continued until the radius of the fan was approximately 50 cm (the short range navigation
area in figure 10) .

At the next stage of learning, the robot moved in and out of the charging station at much greater
distances (described in section 2.4). Middle range navigation continued to be learnt, with a higher learn
rate than in the previous stage. This phase lasted about twenty minutes. The robot’s movements during
both learning phases are shown in figure 3. At the end of the learning phase the relevant weights and
values of the three networks were saved.

4.1.2 Data Collection Phase: Recording the Responses of the Navigation Competences

After the networks had been trained the robot was moved through a fan shaped pattern which was similar
to the pattern used during the learning phase (see section md:vm). The robot moved out along seven
‘spokes’. Along each spoke the robot stopped 11 times. The first six stopping points were at 12.7 cm
intervals, primarily for readings from the short range navigation competence. The last 5 stopping points
were at 25.4 cm intervals, for readings from the middle range navigation competence.

At each stopping point the robot halted. Odometrically based readings of translation and heading to
the charging station were recorded by the robot. The robot then rotated to a heading of zero degrees.
Ten sonar readings were then taken, the robot rotating 36 degrees in an anti-clockwise direction between
each reading. During continuous operation the robot could be at any orientation when a sonar reading
is taken, the multiple sonar readings simulate this. For each sonar reading short and middle range
navigation competence output was generated and collected. This meant that for each network there were
770 recorded homing vectors and confidence values.

4.2 Results

For each of the three experiments with repeatability of learning, the data generated by the robot, including
the homing vectors generated by the short and middle range navigation competences, was analysed.
Only homing vectors with a confidence value greater than the 0.03 confidence threshold were included
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Network | No of Vectors | Mag.Mean | Mag.Median | Mag.sd | Mean | Median | sd
Middle 1 309 10.2 7.2 7.9 5.0 5.8 11.9
Middle 2 446 13.0 9.7 11.3 4.9 6.7 16.5
Middle 3 310 11.0 8.3 74 8.0 7.1 10.6

| Middle Avrg. | 355 | 114 ] 8.4 | 89 | 60 | 65 [13.0]
Short 1 300 19.1 15.9 14.0 1.5 1.5 23.7
Short 2 304 16.3 15.2 11.3 -0.1 0.1 19.9
Short 3 276 19.6 17.5 13.4 -9.2 -9.3 21.9

| Short Avrg. | 293 | 18.3 | 16.2 | 12.9 | -2.6 | -2.6 | 21.8 |

Table 1: Differences between the robot recorded odometric headings and homing vector headings
generated by the short and middle range navigation competences during the 3 Repeatability Exper-
iments, with averages for each competence. The units are degrees

(see section 2.7.4). The differences between the homing vector headings and the robot recorded required
headings were analysed. The results of this analysis are shown in table 1 as the mean, median and
standard deviation for these differences. The table also contains the mean, median and standard deviation
for the magnitude of the differences (i.e. absolute of differences). The magnitude statistics give a good
indication of the size of the errors while the actual values any skewing of the values. Figures 12, 13 and 14
each present two heading diagrams which show the short and middle range navigation headings with a
confidence value greater than 0.03, the confidence threshold. The circles in the diagrams are based upon
those devised for displaying circular statistics in the biological sciences [1]. Figure 11 presents a key to
the circles.

There was no analysis of homing vector translation data. Both navigation competences are optimised
to provide accurate headings, since the absolute accuracy of the translation data is relatively unimportant.

3 Vectors
O A Vector oo
rrrrrrrrrrrrr Required Heading
——  Mean Heading 000
5 degress separati Gn':,’x A
between groups

Figure 11: A Key to the Vector Diagrams: The large circle represents an area within the experimental
area. All vectors which were generated within the circular area are grouped into 5 degree wide
intervals. The intervals are then displayed on the circumference as small circles, the number of
circles in each group corresponding to the number of vectors in the interval. The required heading,
i.e the heading to the charging station, is displayed as a dotted radius. The mean of all of the vectors
is displayed as a solid radius.

4.2.1 Results from the 3 Repeatability Experiments for the Short Range Navigation com-
petence

The top diagram in figures 12, 13 and 14 show headings generated by the Radial Basis Function based
short range navigation competence in each of the three repeatability experiments. Figures 12 and 13
(top diagrams) show very similar results, however, figure 14, the short range pattern from the third trial,
shows a pronounced skew to the right of the charger capture area. This can clearly be seen if the mean
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Figure 12: Short (top) and middle (bottom) range navigation competence generated headings from
the first of the 3 Repeatability Experiments: The square is the Charger Capture Area, the circles on
in the diagram (short range) are 5 cm radius and in the bottom (middle range) are 10 cm. Axes are
in mm.
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Figure 13: Short (top) and middle (bottom) range navigation competence generated headings from
the second of the 3 Repeatability Experiments: The square is the Charger Capture Area, the circles
in the top diagram (short range) are 5 cm radius and in the bottom (middle range) are 10 cm. Axes
are in mm.
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Figure 14: Short (top) and middle (bottom) range navigation competence generated headings from
the third of the 3 Repeatability Experiments: The square is the Charger Capture Area, the circles in
the top diagram (short range) are 5 cm radius and in the bottom (middle range) are 10 cm. Axes
are in mm.
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Source of | Sums Of | Degrees of | Mean | F-ratio | Probability | F-distribution
Variation | Squares Freedom | Squared (p) Value
Between Groups | 18834.51 2 9417.25 | 19.67 <0.01 4.61
Within Groups | 419976.82 877 478.88
Total | 438811.33 879 9896.13

Table 2: ANOVA summary table for the difference between network (RBF) generated and required
headings for short range navigation competence during the repeatability trial

of ‘short 3’ (-9.2 degrees) is compared with ‘short 1’ (0.1 degrees) and ‘short 2’ (1.5 degrees) in table 1.
The mean of ‘short 3’ of almost -10 degrees from the centre is far higher than the others.

To determine if differences in the results could be due to random variations within the trials, a One-
Way Independent Groups Analysis of Variance (One-Way ANOVA) was conducted. ANOVA wuses a
measure of the mean squared of several samples within a population to determine if differences between
the samples could have arisen probabilistically or are the result of some outside factor (the independent
variable). In this case the independent variable is membership of a particular trial. The Null hypothesis
was that the difference between samples could be explained as random variation. The ANOVA was
conducted with a significance level of less than 0.01 (i.e a probability of 99%). The results are displayed
in table 2.

The f-ratio of 19.67 was substantially larger than the f-distribution value of 4.61. This means that
there is less than a one per cent chance that the three samples are simply random samples from a single
population and it therefore appears that there is some influence from an external factor. In order to see
which of these samples could be assumed to be part of the same population Tukey’s Honestly Significant
Difference (HSD) statistic was then applied to the ANOVA data. The HSD score, of 5.26 is compared
with the absolute of difference in mean between pairs of samples. If the difference is greater than the
HSD then there is a significant difference. Table 3 shows the results of the comparisons.

Competences | short 1 & short 2 | short 1 & short 3 | short 2 &short 3
Difference Between Means 1.63 10.68 9.06

Table 3: The difference between the means of the network (RBF) generated and required headings
for the short range navigation competence during the repeatability trial. Values in bold are above
the HSD value of 5.26 and are statistically significant

This confirmed the earlier comparisons of the means. Based upon the means, the network generated
by the short range navigation competence in the third trial is significantly different from the networks
generated during the first two trials. Some influence from the environment has affected the nature of
learning for the short range navigation competence during the third trial.

It initially appears that the short range competence from the third trial had consistently used an angle
with some minus 10 degree deviation from the required heading for training (figure 14, top). But this is
not reflected in the middle range navigation competence results from the third trial (figure 14, bottom),
so an inaccurate odometric heading is unlikely to be the cause (the middle range navigation competence
also uses the odometric heading and there is no form of odometric correction between training the two
competencies). Indeed, of the middle scale navigation competence results, the third trial shows the largest
deflection in the opposite direction (heading difference mean of 8 degrees)!

Inaccuracies of heading may result from one of, or a combination of, the mechanisms used by the robot,
such as, sonar balancing and rotation of sonar readings to a neutral position. The absolute accuracy of
these methods has not been individually tested so they may introduce errors of a level greater than
those reported here. However, the short range navigation competence is used over a comparatively small
distance (approximately 50 cm maximum). If the robot used short range navigation readings, with a
constant 10 degree inaccuracy, to travel from the edge of this 50 cm area to the charging station, an
error of less than 10 cm offset from the charging station centre would occur. The charging station is
40 cm wide, so this error would not cause a complete failure of the system, but rather would produce a
behaviour which ‘favoured’ approaches from one side of the charging station. Hence only if the magnitude
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Source of | Sums Of | Degrees of | Mean | F-ratio | Probability | F-distribution
Variation | Squares Freedom | Squared (p) Value
Between groups 1864.55 2 932.28 5.55 j0.01 4.61
Within Groups | 147325.82 877 167.99
Total | 149190.38 879 1100.27

Table 4: ANOVA summary table for the magnitudes of the differences between network (RBF)
generated and required headings for short range navigation competence during the repeatability trial

of the error were much greater than 10 degrees would the ability of the robot to home to the charging
station be compromised.

Because the system is quite tolerant to small heading deviations, a better test of the similarity of trial
results is to look at the magnitude of the differences between the competence generated headings and
required headings. This measure looks at the size of the error, not the direction.

The Null hypothesis was that the magnitude of the difference between samples could be explained as
random variation. These values were compared across the three trials, again using a One-Way ANOVA
test, with a significance level of less than 0.01 (a probability of 99%). The results are presented in figure 4

In this instance, whilst the f-ratio of 5.55 was still greater than the f-value of 4.61, it was only
marginally so. This compares with the much larger f-ratio value of 19.67 seen when the direction of the
error was included (see table 2), thus suggesting that differences in the direction of errors for the three
samples were responsible for the greater part of the f-ratio value. Since the direction of error, ten degrees
to the left or ten degrees to the right of the charging station, is relatively unimportant the test without
direction of error is a more meaningful measure.

Tukey’s HSD test was again applied to see which of the samples could be assumed to be part of the
same population. Here the HSD value was 3.12. As table 5 illustrates, differences between the trials
are not as marked when comparing mean magnitude of the differences. The third trial is statistically
significantly different to the second trial, but the difference is quite small (3.3 degrees).

Competences | short 1 & short 2 | short 1 & short 3 | short 2 &short 3
Difference Between Means 2.78 0.53 3.3

Table 5: The magnitude of the difference between the means of the network (RBF) generated and
required headings for the short range navigation competence during the repeatability trial. Values
in bold are above the HSD value of 3.12 and are significant

H H— Charging
Station

]

—= Under estimate
—>  Over estimate

Scout
Robot

Figure 15: Robot heading terminology: An underestimated angle occurs if the robot is on one side
of the charging station, and the heading would cause the robot to miss the station on that side, an
overestimation occurs if the robot would miss the station on the opposite side

Another potential cause of failure to charge comes from the tendency in trial 1 and trial 2 for the RBF
to to underestimate the angle required to place the robot on a heading towards the centre of the charging
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Source of | Sums Of | Degrees of | Mean | F-ratio | Probability | F-distribution
Variation | Squares | Freedom | Squared (p) Value
Between Groups | 1601.81 2 800.91 9.18 <0.01 4.61
Within Groups | 92651.64 1062 87.24
Total | 94253.45 1064 888.15

Table 6: ANOVA summary table for the magnitude of the difference between network (SOFM)
generated headings and required headings for the middle range navigation competence during the
repeatability trial

station. An underestimated angle occurs if the robot is on one side of the charging station, and the
heading would cause the robot to miss the station on that side, an overestimation means the robot would
miss the station on the opposite side (see figure 15). This becomes more pronounced towards the ‘edges’
of the group. Note how in figures 12 and 13, top diagrams the mean angles (solid lines) consistently under
estimate the required angles (dotted lines). In fact the same tendency can be seen in figure 14 for trial
3 but the minus ten degree mean heading offset ‘corrects’ the fault on the right edge and accentuates it
on the opposite edge. This could lead to the robot consistently failing to charge by missing the charging
station when approaching from either side, unless the robot has some strategy for coping with failure to
charge.

4.2.2 Results from the 3 Repeatability Experiments for the Middle Range Navigation
competence

The bottom diagram in figures 12, 13 and 14 show headings generated with the Self Organising Feature
Map-based middle range navigation competence during the three repeatability experiments. The headings
all have associated confidence values greater than the confidence threshold of 0.03. While the first
(figure 12, bottom) and third (figure 14, bottom) patterns are similar, the second (figure 13, bottom)
produces headings much closer to the charging station. This is atypical and the reason for this is unclear,
but many of the headings, included at the ‘edges’ and ‘point’ of the fan shaped area appear to be of
poor accuracy (i.e. the difference between the mean network generated heading and the required heading
is typically quite large). The descriptive statistics presented in (table 1, ‘middle’ entries) verify this.
Although the second network (trial 2) produced at least 130 more vectors with confidence values above
the 0.03 confidence threshold than either trial 1 or trial 3, the standard deviation of the magnitude
was much higher, 11.3 degrees, rather than 7.9 (trial 1) and 7.4 (trial 3) degrees. In fact, the second
trial middle range navigation competence has a pattern similar to one produced with a lower confidence
threshold (see figure 16). Since the network which the middle range navigation competence generated was
preserved it will be possible to conduct further trials to assess what impact the increased inaccuracies,
apparent in this network, may have on the viability of the middle range navigation competence.

In order to establish whether observed differences were genuine or had arisen by random chance
alone, a One-Way ANOVA was conducted on the magnitude of the differences between network generated
headings and required headings for the middle range navigation competence. The magnitude was used
because the variance rather than the skew, was being examined. Once more the Null hypothesis was
that the difference between samples could be explained as random variation. The results are presented
in table 6.

The results of this analysis suggests that there is less than a one percent chance that all three samples
could belong to the same population with only random error to account or the differences. Tukey’s
HSD test was once more used to determine which of the middle range navigation competence trials were
significantly different from the others. The HSD score was 2.04, at 99% probability. The HSD score is
compared with the absolute of difference in means between pairs of samples. If the difference is equal to or
greater than the HSD, then there is a significant difference. Table 7 shows the results of the comparisons.

HSD analysis of the middle range navigation competence data (the ‘middle’ mean magnitude scores
in table 1) show that the second trial is significantly different from the first, and is quite different, from
the third, though the difference did not reach the level of statistical significance. This supports the
conclusions arrived at from earlier visual analysis of figures 12, 13 and 12 and table 1.
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Figure 16: The middle range navigation competence generated headings from the second of the
3 Repeatability Experiments: This is the same data as figure 12, bottom, but with a much lower
confidence threshold, 0.004. Note the similarity with figure 13, bottom, which has a much higher
confidence threshold of 0.03 and an atypically large number of homing vectors
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Competences | middle 1 & middle 2 | middle 1 & middle 3 | middle 2 & middle 3
Difference Between Means 2.82 0.83 1.98

Table 7: The magnitude of the difference between the means of the network (SOFM) generated and
required headings for the middle range navigation competence during the repeatability trial. Values
in bold are equal to, or above, the HSD value of 2.04 and are significant

Precisely what could have caused the middle range navigation competence in the second trial to create
the observed pattern is unknown. Direct observation of the data generated during the three trials shows
far higher SOFM (middle range navigation) confidence values in the second trial for the atypical homing
vectors than in the data for the first and second trial (10 to 100 times greater).

Fortunately, should this problem recur, it is not likely to cause operational problems. The short range
navigation competence is also active over the area (close to the charger capture area) where the network
generated headings show the greatest error (see figure 13, top). Because data between the two navigation
competences is fused (see section 2.7.4) the error will be reduced. Further, viewing the network generated
data for the area close to the charger capture area it can be seen that the although the middle range
navigation competence confidence value is often greater than the confidence threshold, the corresponding
short range navigation competence confidence value is often much greater. If one confidence value is
twice as large as the other the fusion function will use only the higher value (see section 2.7.4). Therefore
quite often only the more accurate short range navigation competence value would be used.

4.2.3 Comparison of the Results of the Navigation Competences by Network Type

When the descriptive statistics for the three trials were grouped by network type (i.e. RBF for the short
range competence and SOFM for the middle range competence), it was apparent that the RBF network
produced far less accurate headings than the SOFM. If the average values for the two competences over
the 3 trial repeatability experiment are compared (table 1), the standard deviation of the magnitude of
the difference is 12.9 degrees for the RBF (short range) and 8.9 degrees for the SOFM (middle range).

This was surprising because in the earlier tests with the Amubot board and with a magnetic compass
([8]), the contrary had been found. However problems with hardware prevented extensive capture of
information during the Amubot tests, and it was felt that the hardware faults could be causing memory
problems. As the largest user of memory, the SOFM would have been most affected. Figure 17 presents
the headings from the homing vectors with a confidence value above the 0.03 confidence threshold from the
Amubot board experiments ([8]). Note that many of the SOFM (middle range navigation competence)
homing vectors are very inaccurate (the vectors are supposed to point towards the charging station). It
seems likely that the RBF is no less accurate than during the Amubot tests, but simply that the SOFM
is now performing correctly.

The short and middle range navigation competence networks from the first repeatability test were
selected randomly for use in the following Continuous Trial.

5 Experiments with Continuous Operation

5.1 Experimental procedure

Rather than using learning to gain the short and middle range navigation competences, the Radial Basis
Function (short range) and Self Organising Feature Map (middle range) values from the first repeatability
trial were loaded (figure 4). By using a network of known qualities, direct comparisons between the results
from the continuous and repeatability experiments could be made.

5.1.1 Learning Obstacle Avoidance

Once the robot had loaded the networks enabling the robot to home to the charging station, the next
task was to learn how to avoid objects within the experimental area in a more sophisticated manner than
merely stopping (the robot’s behaviour during short and middle range navigation competence acquisition).
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Figure 17: Short (RBF) and middle (SOFM) range navigation vectors from the earlier Amubot board
experiment: The poor accuracy of the SOFM headings is of particular note

While wandering, the robot needs to be able to navigate without colliding or becoming entrapped. Using
the instinct rules described in section 2.6, the robot first learned to move forward when no objects were
encountered. As the robot approached objects they were detected with the robot’s sonar. The robot then
tried different combinations of motor direction combinations until the its path was no longer blocked.
The network was then trained to associate the motor combination with the sonar pattern.

5.1.2 Wandering, Homing and Charging

After obstacle avoidance had been acquired the the robot began wandering within the experimental area.
The robot’s course was changed when an obstacle was encountered.

In ‘normal’ operation the robot would continue to wander until the batteries required charging, but
because the robot’s batteries last tens of hours, a quicker ‘mock’ discharge was simulated to greatly
increase the attempted rate of charges. In fact, the ‘mock discharge’ was set at a rate which would allow
the robot sufficient time to wander from the charging station to one of the ‘walls’ of the experimental
area and then use obstacle avoidance to move away from the wall for a few seconds. Once this mock
battery level was below a predefined limit the robot behaviour changed. The robot halted and took sonar
readings using odometry-based heading data to rotate the sonar readings to a uniform ‘zero’ direction
(this is possible because the 16 sonar sensors are evenly distributed around the circumference of the
robot). This was used as input to the RBF (short range) and SOFM (middle range) networks to generate
confidence and homing vector values.

If both network-generated confidence values were below or equal to 0.03, the confidence threshold,
wandering continued, the robot repeatedly moving, stopping and taking readings until a position was
reached where confidence values greater than the confidence threshold were found. When reliable con-
fidence values were obtained, the robot recorded its current heading and then rotated to the network
generated heading. It then recorded the generated values and new heading data, and paused whilst
external data recording of the robot’s position within the experimental area (tape measure) and heading
(protractor) was undertaken. The robot then moved forward for 20 percent of the generated translation.

This process was repeated until the RBF generated (short range navigation competence) homing
vector’s translation value had dropped below 50 c¢m, or the translation value was less than 100 ¢cm and
the robot’s sonar detected an object closer than 36 cm ahead in the robot’s path (this second rule allowed
for inaccuracies in translation values). The connect-to-charger function then assumed control, overseeing
connection to the charger.

The connect-to-charger function moved the robot forward 30 cm (though the robot would stop if
sensors detected an obstruction at less than 20 cm). Since Strange currently has no manner of assessing
whether contact has been made, the laptop keyboard is used to enter ‘y’ for contact and ‘n’ for no
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contact. If the cathode of the charging station was touching the re-charge plate on the robot, the charge
was deemed successful, the robot and laptop were re-charged (if necessary) and the ‘mock’ battery level
was set to full. Success or failure was recorded along with the displacement between the centre of the
robot and the middle of the charging station.

If the charging was deemed successful, the robot moved back from the wall some 45 cm and then used
sonar balancing to correct any heading errors in odometry. The robot then rotated by a random angle
and moved some 3 metres from the charging station before resuming wandering.

In the case of failure to charge, the robot rotated 180 degrees and moved 1.5 metres before resuming
homing behaviour.

If the mock battery level dropped below a value of 20 the robot was deemed to have insufficient power
to operate and the robot halted ending the trial. This behaviour never occurred during testing.

This continuous trial lasted some seven hours, including time for collection of external data.

5.2 Results

Although the trial lasted some seven hours, this included robot and laptop re-charge times and halting
to record ‘real world’ robot positional data. By the time the trial was terminated 1012 vectors had been
recorded. Along with the results of the repeatability trials, this constitutes a large body of data. Analysis
of the continuous trial data began with a review of the accuracy of short and middle range navigation
competences and comparisons with the repeatability data.

Network | No of Vectors | Mag.Mean | Mag.Median | Mag.sd | Mean | Median | sd
Middle 477 10.0 7.5 11.3 14 3.2 15.1
Short 420 21.7 16.5 17.8 6.5 7.6 27.3
Fused 75 12.3 10.6 8.9 -4.92 3.7 15.2

Table 8: Differences Between Network Generated and Actual Headings from the Continuous Trial

5.2.1 Results from the Continuous Trial for the Short Range Navigation competence

The top diagram in figure 18 shows the short range navigation competence headings, with associated
confidence values above the confidence threshold of 0.03, generated during homing towards the charging
station during the continuous trial. When compared with the results generated during the repeatability
trials, (figures 12, 13 and 14), the continuous trial headings clearly cover a larger area. However most
of the headings generated in the ‘outer regions’ are quite inaccurate. A re-evaluation of the confidence
threshold for acceptance of short range navigation competence homing vectors may be beneficial.

By comparing the continuous trial statistics (table 8, ‘short’ row), with the repeatability trial statistics
(table 1, ‘short’ rows) it can be seen that although the continuous trial mean (6.5 degrees) is obviously very
different from those generated during the repeatability trials (1.5, -0.1 and -9.2 degrees), the continuous
trial magnitude mean (i.e the mean ignoring the sign of the error) of 21.7 degrees is only a little higher
than the repeatability magnitude means (19.1, 16.3, and 19.6 degrees).

The Null hypothesis formulated was that the magnitudes of the difference between the short range
navigation competence generated headings and the required headings for the continuous and repeatability
trials could be considered to have been drawn from the same population. A One-Way ANOVA was
conducted to compare the short range navigation competence generated heading data from all three
repeatability trials with data from the continuous trial. The results are presented in table 11. The
f-ratio value, 8.0, is greater than f-distribution value, 3.78, this would indicate that the samples cannot
be considered to have come from the same population.

Post-hoc Tukey tests were then conducted on the ANOVA data to explore how the samples compared
with one another, the HSD score being 3.59 in this instance. The only significant difference was between
the third repeatability trial and the continuous trial results. Overall the trial results were very similar.

As in the repeatability trial (section 4.2.1), the RBF (short range navigation) produced headings
which suffered quite badly from underestimating the angle to the charging station.
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Figure 18: Short (top) and middle (bottom) range navigation competence generated headings from
the Continuous Experiment: The square is the charger capture area, the circles in the top diagram
(short range) are 5 cm radius and in the bottom (middle range) are 10 cm. Axes are in mm.



Source of | Sums Of | Degrees of | Mean | F-ratio | Probability | F-distribution

Variation | Squares Freedom | Squared (p) Value
Between Groups | 5191.63 3 1730.54 8.0 >0.01 3.78
Within Groups | 280291.69 1296 216.27

Total | 285483.32 1299 1946.82

Table 9: ANOVA summary table for the magnitude of the difference between network (RBF) gener-
ated headings and required headings for the short range navigation competence during the repeata-
bility and continuous trials

short 1 | short 1 | short 1 | short 2 | short 2 | short 3
Competences and and and and and and
short 2 | short 3 | short C | short 3 | short C | short C
Difference Between Means 2.78 0.53 2.63 3.3 5.4 2.1

Table 10: The means of the magnitudes of the difference between the network (RBF) generated and
required headings for the short range navigation competence during the repeatability trials and the
continuous (‘short C’) trial. Values in bold are equal to, or above, the HSD value of 3.59 and are
statistically significant

5.2.2 Results from the Continuous Trial for the Middle Range Navigation competence

The differences between the middle range navigation competence generated headings and required head-
ings appear in table 8, ‘middle’ row. The table presents descriptive statistics for the homing vectors,
whose confidence value were greater than the 0.03 confidence threshold. These should be compared with
table 1, particularly the row for ‘middle 1’ which is the repeatability experiment statistics for the network
values which were loaded at the start of the continuous experiment. The values for ‘middle’ and ‘middle
1’ are similar, but the standard deviations are larger in the continuous experiment. This may be due
to the inclusion of homing vectors from positions not covered by the test pattern in the repeatability
experiment. Diagrammatic evidence supports this. When compared with figure 12, bottom, there are
far more outlying vectors in figure 18, bottom, most of which appear to be quite inaccurate. The mean
is actually smaller in the continuous trial data (1.4 degrees) than it was in trial 1 of the repeatability
experiment (5.0 degrees). This is notable because it shows that a difference in means can arise between
usages of the same network.

Obviously, during the continuous trial the robot was not following a set pattern as it did during the
repeatability trials. The difference in the form of sampling could be account for the larger errors (the
standard deviations for short and middle range navigation competences are larger the continuous trial
than in any of the repeatability trials). It certainly accounts for the larger area covered by homing vectors
above the 0.03 confidence threshold (compare the area covered in figure 18 with figures 12, 13 and 14.
It may be beneficial to replicate the repeatability experiments with the same network values loaded and
then compare the results to try and determine if there is an external factor which is responsible for the
discrepancy, which, if it exists, could then be further explored. When replicating the repeatability trials
it may be useful to broaden the capture area to include outlying homing vectors.

Though the continuous trial mean (1.4 degrees) is obviously different from those generated during the
repeatability trials (5.0, 4.9 and 8.0 degrees), the continuous trial magnitude mean (i.e the mean ignoring
the sign of the error) of 10.0 degrees is very similar to the repeatability magnitude means (10.2, 13.0 and
11.0 degrees). Additionally the magnitude mean is less sensitive to small heading errors and shows more
clearly the level of general error across the data.

The Null hypothesis formulated was that the values observed for magnitude of difference between
the short range navigation competence-generated headings and the required headings for the continuous
and repeatability trials had arisen from samples which could be considered to have been drawn from the
same population. In order to compare the continuous and repeatability trial data further, a One-Way
ANOVA was conducted upon the middle range navigation competence generated heading data from all
three repeatability trials and the continuous trial. The results of the ANOVA are presented in table 11.
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Source of | Sums Of | Degrees of | Mean | F-ratio | Probability | F-distribution
Variation | Squares Freedom | Squared (p) Value
Between Groups | 2454.62 3 818.21 8.18 j0.01 3.78
Within Groups | 153911.31 1538 100.07
Total | 156365.93 1541 918.28

Table 11: ANOVA summary table for the magnitudes of the differences between network (SOFM)
generated headings and required headings for the middle range navigation competence during the
repeatability trial and the continuous trial

The f-ratio value is greater than f-distribution value (substantially so), which indicates that there is less
than 1% chance that the samples could have come from the same population.

A post hoc Tukey’s HSD test was then conducted to further explore differences between the trials
(table 12). The HSD in this case was 2.24.

middle 1 | middle 1 | middle 1 | middle 2 | middle 2 | middle 3
Competences and and and and and and
middle 2 | middle 3 | middle C | middle 3 | middle C | middle C
Difference Between Means 2.82 0.83 0.19 1.98 3.0 1.02

Table 12: The means of the magnitudes of the difference between the network (SOFM) generated
and required headings for the middle range navigation competence during the repeatability trials and
the continuous (‘middle C’) trial. Values in bold are equal to, or above, the HSD value of 2.24 and
show statistically significant differences

As can be seen, both instances of a statistically significant difference trial involved ‘middle 2’, the
second repeatability trials middle range navigation competence output. ‘middle 2’ (trial 2) had actually
been found to be significantly different from the other two repeatability test results (section 4.2.2) and had
shown atypical learning, so this was to be expected. The relevant observation is the overall comparability
of the continuous trial and the repeatability trial.

5.2.3 Results from the Continuous Trial for the Fusion of Homing Vectors

When both the navigation competences produce a confidence value above the confidence threshold and
there is less than a factor of two difference between the confidence values, a fused homing vector consisting
of proportional amounts of both navigation competence homing vectors (see equation 8) is generated.
During the continuous trial there were 75 such homing vectors. Statistics for these homing vectors are
shown in table 8, the ‘fused’ row and appear to be closer to the ‘middle’ row results than the ‘short’ row,
i.e the fused homing vectors are more like the middle range navigation competence values.

Figure 19 presents the fused homing vector headings diagrammatically. When compared with figure 18,
it can clearly be seen that the fused homing vectors overlap the short range navigation competence to
quite a large degree. Since the statistics and diagrammatic representations clearly show that the fused
homing vectors are more accurate than the short range navigation competence, in this instance, the fusion
of data has a positive effect.

5.2.4 Results and Confidence Thresholds

Since there was now a large amount of data captured during a wander-home-charge cycle (the continuous
trial) it was decided to determine what effect increasing the confidence threshold would have on the
accuracy of the homing vectors produced by the navigation competences. A series of tests was conducted
where confidence thresholds of increasing value (in the range 0.03 to 0.2 in steps of 0.01) were applied to
the data captured during the continuous trial. At each step, only those homing vectors whose confidence
values were higher than the new threshold were selected. As the confidence threshold is increased the
number of acceptable vectors is reduced. If there is a correlation between confidence value and accuracy
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Figure 19: Fused (middle and short range) homing vector headings from the continuous trial. The
square is the Charger Capture Area. The circles are 8 cm radius. The axes are in mm.

of data then as the confidence threshold increases so should the accuracy of accepted data. The selected
homing vectors were analysed using descriptive statistics.

Figure 20 plots the standard deviations of the difference between the competence-generated heading
and the required heading against varying confidence thresholds for the short (left box) and middle (right
box) range navigation competences. The short range competence shows an almost linear relationship.
Increasing the confidence value would reduce errors in the short range competence, but would also make
the capture area proportionally smaller. Since the relationship is proportional, the question is simply
what is an acceptable acceptable balance between area covered and error arising.

The middle range plot (figure 20, right) was far more useful. There is a sharp increase in accuracy up
to a confidence threshold of 0.07, after which there is little change until much higher confidence values
(0.17 and above). There is however a large decline in the number of vectors which are acceptable, from
477 at 0.03 confidence threshold to 246 at 0.07 confidence threshold.

To visualise the data, a vector diagram was produced for the short and middle range navigation
competences. The diagram uses the data captured during the continuous trial but with a confidence
threshold of 0.07. This should be compared with figure 18, also the continuous trial, data but with a
confidence threshold of 0.03. For both competences, the only visible effect seems to be the removal of
inaccurate values at the edges of the areas. As a result of analysing the statistical data and diagrams,
it is intended that in future experiments with these networks the confidence threshold will be raised to
0.07.

5.2.5 Results: Charge Attempts

The robot operated continuouslly throughout the trial, charging before the ‘mock’ battery level had fallen
to a level which would halt the experiment. However, the robot occassionally missed the charging station
and attempted to dock nearby. When this occurred the simple strategy of reversing a short distance was
followed. On subsequent charge attempts the robot moved closer to the charging station until finally
making contact. Since charge was always successful after, at most, 4 attempts, it appears that the simple
strategy (see section 5.1.2) employed on failing to connect with the charging station was quite robust.
During the trial there were 69 recharges. Of these 39 (56.5%) were successful on the first attempt. No
re-charge took more than four attempts (and there were only two occasions when four attempts were
required). Table 13 presents data on the number of charges and attempts. The first row is the number of
attempts which a re-charge required, the second row is the proportion of re-charge attempts. As further
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Figure 20: Standard deviations of the difference between navigation competence generated headings
and required headings plotted against confidence thresholds. The left diagram is the short range
navigation competence and the right the middle range navigation competence.

Attempt | 1 | 2 |3 |4 |5 | Total | Mean | Median | sd
Number {39 |21 | 72| 0| 69 1.6 1 0.8

Table 13: The number of attempts necessary to reach the charging station after each occassion when the
battery level was below the re-charge threshold.

evidence of the robustness of the homing techniques employed, the median is 1, i.e charge on the first
attempt, and the value for the standard deviation is 0.8. This information is presented graphically in
figure 22.

Analysing several tracks of the robot during homing enabled the production of the simplified profile
presented in figure 23. Failure occurred when the heading generated by the navigation competences
underestimated the angle required to travel towards the charging station. An underestimated angle
occurs if the robot is on one side of the charging station, and this type of heading would cause the robot
to miss the station on that side. An overestimation means the robot would miss the station on the
opposite side (see figure 15). Overestimations where extremely rare.

However, even if the homing vectors heading were underestimates, the angle of the heading invariably
moved the robot towards the charging station. This tendency to underestimate can clearly be seen in
figure 18, in both diagrams, particularly towards the ‘edges’ of the groups. The mean heading (solid
radius) is often an underestimate of the required heading (dotted radius). After a charge failure, moving
a short distance out, perpendicular to the charging station, placed the robot deeper into the navigation
competences areas of operation, allowing a homing vector with a greater confidence value and a more
accurate homing vector to be generated than on the previous attempt. The distance from the charging
station was, therefore, always reduced on subsequent attempts. This simple strategy works because the
error in heading is quite uniform and almost predictable.

5.2.6 Results: Time Required to Reach Charging Station

The robot was using ‘mock’ battery ‘discharge’ to maximize the volume of data collected. The total time
between two charges does not, therefore, reflect true operational times because in this trial the wandering
time is artificially short. However, on a charge attempt, the time from finding the first homing vector
with a confidence value greater than the confidence threshold until time of connection at the charging
station will be the same as under ‘normal’ operating conditions. This time was, therefore, examined and
results are presented in table 14).

Note that the longest charge time is only 247 seconds, slightly over 4 minutes. Both the mean and
median were just over one and a half minutes with a standard deviation from the mean of just 40 seconds.
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Figure 21: Short (top) and middle (bottom) range navigation competence generated headings from
the continuous trial. Only those headings with confidence values above a confidence threshold of
0.07, are shown (the confidence threshold was 0.03 when the data was captured). The square is the
charger capture area. The circles are 5 cm (top) and 10 cm (bottom) radius. The axes are in mm.
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Figure 22: Charge Attempts: The number of succesful charges plotted against the number of at-

tempts necessary to reach the charging station after each occassion when the battery level was below
the re-charge threshold.
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Figure 23: Simplified representation of robot behaviour when the initial connection attempt has failed

No of Charges | Mean | Median | sd | Fastest Time | Slowest Time
69 | 99.8 97 52.7 40 247

Table 14: On a charge attempt, the time from first homing vector with a confidence value above the
confidence threshold to charge (units are in seconds)
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The 4 minute maximum time is much greater than average and occurred in only two instances, which
can therefore be considered to be ‘outliers’. These findings suggest that when the robot is operating
continually, without ‘mock’ discharge, and once the robot is within range of the middle and short range
navigation competences operational area, homing to the charging station will occupy very little of the
robot’s operational time.

6 Discussion

In order to expand the use of robots beyond the factory floor there is a need for autonomous robots
which can operate continuously in unmodified environments. The staged competence acquisition model,
loosely based upon animal life cycles, offers a possible approach, albeit on a very small scale, to provide
such a system. Complex functionality can be decomposed into simpler competences which can be learned
at different stages in the robot’s operation, so that at some point the complex overall functionality is
acquired.

The experiments presented here investigated how a functionality can be acquired with competences
whose staging during learning and utility overlap. A self charging robot wandered within an experimental
environment until its batteries were low, homed to a charging station, charged and then resumed wander-
ing. This was achieved by using combinations of three independent competences, short range navigation,
middle range navigation and obstacle avoidance. These competences were acquired by the robot using
machine learning techniques based on neural networks.

The operational time of the robot was used as a variable upon which each competence based a tailored
activation function. The output of the activation function was used to determine when and at what rate
learning occurred.

Two types of trial were conducted. The first type, the repeatability trials, sought to provide some
measure of how replicable the results of the navigation competences were. The second type was the
continuous trial, in which the robot performed the wander-home-charge cycle over an extended period of
time. The aim of this trial was to measure the robustness of the mechanism and the survivability of the
robot.

During the repeatability and continuous trial data was collected with which to asses the robot’s per-
formance. A particularly important measure was the difference between navigation competence generated
headings and required headings. Several statistical and diagrammatic techniques were used to analyse the
differences in heading data. Analysis showed that for both navigation competences, as expected, there
was a gradual deterioration in accuracy of the competence-generated headings towards the ‘edges’ and
‘point’ of the competence’s areas of operation (see figure 18, 12, 13 and 14). The deteriation was more
pronounced for the short range navigation competence. In figures 12 and 13 (top diagrams) the homing
vector headings seem to be almost perpendicular to the station, with little deflection towards the required
heading. A re-evaluation of the short range navigation competence’s Radial Basis Function parameters
may be beneficial. The deterioration towards the edges also led to an investigation into the level of the
confidence threshold, i.e. the threshold at which a homing vector confidence value is considered to be
high enough for use. This led to an adjustment in the value which will be used in later experiments.

Occasionally, (see figure 14, top diagram, for the most extreme case), a competence showed a heading
error across the area of operation. This was reflected in the means of the heading differences (tables 1
and 8). These errors were surprisingly uniform. If the homing vector headings were rotated back by the
mean the ‘fault’ was corrected. This error may be due to initial alignment using sonar balancing or some
other effect of the interaction between hardware and software. While the reason for these errors will be
investigated further, they are not of an order which would threaten the operational survival of the robot.

When the competence heading differences were compared across type, i.e. short range with middle,
the Radial Basis Function-based short range navigation competence proved to be less accurate than the
Self Organising Feature Map-based middle range navigation competence. The standard deviations were
21.8 for the RBF (short range) and 13.0 for the SOFM (middle range). This was a surprise since earlier
tests (see [8]) had shown that the RBF was far more accurate. It is possible that the SOFM was not
functioning correctly during the earlier experiments, since there were problems with the equipment, hence
the reversal in accuracy of the two types of network is due to an improvement in the performance of the
SOFM (middle range navigation), rather than a deterioration in the performance of the RBF. The fact
that the RBF is less accurate does not invalidate its use. As used in the trials, the RBF does train much
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more quickly than the SOFM and the use of the RBF is likely to be extended and methods to enhance
its performance explored.

The data collected during the continuous trial for homing vectors based on the fusion of short and
middle range competence values yielded some very interesting results (see table 8, ‘fused’ row). The
fused results were close to the middle range navigation competence in accuracy, far better than the short
range navigation competence. Since the fusion of values occurred deep into the short range navigation
competence area of operation, the fusion clearly helped to increase the accuracy of the robot homing.

The charge attempts were then reviewed. The functionality derived from the interaction of the
competences produced a high level of reliability when attempting to charge (figure 22). The maximum
number of attempts to reach the charging station was 4 (and this occurred only twice, the median value
being much lower at only one attempt) and the maximum length of time 4 minutes (see table 14). When
the robot failed to make contact with the charging station, the next attempt was invariably closer to the
re-charge station (see figure 23 for a diagrammatic representation of behaviour on failure). At no time
did the ‘mock’ battery level drop to 20, a level which would have signalled the end of the test. These
findings were extremely pleasing since they suggest that the functionality derived from the competences
would enable the robot to operate for long periods without supervision.

Overall, analysis of the data showed a robust system capable of functioning with a considerable amount
of variance. In summary:

e Homing vectors generated by the short range navigation competence were less accurate than antic-
ipated and some tests will be conducted to see if the settings are optimum for the usage.

e The middle range navigation competence proved to be much more accurate than expected.

e During the continuous trial, the fusion of homing vectors from the navigation competences greatly
increased the accuracy of many homing vectors.

e The obstacle avoidance competence performed well enough to prevent the robot from striking any
object (when not charging) and becoming entangled.

¢ Using sonar balancing to provide a constant external reference point for odometrically based heading
meant that the robot never lost its ‘sense of direction’ through accumulated error.

The staged competence acquisition approach allowed the robot to gain the required level of function-
ality through a controlled incremental process. The test area was deliberately confined so that there were
two distinct periods where the robot first acquired and then used the functionality. In such a situation
basing learning activation and level upon a single variable works perfectly well. If the staged competence
acquisition approach is to be used in a less confined, less controlled environment then it will need to be
reviewed.

7 Conclusions

The continuous trial was very encouraging. The robot trained correctly and displayed the correct func-
tionality. The robot navigated obstacles successfully while wandering. Homing to the charging station
was rapid and robust. At no point did the robot halt through lack of ‘power’.

Decomposing a function into several simpler competences and using self learning techniques to acquire
the competences in the correct spatial and temporal location certainly possess merit. A robot operating
continuously over long periods of time, and learning under such conditions, poses unique problems that
are not apparent under “condensed” learning scenarios. The amount of “irrelevant” data (irrelevant with
respect to the particular competence being learned at that point in time) will be high, and the effect
of noise and contradictory sensory perceptions will be more pronounced than under condensed learning
situations. The staged competence acquisition approach has been effective in ensuring that a competence
is not exposed to much “irrelevant” data by controlling when learning is active.

Although this approach provided the robot with a robust and repeatable functionality it is still only
a step towards providing a system which can truly be called continual. At present the robot can only
learn how to navigate over short and middle range distances. There is no provision for longer range
mapping. Additionally if changes were made to the experimental environment during a continual trial
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the robot would not be able to compensate for the change, since there is no mechanism which would allow
re-learning. Subsequent sections of this report present a proposal, based upon concepts and measures
which arose from this work reported here to explore the issues of both extended exploration and timeliness
of knowledge. It is anticipated that the proposed work will give rise to an operating model allowing a
self charging robot to function over long periods of time in a large area, in which change can occur.
During development, problems due to continuous operation will be encountered. The problems will
be investigated and the model adjusted to remove, reduce or utilise the effect of the problems. The
development of the model and the investigation of the problems of operating continually will therefore
become an iterative process.

8 Future Work

8.1 Issues Arising from current experiments

e The Radial Basis Function Network (RBF), used by the short range navigation competence has
been shown to be consistently less accurate than the SOFM, used by the middle range navigation
competence (see tables 1 and 14). To ensure that the parameters of the RBF are reasonably close
to optimum, a series of tests will be conducted on the robot, varying these parameters. The tests
will take the same form as the short range navigation component of the repeatability trial.

e The Radial Basis Function Network, used by the short range navigation competence trains much
faster than the SOFM based middle range navigation competence. It would be useful to extend
the use of the RBF. Tests could be conducted to see if the RBF can be used to fulfill the role of
the middle range navigation competence by increasing the accuracy and range of opereation of the
RBF.

e With the capture of large amounts of data during the continuous trial a re-evaluation of the confi-
dence threshold was made. The new value, 0.07, needs to be tested and compared with the previous
threshold, 0.03, to see if there is any positive advantage to raising the threshold. This experiment
will probably take the form of a shortened version of the continuous trials.

9 A Proposal for Developing a Model to Explore the Problems
with Continual Operation

9.1 Motivation

Most experiments with machine learning mechanisms for robot operation occur in a laboratory with strict
spatial and temporal limits. The robot is only exposed to data of relevance to the operation being learned
or performed. Using such techniques in ‘real world’ environments, which may not have such limits, is
problematic. When attempting to learn, the robot is supplied with much “irrelevant” data, i.e. from
the wrong place or the wrong time. Additionally the environment may be prone to change and therefore
re-learning also becomes neccesary.

9.2 Purpose

The following sections propose development of a learning model which can be used to explore the prob-
lems associated with continual operation. It is intended that an iterative process will be used during
development. When a problem occurs which is created by some aspect of continual operation the model
will be re-evaluated and modified to eliminate, reduce, or employ the problem’s effect. The model will
be based on the staged competence acquisition technique (see the preceding sections and [8], which has
yielded good results in continual operation, but in a constrained environment.

35



9.3 Method
9.3.1 Staged Competence Acquisition Revisited

The staged competence acquisition model provided a robot with a certain functionality by first decompos-
ing that functionality into simpler competences and then controlling the acquisition of those competences
using the operational time of the robot. In the constrained environment where these tests were conducted
this model produced a robust system.

In order to extend this work modifications will be needed. The robot was required to: wander within
an experimental area; when low on batteries home to a charging station; charge and then
resume wandering.

The robot this gained this functionality by acquiring three competences:

e Short range navigation to the immediate area of the charging station.
e Middle range navigation to the short range navigation operational area.
e Obstacle Avoidance, to avoid objects within the environment when wandering.

All three competences used sonar sensors to provide readings from the environment and neural net-
works to associate these readings with data which could be used to control robot movements.

In the proposed project, the robot will be operating in an environment with no guaranteed limits. The
previous robot functionality may, therefore, never be reached. The proposed functionality is to: explore
and map an experimental area; when low on batteries home to a charging station; charge
and then resume mapping.

The functionality from the previous project now describes the robot behaviour when, or if, mapping
is completed.

Note that the new functionality is available while learning continues, not when learning is finished.
At any time during exploring when charge is low the robot is required to return to the charging station
and after charging return to mapping.

The new functionality could be broken down into the following competences:

e Short range navigation to the immediate area of the charging station.
e Middle range navigation to the short range navigation operational area.
e Long range navigation towards the middle range navigation operational area.

e (Obstacle Avoidance, to avoid objects within the environment when wandering.)

9.3.2 Obstacle Avoidance: A Required Competence?

Obstacle avoidance appears in brackets on the competence list above because its role to the new function-
ality is less well apparent. In the previous experimental setup obstacle avoidance is learned after mapping
has occurred, this works because the area is deliberately limited. If mapping is ongoing when can Obsta-
cle Avoidance be learned? Presuming that Obstacle Avoidance is still required, one possible mechanism
is to pause mapping after the short and middle range navigation competence have been acquired and use
vector homing to repeatedly move the robot close to the charging station (and wall), Obstacle Avoidance
can then be learnt as the robot avoids the charging station (and wall). Thereafter vector homing can be
used to return the robot to the charging station and mapping continued. However obstacle avoidance
is not really needed until mapping is finished. Initially it will be assumed that Obstacle Avoidance will
be learnt once all other learning is finished, i.e. the area is fully explored. This may, however require
revision according to the findings of future experiments with the proposed functionality.

9.3.3 Navigation Competences

Short and middle range navigation can be based upon the same mechanism as the previous experiment,
this produced robust results and there is no reason why it should not be used here. The long range
navigation competence is different. Since the area to be explored may change, operational time can
no longer control when, and to what extent, learning occurs. The long range navigation mechanism,
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therefore, needs to be ‘open ended’, it needs some internal means of assessing when the area is explored
and, as a problem for the future, when it needs to be re-explored.

One approach, well researched at Manchester University (CITES), using numerous mechanisms is to
provide the robot with route creation and following mechanisms based on machine learning techniques
using neural networks.
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Figure 24: The proposed long range navigation competence: Effectively the short and middle range
navigation competence repeated iteratively. Each epoch of the long range navigation competence
maps a fan shaped area. Each fan shaped area becomes the parent of three child areas.

However, the association of heading vectors with sensor readings though fan like patterns has been
shown to provide a robust method for local homing. So another approach is to use the vector mechanism
developed for short and middle range navigation iteratively (see figure 24). This means that the long
range navigation competence would consist of a number of discrete epochs, each of which is equivalent
to the short and middle range navigation competence.

The fan shaped middle range navigation operational area will become the first parent area. Near to
the edge of each parent area are the focal points of three child areas begin. Each child area is a ‘repeat’
of the short and middle range navigation competence. The fan shaped learning pattern is thereafter
repeated, each child becoming a parent to further areas, extending the mapped area to the edges of the
experimental area. One such possible configuration is shown in figure 24.

Initial experiments will use the navigation competence configurations described in this paper. A
separate RBF and SOFM network will be used for each fan shaped area.

An hierarchical linked list of the networks used by the navigation competences will be generated, a
trinary tree, each node connected to three lower nodes (see figure 25).

At the top of the tree will be the RBF and SOFM used by the middle and short range navigation
competence. At any time one node in the tree will be the active node. This node will point to an RBF
and SOFM and these will become the ‘active’ networks. If a homing vector is required, the ‘active’ RBF
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Figure 25: The hierarchical trinary tree: a list used to link the short, middle and iterative long range
navigation competences

and SOFM will be used to generate it. Initially the active node will be the ‘root node’. This node is a
special case and points at the connect-to-charger function as well as the short (RBF) and middle (SOFM)
range navigation competence networks. In the earlier experiments, the translation distance generated by
the RBF (short range navigation) was used to assess when the robot was close to the focus of the fan,
i.e. the charger capture area, and then to pass control to the connect-to-charger function. The same
mechanism will be used, but (except for the short and middle range competences) closeness to the focus
of the fan will cause the parent of the current active node to become the active node. The RBF and
SOFM networks linked to the new active node i.e at the next level, will then up be used when generating
homing vectors (see figure 26).

This should provide an adequate mechanism for homing to the charging station. However, after
charging the robot then needs to return to its mapping duties, and it would be helpful if it did not need
to restart mapping from the charging station after each charge. In order to provide a mechanism which
will allow the robot to return to its previous mapping location each node will also contain a list of the
headings and distance from the ‘real world’ position of that node to each of the child nodes. When homing
to the charging station, the robot would build up a list of third child, second child, second child, etc. The
robot would simply reverse this list after charging to return to it’s previous mapping position. A sonar
reading will be recorded at each nodes position. This is included so that the robot can perform some
form of checking or course error correction using the reading as the hidden values of a neural network
node structure, such as the Restricted Coulomb Energy network. The precise details of these operations
are not yet defined.

9.3.4 Controlling Learning

In the Staged Competence Acquisition model, operational time was used as the single variable for con-
trolling when a network was learning. Now, however, the size of the environment will control when
learning should occur, i.e. more fan shaped patterns are added until the edges of the environment are
encountered. Initially time will still be used as a single factor. The short and middle range competences
will be learnt with the activation functions presented in sections 2.7.1 and 2.7.2. Since the long range
navigation competence is merely the iterative application of the short and middle range competences the
competences activation curves will be used, but in a relative fashion, i.e. not at some absolute time in the
robot’s operational ‘life’ but when mapping of a fan shaped pattern begins. At the present time, it will be
assumed that the robot can only react to low battery level, and hence begin homing behaviour, between
mapping patterns. The activation curves for this adjusted learning control are presented in figure 27.
This shows the short and middle range navigation competences and two ‘epochs’ of long range navigation
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Figure 26: Homing using the hierarchical trinary tree. The active node selects which RBF and SOFM
are to be used for homing vector generation. When the RBF generates a translation value below a
‘closeness’ threshold control is passed to the next node up the trinary tree
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Figure 27: Competence Staging for the Robot Strange: Short and middle range navigation learning
are presented along with two epochs of long range navigation learning. The long range navigation
epochs would be repeated until the area is fully mapped
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9.3.5 Repeating the Long Range Navigation Competence

Particularly when using sonar balancing to correct heading (i.e. without the magnetic compass), the robot
is quite reliant on odometry. The long range navigation competence is actually a repeat of short and
middle range navigation competence learning. The middle range component of this mapping technique
(SOFM based) takes about 20 minutes to train and there is always some amount of odometric drift by
the end. If this pattern is to be repeated many times then the odometric error will become quite large.
One way of avoiding this is to extend the use of the fast training RBF from the short range component
to the middle scale and possibly merge the short and middle range components of the iterative procedure
used by the long range competence. Some experimentation may be carried out with the RBF prior to
the initial experiment (see section 9.4).

9.3.6 Initial Parameter Settings

Since this is a system which relies to some extent on odometry, there are several operational parameters
which need to be set and revised after experimentation. As the project progresses it may be possible to
make many of these self setting based upon sensor readings.

e In order to provide a definite link between parent and child how ‘deep’ into the parent fan does the
focus point of the child fan need to be? The greater the overlap, the higher the confidence level
in the parent, but so is the number of areas required and therefore the training time and memory
requirements.

e How much redundancy, overlap at the same level, is desirable or useful? The simple configuration
figure 24 has many overlaps, including two areas of almost complete overlap. The same training
time and memory considerations as above apply.

e Should the size of all fans remain the same or should the robot use its sensors to decide whether
to increase/decrease the size of the fan depending upon the position within the environment (both
the radius and the arc of the fan could be adjusted)? If the sizes are adjusted then would a
network model such as the Grow When Required network (CITES) be more appropriate than the
Self Organising Feature Map?

e Should the number of child areas remain the same or should the robot use its sensors to decide
whether to increase/decrease the number depending upon it’s position within the environment?

e Most importantly will different shapes and sizes of area require specific configurations to optimise
mapping? If this is the case then having some self determination in choice of number of children,
width of arc or length of area becomes even more important.

9.3.7 Initial Issues
Apart from optimising parameters there are also mechanistic issues:

e The long range navigation competence will be composed of the iterative application of the short and
middle range navigation competences in an hierarchical structure (initially a trinary tree). Will the
structure be constructed using a breadth first strategy or a depth first strategy? This has a profound
effect on how the robot will map the area. A breadth first strategy produces all the possible epochs
at one level before producing epochs at the next. Depth first produces all possible descendants of
node before producing the next node at the same level (see figure 28). While operation in a corridor
environment would be fulfilled best with depth first, but operation in an open area could be better
with a breadth first strategy. The robot will use the breadth first strategy in the initial test since
the test will be conducted in an ‘open area’. A future consideration is whether the robot could be
enabled to decide which strategy to use, based upon sensory input.

e As an alternative to using the trinary tree, and having only one pair of networks active, the sensor
input could be presented to all of the networks and the vectors from those networks with the highest
confidence values used. The major problem with this is that networks from many different places
within the environment would be tested and this could increase the chance of perceptual aliasing.
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Figure 28: Breadth and Depth Strategies and how their use in the long range navigation competence
would affect mapping

Even if not of general use, such a mechanism could be useful as an element in a search procedure
if the robot becomes lost, or even used as a ‘vote’ alongside a value generated by using the trinary
tree.

e With the greatly increased number of vector movements, will the odometry of the robot remain
sufficiently accurate?” How many fan patterns can the robot generate before it needs to return to the
charging station to correct the heading? If the heading can be adequately corrected, or the magnetic
compass is used, will translational errors become significant? Is some form of sonar balancing, or
positioning, to correct translation possible (this would probably require the identification of some
unique feature in the landscape; the charging station is not at present such a feature). If odometry
is a problem does the SOFM need to be trained more rapidly (repeating the fan shaped pattern
less) or even dropped in favour of the fast training RBF?

e Could another network, such as the Grow When Required (GWR) or the Restricted Coulomb
Energy, be used alongside the other networks, in order to increase the accuracy of the system by al-
lowing ‘voting’ from a network supplying a different perceptual perspective. In such a configuration
there would be a single GWR network growing over all the mapped areas.

e Can the system cope with confined areas, such as a corridor leading off the main learning area?
At present the robot uses an emergency braking routine to stop the if it moves too close to a wall
while learning; further sensor reading points along that vector are truncated. If there is a corridor
connected to the ‘main learning area’ the current mechanism should be capable of traversing and
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mapping it as graphically represented in figure 29. Once the basic operation of the proposed model
is proved to work this will require testing by ‘constructing’ (or using real) corridors.

9.4 Initial Experiment

Prior to the initial experiment there will be an investigation into extending the use of the Radial Basis
Function network. If it is discovered that the RBF can produce accurate enough results over the middle
range navigation operational area it may well be used instead of the slow training Self Organising Feature
Map. However, since the result of these tests is at present unknown the proposed initial experiment is
discussed with the presumption of both networks being present.

9.4.1 Experimental Hardware
The modified self charging Nomad scout Strange and the custom built charging station will once more
be used. A laptop will provide high level control.

9.4.2 Experimental Setup

The experimental area will no longer be constrained to that of little more than the short and middle
range navigation competences. Although the area will not be large enough to use the idealised pattern
shown in figure 24, an area large enough for at least one long range navigation epoch (hopefully two) will
be used. Figure 30 shows a likely configuration. While not ideal, this set-up can be used to test the basic
functionality of the long range navigation competence mechanisms.

9.4.3 Experimental Procedure

The purpose of this initial experiment is to see if the mechanisms developed for the long range navigation
competence mechanism can be integrated into a model alongside the short and middle range navigation
competence. The success of the experiment (and the model) will be based upon the robots ability to first
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Figure 30: Possible experimental area configuration for the first experiment

map the area and then navigate back to the charging station from various points within the experimental
area. At the start of the experiment, the robot will be placed 45 cm from the charging station, facing the
station, aligned so that a forward movement will result in connection between the robot and the station.

The first node of the tree (in this case a binary) is established pointing at the connect-to-charger
function and the empty networks for short and medium range navigation learning.

The robot initially moves away from the charging station, reversing directly without turning, and then
moves back towards the station in the fan-like pattern of ever increasing size (described in section 2.4).

If an obstacle is detected in the robot’s path, the robot will merely stop and attempt the next
movement in the fan shaped pattern. If the new movement is in the same direction as the previous
attempt, this movement will be rejected and the next one attempted.

During this first phase, short range navigation will be learnt, controlled by the activation function
Ar. Middle range navigation learning will also begin at the same time, controlled by the sensitisation
function As;. This phase continues until the radius of the fan is approximately 50 cm (the short range
navigation area in figure 30) and lasts for about two minutes.

At the next stage of learning, the robot moves in and out of the charging station at much greater
distances (described in section 2.5). Middle range navigation continues to be learnt, with a higher learn
rate than in the previous stage. This phase lasts about twenty minutes. The robot’s movements during
both learning phases are shown in figure 3.

The robot returns to the initial start point. The robot creates a new node for the tree and adds a link
from the active node to this new node. The new node then has pointers made to long range navigation
competence epoch one’s empty RBF and SOFM. The robot then moves out to the long range navigation
epoch one start position. The absolute heading to return to the previous position is stored in the new
node along with the translational distance moved. The robot now maps the epoch one area by using
the procedure described for the short range (epoch one’s RBF) and middle range (epoch one’s SOFM)
navigation learning.

Once this learning phase is over and the robot is once more at epoch one’s start position, the robot
returns to it’s position at the start of the experiment. This could be done using the short and middle
range competence to produce homing vectors, but initially will use the absolute heading and translation
data stored at the node associated with epoch one.

Once the robot has returned to the original starting position, a new node will be created and linked
with the root node. This will be the node for epoch two. The procedure described above for epoch one
will then be repeated for epoch two.

At the finish of the long range navigation learning (i.e. the end of epoch two in this experiment), the
robot will return to the initial start position. There will be no obstacle avoidance learning at this time.
In this test the robot will not be required to wander freely.
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The testing and data collection phase will then begin. The robot will be moved out under joystick
control and stopped within the short, middle, long epoch one or long epoch two navigation operational
area. The robot will be then be given a number, 1-3 where 1 is short or middle range, 2 is long epoch one
and 3 is long epoch 2. This will robot which area it is in and which RBF and SOFM networks to use.
The robot will then be told to start homing. Homing data will be collected as in the continuous trial.
Once the charging station has been reached, or the robot has quite clearly failed, the robot will be guided
out under joystick control and the homing restarted. The initial experiment will test the soundness of
the basic idea and the functionality of the various mechanisms.

9.5 Temporal Problems: The Timeliness of Data

The initial experiment described above seeks to develop a mechanism to investigate the spatial problems
of continuous operation. When operating in an ‘open environment’ there are also problems with the
timeliness of data. To operate continuously the robot requires mechanisms to allow it to determine when
a learned competence is no longer valid because of changes in the environment, the robot, or the robot’s
interaction with the environment. A machine learning technique provides the robot with information or
an ability which allows the robot to perform a new function. If this new function is repeatedly executed
on the robot there should be some aspect of the robot’s performance which can be measured and later
used as a gauge to assess how successfully the function is being applied.
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Figure 31: Introducing an Obstacle into the Middle Range Navigation Area after learning

As an example, when an obstacle is placed within the middle range navigation area, the middle range
navigation competence will no longer be capable of providing accurate homing information. However,
as long as the change in the environment is only partial, the high dimensionality of the sonar readings
(sixteen sonars) will probably allow the robot to reach the charging station. Initial tests have been
conducted with the short and middle range navigation competence. After the ‘learning phase’ was over,
i.e. short range navigation competence, middle range navigation competence and obstacle avoidance had
been learnt, a box was placed in the centre of the middle range operational area (seen figure 31). Time
from first successful homing vector (i.e one with a confidence value above the confidence threshold) to
connection with the charging station was over 10 minutes. The longest time this operation took during
the continuous trial was 4 minutes (and this was an unusually large value).

The time to connection could, therefore, be used as a indicator of when the environment had changed.

Initial values for the time to connection could be generated immediately after the ‘learning phase’
by forcing several charge attempts, building up a ‘profile’ of times from first successful homing vector to
connection with the charging station.

The robot could then estimate the time between generating the first successful homing vector to
connection with the charging station. If later times were significantly longer than the estimated value
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then the network would be forced to retrain.
The performance measure could take several forms:

e A simple maximum value;
e A probabilistic measure;

¢ Using a neural network to provide an association between the values of the first successful homing
vector with the length of time to connection with the charging station.

Experiments will be conducted to determine the advantages and disadvantages of each form.

Investigations into means of generating self-regulation for the competences used in the project would
run concurrently with the main tests. Integration into the main project would occur when the techniques
displayed some measure of success.

9.6 Proposals: Summary

The work reported in this paper, along with [8] has demonstrated that Staged Competence Acquisition is
a robust approach to solving problems associated with continual operation of autonomous mobile robots.
Section 8 of this paper has outlined some immediate considerations raised by the work conducted thus
far. Section 9 has presented a proposal to extend the work, specifically to address problems in continual
operation associated with long-range navigation and changing/unpredictable environments. The proposed
work will build upon the strengths already demonstrated by the Staged Competence Acquisition model. Tt
will furthermore address the problems identified with components of the model (eg Radial Basis Function
accuracy). Finally, since development of the model and associated techniques will be iterative, the
proposed work will enable the Staged Competence Acquisition model to be refined and strengthened.
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