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Abstract

We develop a Core Specification Theory (CST) as a basis for the
mathematical investigation of specification and specification languages.

1 Specification Theories

Specification languages such as Z, VDM, B, PVS ([28], [13], [21], [1], [7],
[24], [25]) are based upon the Predicate Calculus (PC) in the sense that the
language in which the specifications are expressed is some version or dialect
of PC. However, they differ from the simple single sorted versions of PC in
that they distinguish between different types of data where the types of these
theories are usually presented in an inductive fashion: there are basic types
(e.g. numbers, characters) together with a battery of type constructors such as
products, sets and recursive types. Furthermore, presentations of specification
languages ([20], [12], [15], [16], [9], [10], [22], [23], [27], [4], [15], [19], [3], [5], [8],
[12], [18], [24]) sometimes include groups of axioms for the various types and
their associated relation and function symbols. Typically these stipulate the
membership conditions for the type, the criteria for two elements of the type
to be equal and lay out the properties of any special relations and functions for
the type. As such these axiomatic systems constitute theories of the underlying
concepts of the language that we shall refer to as Specification Theories.
However, it is not an easy task to provide such axiomatisations for existing
languages ([4], [15], [9], [10]). This is largely due to the way in which they
have evolved: their form has been largely determined only by practical con-
siderations. In practice, standard logical systems such as HOL or ZF have
been lifted wholesale and employed as the host for a massive infrastructure of
syntactic sugar dictated by practical needs. Unfortunately, this sugaring has
taken over and obscured the logical core. Subsequently, we have languages for
which it virtually impossible to provide mathematically tractable and usable
axiomatisations. In particular, the axiom systems are often very large: a stab
is made at providing axioms for every construct that might prove useful. Even
S0, the systems are often incomplete in the sense that some of the constructs



are not axiomatised. Indeed, some of the more rigorous attempts at develop-
ing axiomatisations for existing languages ( [9], [10]) have been forced to part
company with the target language for technical and conceptual reasons. More
generally, many problems with current languages often only come to the fore
when axiomatisations are attempted.

Indeed, current specification languages are rarely precisely and completely
formulated as axiomatic theories and so are inadequate for metamathematical
purposes; it is very hard to treat the theory as an object of study in its own
right. As a result, our mathematical grasp of specification and specification
languages is quite meagre.

This is the first of a series of papers which seek to address this foundational
gap. Our objective in this first paper is to formulate and study a core Speci-
fication Theory and use it to explore the specification process. This theory is
a sub-theory of the implicit theories of all the major specification languages;
it is buried inside them even if it is not evidently so. Nevertheless, it is ex-
pressive enough to illustrate the different styles of specification employed by
these languages and to explore the logical foundations of the actual process of
specification.

2 A Core Specification Theory

We present a core specification theory (CST) which is a fragment of most, if not
all, the major specification languages. We shall do so in several stages. Initially,
we present the language, and compared with actual specification languages it
is very small. We then develop the logic of the system: a version of a typed
predicate logic. Finally, we present the rules and axioms for the various types.

2.1 The Syntax of CST

The language has three syntactic categories: wff, types and terms. We deal first
with the syntax for the types since these drive the form of the language. The
atomic type terms consist of type variables and the type constant N, the natural
number type. There are two type constructors which permit the formation of
sets (Set) and Cartesian products (®). More formally, the syntax of type terms
is given as follows.

T:=X|N|T®T]|Set(T)

These types are taken as basic in both Z and VDM. Generally, we shall employ
upper case Roman letters A, B,C, D,... for type terms with U, V,W, XY, Z
reserved for type variables.

With these go the following individual term constants and function symbols.
Apart from the individual variables we admit, for the natural numbers, the
constant zero (0) and the numerical successor function () and for Cartesian
products, we include the pairing function () and the selection functions (7).
Finally, sets are supported by a constant for the empty set (f)) and a binary



insertion function (®) for adding an element to a set. This leads to the following
syntax for terms.

to= z|0]th
(t,) [ wo(t) | ma(t)
D|twt

where generally we employ lower case Roman letters a,b,c,... for individual
terms with u, v, w, x, ¥y, z reserved for term variables. The basic operators of the
theory are polymorphic. In particular, the set insertion function and the pairing
operation operate globally over all types.

Finally, we introduce the well-formed formula (wff). We employ lower case
Greek letters for these. The atomic wif include absurdity (2); equality, set mem-
bership (€) and the ordering relation on the natural numbers (<). General wif
are generated from these by the propositional connectives and the quantifiers.

pu=  Qlt=t|tet|t<t
~H|ONG |GV |6 o
Ve<t-¢|Ir<t ¢
Veet-¢o|Iret-¢
Ve:T-¢|3x:T-¢
VX ¢ |3X -9

Apart from the numerical and set quantifiers, we have quantification with re-
spect to a given type and quantification over types. The last four are the main
logical quantifiers of the theory and will be governed by standard introduction
and elimination rules. One might think that the bounded quantifiers should
be defined in terms of the others but, for theoretical and practical purposes, it
is convenient to take them all as primitive. However, their properties will be
stated in terms of the main quantifiers.

Where e is a term or wif, we shall write F'V(e) for the collection of free
individual variables of e and FT'V (e) for the free type variables. For the pur-
poses of substitution, we shall write e[z, .., ;] to mark free individual vari-
ables. This notation is not to be taken to imply all of the variables x1, .., x,
occur free in e nor that they exhaust all the free variables of e. We shall write
elt1, .., tn/x1, .., Tp] for the substitution of a terms ¢; for the variables x;. Simi-
larly, we shall write e[ X7, .., X,] to mark type variables and e[T}, .., T,/ X1, .., X»]
for type substitution. Finally, note that individual terms do not contain type
variables and type terms do not contain individual variables.

We next present a few preliminary definitions. Propositional equivalence
(<) is defined in terms of implication in the standard way. We define type
membership and of some other useful forms of quantification, as follows.

t: X & ;:X-t==x
o X-plz] & Fo: X -] AVy: X Byl =1y
ISty X - glr] & Vo X -Vy:X-glz] Ay —x=



This completes all the syntactic preliminaries.

2.2 The Logic

The logic is presented in a sequent-style natural deduction format. The rules
are given relative to a context I' which is a (possibly empty) finite set of wif.
Sequents thus take the form:

I'cst ¢

which is to be understood as asserting that in the theory CST, ¢ follows from
I'. We shall usually drop the suffix. Furthermore, we shall only include the
contexts of a rule where they are modified in passing from the premises to the
conclusion. We shall also write rules with no premises in the standard way.
There are two structural rules: an assumption axiom and a weakening rule.

Tk
Loty

There are the two standard equality axioms - adapted to a typed setting.

Ax oF o W

E; Ve: X -z==x
E, Vo: X -Vy: X -z =y— (o[z] — oly])

The logical rules are the normal classical ones. We begin with the propositional
connectives.

L L. 3
Lo pr— Li —Ro
Ls ﬁ Lo w L, DFove Prf;n Loty

The main quantifier rules are for the typed and type quantifiers. These are
standard and subject to the normal side conditions about dependency.



Tz:Xko Ve:X- ¢ t:X

Lis PEVz:X-¢ Lia o[t/
L olt/x] t: X L '3dz:X-¢ Dx: X, ¢k n
=R ) 16 Tkn
¢ VX -
M7 X9 s SI7x]
O[T/ X] I'-3X-¢ T,¢Fn
Lo 5575 Lo T

We shall deal with the bounded quantifiers in connection with their types.
This completes the basic logic of the theory. We can now deal with the types
themselves: for each we shall provide introduction, elimination and special
equality rules together with any rules for their special relations and functions.

2.3 Natural Numbers

The first group of axioms for the numbers are those of Peano Arithmetic but
with explicit quantifiers to restrict them to numbers. The first four inform us
about the successor relation and the fifth is the standard scheme of induction.

Ny 0:N

Ns Ve:N-xT: N

Nj Vo :N-zt #£0

Ny Ve:N-Vy:N-zt =yt =y

N5 (@l0] AVz : N - glz] — ¢la?]) — Vo : N - ¢[z]

The next group provide the axioms for the ordering relation. Again, they
are the standard axioms adapted to fit the present typed framework.

Ng Vo : N-=(z<0)
Ny, Vy:N-Vo:N-z<yt o (r<yVa=y)
Finally, we deal with the numerical quantifiers. These are governed by the
following axioms.
Ns Vy:N-Vz<y-¢)e Vx:N-z<y— o)
Nog Vy:N-(Fzx<y-¢)— (Tx:N-z<yAo)
They insist that, in the context where the bound is a number, they can be
unpacked in terms of quantification with respect to the natural number type.
This style of axiom, where a construct is only provided a meaning in a given

context, will form the basis for our general scheme of relation and function
specifications. This completes the numerical axioms and rules.



2.4 Cartesian Products

Cartesian products are present in most specification languages and the axioms
are the usual ones. The first three are the normal axioms for pairs and selections
functions.

P, Vo: X -Vy:Y -(z,y): X®Y
Py, Vz:XQY m(z):X
P; Vz:XQY -m(z):Y

Finally, the special equality axioms demand that the selection functions be-
have appropriately on pairs and support surjective pairing.

Py, Va:X -Vy:Y m(z,y)=xAn(z,y)=y
Py V2:XQY: z=(m(2),m(2))
The construction can be iterated to the product of more than 2 types via
X1 (X ® oo.. @ Xppy1)

In particular, we shall write X™ for X ® X ® ..... ® X i.e. n-copies of A. We
shall often write 7;(x) as ;.

2.5 Sets

While it is more central in some than in others, this type constructor is present
in some form in most specification languages and certainly in all the major
logic-based languages. We present the axioms/rules in several waves.

The first group parallel the Peano axioms. The first pair state the closure
conditions for the type: the empty set is a member of every type of sets and
the sets of a given type are closed under element insertion. The next two ban
the multiplicity of elements in sets and guarantee order independence. The final
axiom in the group is the induction principle for sets.

S1 0: Set(X)

S2 Ve : X -Vy: Set(X) x®@y : Set(X)

Ss Ve: X -Vy:Set(X) 2@ (zx®@y)=2x®Y

S4 Ve: X Vy: X -Vz:Set(X) 2@ (y®z)=y® (z® 2)

Ss (G0]AVz: X - Vy : Set(X) - ¢ly] — o[z ® y]) — Vy : Set(X) - o[y

The next pair govern the special relation symbol for this type, namely set
membership. The first insists that the empty set has no elements and the second
demands that the insertion function adds a single element to an existing set.

Sﬁ V$X$¢®
S~ Vy:Set(X) Ve: X -Vz: X-z€xz®y<— (z=xVzey)



Finally, we provide the set quantifier axioms. They mirror the numerical
ones and insist that where the bound is a set they can be unpacked in terms of
the main type quantifier.

Ss Vy:Set(X) - Vxey-¢)— Ve: X -z €y— ¢)
So Vy:Set(X) - (Axey-¢)— Fr: X -zcyne)

This completes the statement of the theory CST. It is a very minimal theory
of numbers, sets and products with very little meat on it. On the other hand, it
is a highly expressive theory which supports a large portion of everyday specifi-
cation. In the next paper we shall put it to work in exploring the foundations of
the specification process. In the rest of this paper we shall explore the theory.

2.6 First Steps

We establish a few preliminary properties of the theory. The first couple present
some elementary properties of the numbers.

Proposition 1 The following are provable.
1.Vy:N-Ve<y-x:N
2.Vy:N-y=0VIu:N-y=u"

Proof. The first follows from Ng and the second by numerical induction
with the induction wif

Alyl=y=0VIu:N-y=u"

[ |
We now do much the same for sets but here there are a few more obvious
things to say.

Proposition 2 The following are provable

1. Vy:Set(X) - Veey-x: X

2. Vy:Set(X) - y=0VIu: X -Fv:Set(X) - y=u®v
3. Vy:Set(X) Vo: X -z2®y#0

4. Vy:Set(X) - Veey-z@y=y

5 Vz:Set(X) Ve ez -Fy:Set(X) xdyhz=x®y
6. Vx e Set(X) - (Vyexz-y:Y)—a:Set(Y)



Proof. The first follows from Sg. The rest employ the obvious set induc-
tions. For example, for (2), we use set induction with the induction wif:

Pyl =y=0VIu:X Jv:Set(X) y=ud@v

[ |

We can now establish the most important property of the sets of the theory
namely their extensional nature. We first define Fxtensional Equality for sets
as follows.

r=yEVucr - ucyAWwey-ver
Proposition 3 (Eztensionality)
Vo : Set(X) -Vy:Set(X) - z2=y—xz=y
Proof. Let x : Set(X). We employ induction on y with the induction wif:

yl=r=y—w=y

Assume y = 0. If z = () we are finished by E;. But if z # () then x = u ® v for
some u,v which is impossible. This completes the base case. So assume that
y =u®v. We have to show that

T=UPRV =T =UDBV

If w € v we are finished by induction. If u ¢ v, since u € =z, by the last
proposition (part 5), z = u® v’ for some set v, u ¢ v’. Since u®v = u®v' and
u ¢ vand u ¢ v, it follows that v = v’. By induction, v = v'. So u®v = u®v’ .l

This completes our basic introduction to the theory CST. It should be clear
that this theory is a sub-theory of both the implicit theories of VDM and Z
- and indeed all the major languages. One observation worthy of note is that
the types of the theory are genuine data types in the sense that they could
be implemented as types in a programming language. This should be seen in
contrast to the types of the major specification languages.

3 Relation Specification

Implicit in all logical specification languages is the notion that specifications
involve the introduction of new relation and function symbols. Furthermore,
most languages allow a style of specification in which new polymorphic or generic
relations and functions can be introduced. However, different specification lan-
guages present specifications in different syntactic forms. In particular, some
(e.g. Z) are predominately relational in their style of specification and others
(e.e. VDM) are more functionally inclined. We shall consider both styles.
Indeed, we shall provide, within the formal framework provided by CST, a uni-
form treatment of, and a logical foundations for, both Z and VDM specification
styles.



3.1 Schema

Our style of relation specification is based upon the Z schema notation: it
introduces new Polymorphic relation symbols into the language via the following
specification format.

Definition 4 Let ¢ be any wff and Ay, ..., Ax any type terms where 1, ..., T
(n,k > 0) are all the free individual variables of ¢ and where X1, ..., X,, include
and exhaust all the type variables of ¢, A1, .., Ax. We may then introduce a new
relation symbol into the language via

R[X1,., X, =

[xl :Al, ey Lk o Ak | (;5] (S)

where each free individual variable is assigned exactly one type. We shall call
these Schema Specifications. The type prefix

Ty Ap, e xg s Ag
we call the Declaration of the schema and the wff ¢ its Predicate.

How are these specifications to be unpacked logically? Here we shall be
guided by the form of the axioms of our theory CST: S is to be understood as
the introduction of a new relation symbol R that satisfies the following axiomatic
condition.

VXl et VXn . Vl‘l : A1 L -V:z:k : Ak 'R[Xl, ..,Xn](l‘l, ,Jik) — ¢ (Rel)

This implicitly extends the syntax of wif to include new atomic wif of the form
R[Ty, .., Ty (t1, .., tr).

For the rest of this section we shall employ this notion of specification to
enrich the theory. Indeed, the development of the theory will furnish us with
material to illustrate the whole specification process.

Example 5 A schema specification of the Subset relation is given as follows
Cx 2 [x:Set(X),y: Set(X) |Vz€x-2€y]

which is written in its standard infix notation with the type variable as a sub-
script. Under the government of Rel, this is interpreted as the introduction of a
new relation which satisfies

VX Vo :Set(X) Vy:Set(X) e Cxy—Vzex-z€y
The following are instances.

Cn 2x:8et(N),y: Set(N) |Vz€x-2z €y
Chz 2 [z Set(N?),y: Set(N?) |Vz€x-z € y]



Example 6 With subset in place we can specify a generic version of Exten-
stonal Equivalence for sets as follows

=x 2 [r:Set(X),y: Set(X) |z Cx yAy Cx 7]

Example 7 The following provides the specification of the Pairing relation on
sets.

Pairx 2[z: X,y: X,2: Set(X) |Vu: X -u€z—u=xVu=y|

Of course, just positing a relation is not the end of the story. We might for
instance wish to show that the relation is not vacuous. In most cases this will
be obvious, but we shall often investigate matters more thoroughly.

Following Z, (e.g. [28]) we shall also write schema in the more graphic form:

_ R[X1,., Xy

xIy Tl, ey T © Tk

In this presentation we shall often mark conjunctions with a new line. The
following examples illustrate this.

Example 8 The following is a schema specification of simple set theoretic Union.

Union[X]

u: Set(X),v: Set(X),w: Set(X)

Ve: X -z€e€w—r€euVarew

This is clearly non-vacuous since choosing all three sets to be the empty set
provides an instance.

Example 9 The following provides the definition of Generalised Union

Genunion|X]

u: Set(Set(X)),v: Set(X)

Ve: X -rx€v+—dJz€u-z€z

10



Example 10 Given the specification of subset, the Power set relation may be
specified as follows.
_ Pow[X]

u: Set(X),v: Set(Set(X))

Vo : Set(X) - x €vexCxu

Observe that there is an instance: chose both to be the empty set.

We now come to the way of forming sets given by a scheme of separation.
Notice that this operation is schematic (in the standard sense) with respect to
a wif i.e. we introduce a new relation symbol for each wif.

Example 11 Let ¢ contain at most z free. We then specify
o Sepy [X]

u: Set(X),v: Set(X)

Vz: X -z €v e z€uNilz]

Example 12 The following provide specifications of the Domain and Range
of set-theoretic relations.

_ Dom[X,Y]

w: Set(X ®Y),v: Set(X)

Ve: X -z€veTJy:Y - (x,y) €Eu

_ Ran[X,Y]

u: Set(X ®Y),v: Set(X)

Vy: Y -yevedr: X-(x,y) €Eu

Although there is no type of Maps in the present theory, we can specify the
relation of being a Map from one type to a second i.e. a set theoretic relation
(an element of Set(X ® Y')) which is single-valued.

11



Example 13
Map[X,Y] £ [2:Set(X ®@Y) |Vx € 2-Vy € z- 11 = y1 — T2 = Yo

The next example is slightly different in that it is an example of how one
can build new specifications uniformly from old ones. We shall have more to
say about this in a later publication where we introduce our interpretation of
the Schema Calculus.

Definition 14 Let
RIXy,., Xn] = [z: Ly : O] ¢l
Define the Domain and Range of R as follows.

Dompg[X1,.,X,] = [x:1]3y:0- 9
Rang(Xi,.,X,] = [y:0|3x: 1 4]

We shall study these and related examples in some detail since they will be
employed to illustrate the whole process of specification. Moreover, many of
them will provide some of the central infrastructure for the development of the
theory as a more realistic specification language.

Operations express relationships between named nputs and outputs. How-
ever, the specification of an operation will have the same form as a schema
definition but some of the variables will be interpreted as inputs and some as
outputs. However, apart from the binary case of relations, where the convention
is that the first argument is the input and the second the output, we have no
convention to determine which is which. We shall often use Cartesian product
types to reduce matters to the binary case and then employ this convention.
However, in practical applications of the theory, this often proves inconvenient
and so we need some more general notational devices to distinguish inputs from
outputs. We shall adopt several styles of convention. We shall often just stick
the inputs on the first line of the declaration and the outputs on the second.
More general Z style conventions employ decorations, e.g. mark inputs with ?
and outputs with !. Where there is no danger of ambiguity we shall usually
drop the decoration in the predicate.

Example 15 We may introduce Generalised Intersection as follows.

N[X]

u? : Set(Set(X)),v! : Set(X)

Ve: X -zev—VYweu-zcw

12



This is our interpretation of the Z schema notation. However, we are not
claiming that it is the official one; we are merely borrowing the schema notation
as a convenient way of expressing our style of polymorphic definition. Indeed,
there are some obvious differences. Firstly, we have explicitly interpreted schema
to herald the axiomatic introduction of new relation symbols. This perspective
is not explicitly adopted in the accounts of Z. Secondly, in the more formal
accounts of Z given in the various standardization documents ([4], [20]) and the
various logics of Z ([27], [9], [10]) it appears that a schema is taken to imply the
type of its arguments. In the present setting this amounts to the introduction
of a new relation via the following axiomatic stipulation.

VXl L VXn . R[Xl, ..,Xn](l'l, ..,l'k) — X7 - Al VANAN Ty - Ak A d)

However, within the present theory, this is not a significant difference since the
declaration will always form part of the proof context within which reasoning
about the specification will be carried out. This perspective is the one adopted
in the statement of the theory.

3.2 Conservative Extensions

Every time we introduce a new relational symbol via S we enrich the language
and the theory. Moreover, we do so by introducing a new aziom into the the-
ory. However, we require that such relational enrichment does not substantially
change the theory. This would be unfortunate since then we would have no
guarantee that the properties of the old theory, which we may rely on dur-
ing specification, are maintained. Indeed, we shall use the word Legitimate to
describe such conservative additions. This will mean different things within
different styles of specification.

Suppose that we have extended the language of CST with a new relation
R. Let CSTR be the theory in which all the rules of CST are extended to this
new language together with the axiom Rel. The following informs us that such
additions are conservative.

Theorem 16 Let ¢ be any wff of CST. Then

ifI' Fogpr ¥ then T FosT @

The theorem follows as a direct result of the following lemma which shows
how to compile any wif of the extended theory to one of the original.

Lemma 17 There is a translation * from the language of CST® to the language
of CST such that

1. I T Fogpr ¢ then T* Fost ¢°
2. If ¢ is a wif of CST then ¢* = ¢

13



where I'* is the translated context

Proof. We shall spell out the details of the translation since it will be
employed as a basis for several modifications. The translation is defined by
recursion on the extended language. The major impact is obviously on the
new relation symbol. We illustrate with the case of one type variable and one
individual argument.

RIX]2[z: A|g)
This is transformed as follows.
R[T|(t)" = ¢[T/X,t/x]

All the other atomic wif translated to themselves

of =«

The translation passes through the propositional connectives and the quantifiers
e.g.
bAN)* =8 An*
Ve :T-n)*=Ve:T"-n*
Vzeb-n)*=Vzeb-n*
VX -n)*=VX-n*
All types are translated to themselves. This completes the translation. Part
(2) is immediate given the translation. Part (1) follows by induction on the
derivations in CST®R. All the rules of CST are automatic. This leaves us to
check the new axiom which is immediate.ll
We shall employ the whole translation again in connection with function

specifications. For this reason we have provided the explicit details of the trans-
lation.

3.3 Comparing Schema

For theoretical purposes, we shall need to compare schema specifications. There
are two important relationships that we shall employ in the sequel. The first is
the obvious one.

Definition 18 Let

R[X1,.,X,] 2 [r1:A .2 Ak n)
S[X1,., Xn] = [x1:A1, .2 Ay | 6]
be two schema specifications. We shall say they are Equivalent (written R = S)
if
VX1 VX, Voy: Ay - .- Vg 2 A -
R[X1, .., X )(z1, ..y i) < S[X1, .., Xn] (21, .., k)

14



Example 19 The schema specification of union is equivalent to the schema
with the predicate

Veew-zeuveev)AVMrecu-zew)AN(Ve €v -z € w)

Although this notion will do a great deal of work for us in comparing schema
it will sometimes be too constraining and so we introduce another standard
notion that generalizes it.

Definition 20 Let
R[Xla"7Xn] = [l‘],y0|w]
N

S[X1, . Xn) [z:1,y:0]|n
We shall say that S is a Refinement of R, written as
RLCS

if
1. VX -..-VX, -V : I -Domg[Xy,., X,]|(z) = Domg[Xq, .., X,)(x)
2. VX .. -VX, Vo : I -Domg[Xy,., X,|(z) = Yy : O Ylz,y] < nlx,y]

We shall say that the two Schema are Weakly Equivalent iff they refine each
other i.e. we write

R~S2RCSASCR
Clearly if two schema of equivalent they are weakly equivalent i.e.
R=2S—R~S

We shall unpack the connection in the other direction shortly. These notions
will aid us in our investigation of many aspects of specification, including the
following.

3.4 Total Operations

There are some important special cases of schema which are theoretically and
practically significant. We begin with Totality.

Definition 21 Let
R[X1,.. X, = [x:Ly: 0|
We shall say that R defines a Total relation if
VX -..-VX, -V : I-Domg[Xy,.., X](x) (TOT)
We shall say that a many place operation is Total iff
RIX1,  Xo]| 22 [ ®.01,y:01®.0O0n | VX1, Ty Y1, - Yml]

18.

15



Many of our operators are total.
Proposition 22 Pair, Union, Genunion, Separation, Dom and Ran are total.

Proof. We shall not prove all of these but rather illustrate the technique
with simple union. For union, fix u: Set(X). We use induction with the wif

Y] =Fw: Set(X) - Ve: X -z ew—z€uVrev

If v is the empty set then we put w = u. Suppose that v has the form 2’ ® y.
Assume inductively ¢[y]. Let w’ be the guaranteed set. Then we put the
required set for v to be 2’ ® w’. B

Observe that for R and S total we have that weak equivalence implies equiv-
alence i.e.

Rx=S—R=S
By way of further unpacking these notions, also notice that:
Proposition 23 If RC S and R is total then so is S

Consequently, if one of the relations is total and they are weakly equivalent
then they are equivalent. But obviously not all relations are total. However,
given a relation we can always define one which is total.

Definition 24 Let
R[X1,., Xp]| = [x:1,y: 0]
Define the Totalisation of R as
RT[X1,.,Xn) 2 [x: 1,y : O | Domg[Xi, .., X,] — ¢]

The reader might wish to compare this idea with that of [28]. The two
notions are related but it will take us too far afield to say exactly how.

Example 25 Consider the following specification of the predecessor relation.

Pred = [#:N,y:N|z=y"]
The domain of this relation is given as

Dompreq = [x:N|3y:N'x:yﬂ

Since,

Ve:N-2>0«3Jy:N-z=y"
the totalisation is equivalent to the schema

Pred" £ [z:N,y:N|2z>0—>a=y"]

Observe that R and R” are equivalent just in case R is total. Moreover, any
relation can be refined to a total one.

Proposition 26 For any R, R” is total and R C RT

Proof. Clearly R”is total. Moreover its domain extends that of R but on
the domain of R it agrees with R.H
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3.5 Type Independence

This brings us to the second general property of schema. The alert reader will
have noticed that there is a difference between the basic relations of the theory
(i.e. €) and the present style of relation specification where new relation symbols
take type arguments. This leads to the following idea.

Definition 27 Let
R[Xl, ..,Xn] é [xl . Al, ey Lt Ak | w]

be any schema specification. We shall say that R is Type Independent just in
case R is equivalent to a schema of the form

S[Xl,..,Xn] é [111 : Al,..,l’k : Ak | 77]
where n contains no free type variables.
We then have:

Theorem 28 For any type independent specification we may conservatively add
a new relation symbol R! which satisfies

Vay: Ay - ... Vot A - Rl(xl, o Zk) = R[X1, .., X) (1, -y 2k)
Proof. We illustrate with the simple case.
VX -V AIX]-Vy : BIX]- RIX](z,y) < ¢[X, 2,y
Suppose that
VX Ve A[X]-Vy : BIX] - [X 2, y] <l y)

We then we compile away in a similar manner to the explicit case but where
the implicit relation is now interpreted as

R'(a,b)" = n(a,b)
This clearly satisfies the condition.ll

Proposition 29 Subset, Extensional Equivalence for sets, Union, Generalised
Union, Separation, Power and Map are type independent.

Proof. The first two we have met before and are immediate. We illustrate
the rest with union and power set. For union, we know that the predicate is
equivalent to

uCwAvCwAVrew-c€uVrev
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To show that the power set is type independent, we show that the predicate is
equivalent to

feyn(Vzex-Yuey z®@uey)AVzey -2Cx (*)
Assume x : Set(X), y : Set(Set(X)). First assume *. Then
Yw: Set(X) - wey—wCx
is automatic. So let w : Set(X) A w C x. We argue by induction with the wif
YwEwCr—wey

If w is the empty set then we are done by *. If w has the form z’ ® y’ then, by
induction, we may assume 1[y’] and we are done by *. Conversely, assume

Yw: Set(X) - wey—wCx

We have to show that ) € yAVz € x-Vu € y-2®u € y. The first conjunct is
immediate. Assume that z € x Au € y. Soz € x Au C z. Hence, z®u C w
andso z®ucy. A

Where we can establish type independence we shall use the same name for the
relation in its implicit manifestation. In particular, this enables us to circumvent
the irritating build-up of type information in the predicates of specifications
where the type information is already in the declaration. For example, we may
now specify power sets as

~ Pow[X]

u: Set(X),v: Set(Set(X))

Vo : Set(X) - x€ve—xzCu

It might be useful to develop some simple criteria for type independence.
Many of these arise in connection with schema calculus. But this will take us
too far afield. We content ourselves with the following idea.

Definition 30 Let
RIX1,.,Xn]| & [x: Ly: 0| ]
be any schema specification. We shall say that R is Closed if
VX)X, Vo -y, y] —y: O (CLO)

This is a natural condition on operations and simply demands that the type
of the input determines the type of the output.

18



Proposition 31 If R is type independent and satisfies closure then Domp and
Rang are type independent.

Proof. Let R be equivalent to
SIX] = [2: Ly : 0|
where 1 contains no free type variables. Then Domp is equivalent to
[x:1]|3y:0-n]
Given closure, this is equivalent to
[x:1]3Y-Fy:0[Y/X] n]

|

This completes our introduction to relation specification. There is much
more to say and more important examples to study but we have done enough
to move on to function specifications.

4 Function Specification

This is substantially different from the introduction of new relations: whereas
the latter enrich the class of atomic wif, new function symbols enrich the class of
individual terms and, in particular, new functions return values that can them-
selves be passed as arguments to other functions and relations. This will bring
us closer to the specification style of VDM ([6], [13]). Mathematically, this is a
more subtle extension and legitimacy will be a more delicate matter. However,
the addition of new functions is mathematically essential for the development
of a useful theory of Numbers, Sets and Cartesian Products.

4.1 Function Application

For simplicity of notation, we shall employ the binary case to illustrate matters.
However, as we shall see, given Cartesian products, one can easily extrapolate.
To begin with we require the following notion.

Definition 32 Let
RIX1,.. Xp)| 2 @:Ly: 0| ]
then we shall say that R is Functional iff
VX VX, Vo T-35y 09 (PF)
The following are all easy consequences of extensionality.
Proposition 33 Pair, Union, Genunion, Separation, Cartesian Product are

all functional.
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However, relation specifications which happen to be functional are still re-
lational in the sense that they are introduced as new relational symbols in the
theory. They have not been introduced as genuine function symbols which
can be applied to arguments in the standard way. This is the content of the
following.

Definition 34 Let
R[X1, .. Xn]| & [z: 1y : O]

be functional. We may then introduce a new function symbol into the language
via the following Function Schema

F[X17"7Xn] éPfun [xlay0|w] (FS)

The specification is intended to introduce a new (partial) function symbol
to the language and in particular, for any Ay, .., A, and ¢, F[Ay, .., A,](t) is a
new term. In the special case where R is total we shall write

F[le'-aXn] éFun [l’ : Ivy :0 | w]

The new function symbol does not occur in ¥, so at this point no recursion
is intended. We shall deal with this in a later publication. We shall also write
this specification in more graphic notation as

Pfun F[X3,.,X,]

]

x:1y:0

More generally, the specification of many place functions takes the form

F[X1,..,X,) épfun [17: I, ey 2 ? s I,y - O | )]
which is to be unpacked in terms of the product as the specification

F[X1,.., Xy) épfun 271 ®@..0 LI,y : O] Y[zt /x1?, .., 2/, y/y!]

FS is intended to go beyond S. More specifically, given PF, FS is to be
logically interpreted as the introduction of a new function symbol which satisfies
the following axioms.

VX . VX, -Va: I Domg[Xy, .., Xn](z) = F[X1, .., Xn](x): O (Fy)

VX . VX, Vo :1-Domg[Xy,..,X,](x) — ¥z, F[X1, .., X,](2)] (F2)
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Example 35 The following is a specification of the predecessor function
Pred £pjyn [v: Nyy: N |z =y"]
This introduces predecessor as a new function symbol which satisfies
Vz:N-x>0— Pred(z): N
Vo :N-z>0—pred(z)t =z

VDM uses the term Implementable for the PF requirement (or rather the
total version of it) but this seems inappropriate since it obviously does not
guarantee that the function is in any sense computable. Instead, we continue to
use the word Legitimate but now to describe a function specification for which
PF has been established.

Another way of looking at matters is instructive. Let

R[X1, ... Xy 2 [ Ly:O| ]
be functional. Then we may introduce application for R via the axioms
Vz : I- Domg[Xy,.., X,)(z) — Appr[X1, .., Xp](z) : O
Vo : I - Domg[Xy,.., Xn|(x) — Y[z, Appr[ X1, .., Xu](2)]

Of course, the two routes are formally identical and the only difference is the
explicit declaration that a function is being defined. Our uniform use of schema
notation for both, highlights the relationship and difference.

Example 36 The following is a functional specification of the Cartesian prod-
uct operator on sets. It is total but it is non-trivial to show it.

Fun  ®[X]

x?: Set(X),y?: Set(Y),z!: Set( X ®Y)

YVw: XQY - wezow ExAw €y

Example 37 The following is a specification of Application for maps

Pfun  Mapp[X,Y]

27:Set(X ®@Y),u? e X,w!:Y

Map[X,Y](2) A (u,w) € z
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The following will prove useful shortly.
Proposition 38 The following is a total function. It is also type independent

Fun  In[X]

u? @ X,v?: Set(Set(X)),z! : Set(Set(X))

Vrev-u®z €z
Vycez-dJrev-y=u®x

Proof. We first prove totality by induction on v with the wff
Jz: Set(Set(X)) Ve ev-u®x € 2

The case where v is empty we put z = {{u}}. So assume that v has the form
y ® w. By induction,

32 : Set(Set(X)) -V ew-u®x € 2/
The required set for y ® w is then (u ® y) ® 2z’. Hence
dz : Set(Set(X)) Ve ev-u®x € 2

Now given this set, the set required for the induction step is given by separation
as

{yez-Jxev-y=uda}

Functionality follows from the extensional nature of sets. Independence is
immediate.ll

We can now return to proof that the power-set constructor defines a total
function.

Proposition 39 Power is total, functional and type independent

Proof. Type independence has already been established. For the other
two, totality is the non-trivial part. We prove the result by induction where the
induction wif is

¢lz] =Ty : Set(Set(X)) - Vz:Set(X) - z€y—2Cux

If = () then the required set is (). If z = u®v then there are two cases. If v = ()
then the required set is {0, {u}}. Otherwise, let v be guaranteed by induction
i.e. the power set of v. Now put the power set of u ® v to be In(u,v") Uv' .l

The following provides a slightly different perspective on the introduction of
new functions and has a more logical origin.
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Lemma 40 Given PF, in the language with a new function symbol added, F;
and Fs are equivalent to the following

VXy .. oVX, Vo :I-Yy:0-Domg(z) = (F[X1,..,Xp](x) =y —¢) (F)

Proof. We illustrate with the case where n = 1. Assume F; and Fs.
Assume z : I[X] and y : O[X]. Assume Dompg(z). Assume first F[X](z) = .
Then by Fa, [z, F[X](x)]. By F1, F[X](z) : O[X]. By Ea, ¥[z,y]. On the other
hand, given [z, y], and, by Fa, [z, F[X](z)], functionality yields y = F[X](x).
Conversely, assume F. F; is immediate by definition of type membership in
CST and the equivalence given by F. Moreover, given Fq, F5 is immediate: put
y=F[X](z) in F.1

We can now easily see why PF is necessary. If we introduce a new function
symbol without it, the theory may be rendered inconsistent. To see this suppose
that = : I[X], y : O[X], ¥ : O[X] and

Yl y Al YT Ay # Y
i.e. it is not single-valued. Then by F,
FIX](z) =y AFIX](z) =y Ny #y/

So we cannot just specify a function via PS and stop; we must establish PF
to be sure that the theory remains consistent. Finally note that ours is a very
different approach to that adopted by VDM ([12]) which employs a 3-valued
logic to deal with partial functions.

We shall refer to the above style of function definition as Indirect since
functions are being characterized logically rather than by indicating how to
compute them. VDM uses the term Implicit but we have already adopted this
description for polymorphism. In fact, VDM does not support the definition
of indirect polymorphic functions in this very general form; it only allows such
functions to be Directly specified. Although this is actually a special case of the
Indirect style, it is important enough to consider separately.

Definition 41 Let 1,0 be any type terms and t any term, which may now
contain free type variables. We assume that Xy, ..., X;, include and exhaust all
the type variables of I,0,t. We may then introduce a new function symbol
Directly by the simple style of function specification

Pun  F[X1,.., X,]

z:1Ly: 0O

y = t[z]
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Notice that this will be a total function just in case
Ve : I-t[z]: O

Example 42 Pairing provides a simple example where there are no type vari-
ables in the predicate.

Pair[X] Zpun [27: X,y?: X, 2! : Set(X) | z=z®@y® (]

Direct function definitions are common in mathematics and computer sci-
ence. Indeed, much of the infrastructure of the theory will be constructed by
a judicious mix of both indirect and direct ones. Typically, one presents an
indirect definition followed by a sequence of direct ones supported by it.

4.2 Conservative Extensions

We now turn to showing that such additions are conservative. Suppose that we
can prove PF in CST. Let CSTF be the theory in which all the rules of CST
are extended to this new language together with the axioms F;, F5. Then we
have:

Theorem 43 CSTF is a conservative extension of CST
This follows from the following.

Lemma 44 There is a translation * from the language of CSTF to the language
of CST such that

1. If T Fogpe ¢ then T* Fesr ¢
2. If ¢ is a wif of CST then ¢* = ¢

Proof. We illustrate with the simple case where there is only one type
variable and the relation is total. We proceed as follows. First, using De-
Morgan’s laws we push all the negation’s through to atomic assertions. The
translation then proceeds as in the relational case for all the connectives and
quantifiers. Atomic assertions and their negation’s which do not contain F' are
compiled as before. This leaves us to deal with the atomic assertions and their
negation’s which do contain F. These are transformed using the following.

a[F[A)(z)/y]* = x € I[A] A Tu: O[A] - Y[A, z,u] A alu/y]

(—alF[A](z)(z)/y])* = x € I[A] A Ju: O[A] - Y[A, 2, u] A =alu/y]
Part (2) is immediate from the definition of the translation. Part (1) follows by
induction on the derivations. Almost all the axioms and rules are automatic as

they are in the relational case. This leaves us to check F1 and Fy. The former
unpacks to

Vo : I[A] - Ju: O[A] - Fv : O[A] - Y[A,z,u] ANu=v
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which is true. For the latter we establish

since, given totality, this immediately yields the result. We achieve this by
induction on ©. We may assume that v is in normal form. Suppose that 1 is
an atomic wif. Then F5 unpacks to the true:

Vo : I[X] - Ju: O[X] - ¢[X,z,u] — Ju: O[X] - ¢[X, z,u

The negative case is similar. Given that 1 is in normal form, all the induction
cases are easy to check. For example, by induction

Ve € I[X] (3u: O[X] n[X,z,u]) — n[X,z, F[X](z)]
Vo € I[X]- (3u: O[X] - 8[X, z,u]) — 8[X, z, F[X](z)]

Hence,

Ve € I[X] - (Fu: O[X] - n[X,z,u] VI[X,z,u]) = n[X,z, F1X|(x)] V§[X, z, F[X](x)]

This concludes part(2).H

Once again this is a crucial result for the process of specification. The con-
servativeness of specifications has not been sufficiently discussed in the literature
on specification languages.

4.3 Functions With Pre-Conditions

VDM allows the specification of functions with pre-conditions. In this section
we develop our style of functional specification to permit them. We first establish
the following.

Lemma 45 Let ¢,v be any wff and 1,0 any type terms. We assume that
X1, ..., Xy, include and exhaust all the type variables of I,0,¢p,3). Furthermore,
we assume that x,y are the free individual variables of 1 and x is the only free
individual variable of ¢. Suppose that

VX1 VX, Voo I gla] — 3y O - Yz, y] (PPF)

We may then legitimately introduce a new function symbol into the language
that satisfies

VXy .- VX, Vo I-¢lz] —» F[Xq,..,X,](z) : O (PREF,)
VX VX, Ve I ¢lx] — Ylx, F[ Xy, .., X,](2)] (PREF,)
Proof. Given PPF| the following schema satisfies the above

F[X17'~'7Xn] éPfun [1’ : Ivy :0 | ZZ)]
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Definition 46 We shall write
F[X17~'7Xn] éFun [1’ : I;ZJ : O | ¢aw]

for a specification that is to be logically unpacked as the introduction of a new
function symbol which satisfies PREF;, PREF,

The above shows that, where PPF is provable, such specifications are legit-
imate.

Example 47 The following provides a specification, with pre-conditions, of
Map application.

Fun  Mapp[X,Y]

27:8et(X ®@Y),u? e X,w!:Y

Map(z) ANu € Dom[X,Y](2);
(u,w) € z

This provides us with a very general mechanism for the legitimate introduc-
tion of new function symbols.

4.4 Type Independence

In parallel with relation specifications we may also drop the type variables in
function specifications but now we need not only functionality but also type
independence.

Theorem 48 If R is functional and type independent then we conservatively
introduce a new function symbol F' given aziomatically by

VX1 .. VX, Vo :I-Domp[Xy,..,X,](x) = F(z): O (IF)
VX . VX, Vo :I-Domg[Xy,.., X,](z) — [z, F(x)] (IF)

Proof. We mimic the style of proof for explicit polymorphism. We illustrate
with the following total case. We shall assume that i contains no free type
variables-given type independence we can always reduce matters to such wif.
We proceed as in the explicit case but translate

alF(z)/y]* =3X -x € I[X] A Ju: O[X] - Y[z, u] A afu/y]
(ma[F(z)(x)/y])" =3X -z € I|X] A Ju: O[X] - Ylz,u] A —afu/y]

It is easy to check that IF; is satisfied. For IF5, we establish that the following
is sound under the translation.

Vo € I[X]- (3u: O[X] - lz,u] — [z, F(z)))
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Given totality, this immediately yields the result. We achieve this by induction
on ©. The proof then parallels the original. l

Notice that as an upshot of this, we could take many of our relations as new
implicitly polymorphic functions. For example, Genunion would take the form
of a new function symbols which satisfies

Va : Set(Set(X)) - U(x) : Set(X)
Vo : Set(Set(X)) -Vy: X -yeU(z) - 3z€x-yez

A theory with Pair, Genunion, Powerset and separation is a typed version of
Zermelo set theory but with numbers forming a type and not a set. It is also a
sub-theory of both Z and VDM.

5 Further Work

There are many topics left to explore. The formulation and exploration of type
inference systems for specification will form the topic of the next paper. A
paper on set theoretic models of the theory will follow that. Other topics will
be considered in future publications.
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