THE FOUNDATIONS OF SPECIFICATION II

Raymond Turner
The University of Essex

February 13, 2004

Abstract
In the Foundations of Specification I, we developed a Specification theory (CST) to serve as a vehicle to explore the mathematical foundations of specification. A further aspect of this concerns type inference. In this paper we develop and explore a type inference system for CST and use it to illustrate the foundational issues which arise with such systems.

1 The Grammatical Role of Types.

Type membership is embedded in the actual theory CST and, consequently, types play an essentially mathematical role: they carve up the universe of objects into different kinds and our definitions and proofs are subject to these classifications. In this role they serve much the same function as they do in mathematics: they provide conceptual organization to the theory and its application. However, in computer science, types also have a grammatical function. This aspect is glossed over, or rather ignored, in CST. To see what this function amounts to consider the following simple wff.

(a) \(x : N \land \exists y : N \cdot x \in y \)
(b) \(x : N \land \exists y : \text{Set}(N) \cdot x = y \)
(c) \(x : N \land \exists y : N \cdot x \leq y \)

Despite the fact that in the language of CST they are all syntactically legitimate, there is a difference between them: the last is well-typed whereas the first two are not. Presumably, for them to be so, in the first \(y \) should be of type \(\text{Set}(N) \) and in the second of type \(N \).

To deal with this, specification languages come equipped with some associated type-checking tools. Most often such a tool is supplied by a hidden program ([10], [12], [5]). However, in some cases (e.g. [13], [2]) it takes the more explicit form of a type inference system; much like those of the Lambda calculus ([1]). However, these systems are rarely properly formulated as logical systems and, as a consequence, even their elementary properties are not documented. In this paper we develop and explore such a system for CST. The investigation should serve as a template for the formulation and exploration of such systems.
2 The System T

The objective of the type inference system is to provide rules which determine whether wff, and ultimately specifications, are well-typed. The system (T) has two has two grammatical judgements

\[t : T \]

\[\phi \text{ prop} \]

The first states that the term \(t \) has type \(T \) and the second that a wff is well-typed. We shall use \(\Theta \) for a judgement of either of these two forms. Judgements are made relative to a declaration \(c \) which is here understood as a (possibly empty) set of assumptions

\[x_1 : T_1, \ldots, x_m : T_m \]

where no individual variable is assigned more than one type. We write \(\alpha(c) \) for the set of declared individual variables of a declaration \(c \). We write \(c \subseteq c' \) to indicate that \(c' \) is a consistent super-set of \(c \) and, where \(V \) is a set of variables, we shall write \(c \upharpoonright V \) to denote \(c \) restricted to the variables in \(V \). We shall say that a context \(c \) covers an expression \(e \) if \(FV(e) \subseteq \alpha(c) \). Finally, we shall write \(c, x : T \) for the context \(c \) updated with the assignment \(x : T \) i.e. if \(x \notin \alpha(c) \) then \(x : T \) is added whereas, if \(x \in \alpha(c) \), its type is replaced by \(T \).

The system is determined by the following axioms and rules. We shall suppress the declaration context unless the rule effects it.

There are two structural rules: assumption and weakening.

\[\text{Ax} \quad x : T \vdash x : T \]

\[\text{W} \quad \frac{c \vdash \Theta \quad x \notin \alpha(c) \cup FV(\Theta)}{c, x : T \vdash \Theta} \]

For each built-in relation symbol, we associate a sequent that determines the conditions under which it is a proposition. The actual cases for the relations of our theory are given as follows; they reflect the above demands about membership, equality and the numerical ordering relation.

\[\text{A}_1 \quad x : T, y : \text{Set}(T) \vdash x \in y \text{ prop} \]

\[\text{A}_2 \quad x : T, y : T \vdash x = y \text{ prop} \]

\[\text{A}_3 \quad x : N, y : N \vdash x < y \text{ prop} \]

For each of the logical connectives there is a rule of formation that lays out the conditions under which complex wff are well-typed. Most of these are self evident but notice that the rules for the implication, conjunction and disjunction are identical. Similarly, the rules for universal and existential quantification are identical. This reflects the weaker judgement involved i.e. being a proposition versus truth.
\[
\begin{align*}
T_1 & \quad \Omega \text{ prop} \\
T_2 & \quad \phi \text{ prop} \\
T_3 & \quad \phi \text{ prop} \\
T_4 & \quad \phi \text{ prop} \\
T_5 & \quad \phi \text{ prop} \\
T_6 & \quad c, x : T \vdash \phi \text{ prop} \\
T_7 & \quad c, x : T \vdash \phi \text{ prop} \\
T_8 & \quad c \vdash \phi[X] \text{ prop} \\
T_9 & \quad c \vdash \phi[X] \text{ prop} \\
T_{10} & \quad c, x : N \vdash \phi \text{ prop} \\
T_{11} & \quad c, n : N \\
T_{12} & \quad c, s : \text{Set}(T) \\
T_{13} & \quad c, s : \text{Set}(T)
\end{align*}
\]

In the rules T_8 and T_9, $X \notin \text{FTV}(c)$. The rules for the bound quantifiers are given as follows. Notice that the premise requires that the wff be a proposition in the appropriate context.

\[
\begin{align*}
T_{10} & \quad c, x : N \vdash \phi \text{ prop} \\
T_{11} & \quad c, n : N \\
T_{12} & \quad c, x : T \vdash \phi \text{ prop} \\
T_{13} & \quad c, s : \text{Set}(T)
\end{align*}
\]

Almost finally, we provide the rules for the judgement $t : T$. These are quite obvious and should not cause one to pause since they are the closure conditions for our types. Indeed, we give them the same names as the corresponding axioms of CST.

\[
\begin{align*}
N_1 & \quad 0 : N \\
N_2 & \quad x : N \vdash x^+ : N \\
S_1 & \quad \emptyset : \text{Set}(X) \\
S_2 & \quad x, y : \text{Set}(X) \vdash x \oplus y : \text{Set}(X) \\
P_1 & \quad x, y : Y \vdash (x, y) : X \otimes Y \\
P_2 & \quad z : X \otimes Y \vdash \pi_1(z) : X \\
P_3 & \quad z : X \otimes Y \vdash \pi_2(z) : Y
\end{align*}
\]

Finally, since we have no \textit{logical} quantification rules we require substitution rules.

\[
\begin{align*}
\text{Sub} & \quad \frac{c, x : T \vdash \Theta}{c \vdash \Theta[t/x]} \\
\text{SUB} & \quad \frac{c[X] \vdash \Theta[X]}{c[T/X] \vdash \Theta[T/X]}
\end{align*}
\]

This completes the rules of the system T. It should be clear enough how we use it but we provide a simple example anyway.
Example 1 Given the axiom A_1 for membership and the conjunction rule (T_5) we have:

$$x : X, y : X, z : Set(X) \vdash x \in z \land y \in z \text{ prop}$$

By the axiom A_2 for equality:

$$x : X, y : X, u : X \vdash u = x \lor u = y$$

By the rule for set quantification

$$x : X, y : X, z : Set(X) \vdash \forall u \in z \cdot u = x \lor u = y \text{ prop}$$

Finally, by the conjunction rule

$$x : X, y : X, z : Set(X) \vdash x \in z \land y \in z \land \forall u \in z \cdot u = x \lor u = y \text{ prop}$$

2.1 Properties of T

There are some immediate properties of the system which parallel the standard results for any well behaved system of type inference. The following parallel the results for the type systems for the lambda calculus [1].

Proposition 2 In the system T

1. If $c \vdash \Theta$ then c covers Θ

2. If $c \vdash \Theta$ then $c \vdash FV(\Theta) \vdash \Theta$

3. If $c \vdash \Theta$ and $c \subseteq c'$ then $c' \vdash \Theta$

Proof. All are by induction on the derivations. We illustrate with some characteristic cases. Consider part (1). The structural rules are automatic: given that c covers the premise it covers the conclusion. Next consider the type quantifier rule.

$$\frac{c, x : T \vdash \phi \text{ prop}}{c \vdash \forall x : T \cdot \phi \text{ prop}}$$

If $c, x : T$ covers the premise then c covers the conclusion. For part (2) we again illustrate with the quantifier rule. By induction,

$$(c, x : T) \vdash FV(\phi) \vdash \phi \text{ prop}.\,$$

Hence, regardless of whether $x \in FV(\phi)$, we have:

$$c \vdash FV(\forall x : T \cdot \phi), x : T \vdash \phi \text{ prop}$$

Hence, by the rule,

$$c \vdash FV(\forall x : T \cdot \phi) \vdash \forall x : T \cdot \phi \text{ prop}$$
For part (3) we again illustrate with the quantifier rule. Suppose
\[c \vdash \forall x : T \cdot \phi \text{ prop} \]
follows from \(c, x : T \vdash \phi \text{ prop} \). By induction, for \(c' \supseteq c, \ c', x : T \vdash \phi \text{ prop} \).
Hence, \(c' \vdash \forall x : T \cdot \phi \text{ prop} \). ■

The next is the standard generation lemma that provides the means of automatically checking that an expression is well-typed by using the system backwards.

Proposition 3 (Generation)

1. If \(c \vdash t_1 = t_2 \text{ prop} \) then \(c \vdash t_1 : T \) for some type \(T \). Moreover, \(c \vdash t_1 : T \) iff \(c \vdash t_2 : T \)
2. If \(c \vdash t \in s \text{ prop} \) then \(c \vdash t : T \) and \(c \vdash s : \text{Set}(T) \) for some \(T \)
3. If \(c \vdash t < s \text{ prop} \) then \(c \vdash t : N \) and \(c \vdash s : N \)
4. If \(c \vdash \neg \phi \text{ prop} \) then \(c \vdash \phi \text{ prop} \)
5. If \(c \vdash \phi \circ \psi \text{ prop} \) then \(c \vdash \phi \text{ prop} \) and \(c \vdash \psi \text{ prop} \) (\(\circ = \lor, \land, \to \))
6. If \(c \vdash Qx : T \cdot \phi \text{ prop} \) then \(c, x : T \vdash \phi \text{ prop} \) (\(Q = \exists, \forall \))
7. If \(c \vdash Qx \in t \cdot \phi \text{ prop} \) then \(c \vdash t : N \) and \(x : N \vdash \phi \text{ prop} \) (\(Q = \exists, \forall \))
8. If \(c \vdash Qx \in t \cdot \phi \text{ prop} \) then \(c \vdash t : \text{Set}(T) \) for some \(T \) and \(x : T \vdash \phi \text{ prop} \)
 (\(Q = \exists, \forall \))
9. If \(c \vdash QX \cdot \phi \text{ prop} \) then \(c \vdash \phi[X] \text{ prop} \) (\(Q = \exists, \forall \))
10. If \(c \vdash t^+ : N \) then \(c \vdash t : N \)
11. If \(c \vdash (t_1, t_2) : T_1 \otimes T_2 \) then \(c \vdash t_1 : T_1 \) and \(c \vdash t_2 : T_2 \)
12. If \(c \vdash \pi_1(t) : T_1 \) then \(c \vdash t : T_1 \otimes T_2 \) for some \(T_2 \)
13. If \(c \vdash a \circ b : \text{Set}(T) \) then \(c \vdash a : T \) and \(c \vdash b : \text{Set}(T) \) for some \(T \)

Proof. By induction on the derivations. Each of the antecedents of the above conditionals can only be result of a rule application whose premises are the consequents of the corresponding conditional or the result of a substitution or the application of a structural rule. The first group of cases are immediate. For the term substitution rules we illustrate with the first and the following instance. Suppose that
\[c \vdash a[t] = b[t] \text{ prop} \]
follows from Sub. The premises yield
\[c, x : T \vdash a[x] = b[x] \text{ prop} \quad c \vdash t : T \]
Then by induction,

\[c, x : T \vdash a[x] : S \]

for some type \(S \). We now employ the substitution rule itself. The structural rules are easy to verify for all the cases. The following derivation involving the negation instance of the first rule, illustrates the argument. Suppose that

\[c, x : T \vdash \neg \phi \text{ prop} \]

follows by the rule

\[\frac{c \vdash \neg \phi \text{ prop}}{c, x : T \vdash \neg \phi \text{ prop}} \]

Then by induction \(c \vdash \phi \text{ prop} \) and so by the structural rule itself \(c, x : T \vdash \phi \text{ prop} \). □

We also have the following admissible rule.

Proposition 4 (Back Substitution)

1. If \(c \vdash \Theta[t/x] \) then \(c \vdash t : T \) and \(c, x : T \vdash \Theta[x] \) for some type \(T \)
2. If \(c \vdash \Theta[t/x] \) and \(c \vdash t : T \) then \(c, x : T \vdash \Theta[x] \)

Proof. Both parts are by simultaneous induction on the derivations. We consider the first. We illustrate with some significant cases. Suppose that

\[c \vdash a[t/x] \in b[t/x] \text{ prop} \]

Then by the generation lemma, for some \(A \),

\[c \vdash a[t/x] : A \text{ and } c \vdash b[t/x] : Set(A) \]

By induction, for some type \(T \), we have:

\[c, x : T \vdash a[x] : A \text{ and } c, x : T \vdash b[x] : Set(A) \text{ and } c \vdash t : T \]

so we are finished by the membership axiom. Next assume that

\[c \vdash (\phi \land \psi)[t/x] \text{ prop} \]

then

\[c \vdash \phi[t/x] \text{ prop and } c \vdash \psi[t/x] \text{ prop} \]

Hence, by induction,

\[c, x : T \vdash \phi \text{ prop and } c, x : T \vdash \psi \text{ prop and } c \vdash t : T \]

and we are finished by the conjunction rule. Now consider part two. We again illustrate with the following case. Suppose that

\[c \vdash a[t/x] \in b[t/x] \text{ prop and } c \vdash t : T \]
Then by the generation lemma, for some A,

$$c \vdash a[t/x] : A \text{ and } c \vdash b[t/x] : Set(A)$$

By induction, we have:

$$c, x : T \vdash a[x] : A \text{ and } c, x : T \vdash b[x] : Set(A)$$

so we are finished by the membership axiom. ■

2.2 CST and T

The following informs us that any judgement of the form $t : T$ that is provable in the type system, is also provable in the logic. This is the first step in charting the relationship between the two systems.

Proposition 5 If $c \vdash_T t : T$ then $c \vdash_{CST} t : T$

Proof. By induction on the derivations in T. The structural rules are clear. But then so are the main body of rules with these conclusions: they follow from the corresponding logical rules. The substitution rules also follow directly from the rules of the logic.■

The converse is not provable. This marks a difference between the grammatical and logical roles of types. Logically, the type membership assertion forms part of the logic of the system and, in particular, in the logical theory type membership is not decidable since the logic is not. However, it is in the type system. These two systems capture the exact difference between these two roles and pinpoints the fact that the computational properties of types emerges from the theory i.e. T versus CST.

3 Specifications

The principal application of T is to type-check specifications. To facilitate this we must introduce a rule for schema specifications that allows wff involving the new relation or function symbol, to be checked.

3.1 Relations

Relation Specifications are treated in a similar fashion to the other atomic wff but now added as a rule with the predicate of the specification supplying the premise. Given a specification

$$R[X_1, \ldots, X_m] \triangleq [x_1 : T_1, \ldots, x_n : T_n \mid \phi]$$

we extend the system with the rule

$$\frac{x_1 : T_1, \ldots, x_n : T_n \vdash \phi[X_1, \ldots, X_m, x_1, \ldots, x_n] \text{ prop}}{x_1 : T_1, \ldots, x_n : T_n \vdash R[X_1, \ldots, X_m](x_1, \ldots, x_n) \text{ prop}} \quad \text{(ST)}$$

Call this system $T + ST$. It is then easy to show, by induction on the derivations, that:

7
Proposition 6 If \(c \vdash_{\mathbf{T} + \mathbf{ST}} \Theta \) then \(c \vdash \Theta^* \) where \(\Theta^* \) is obtained from \(\Theta \) by replacing each occurrence of \(R[X_1, \ldots, X_m](x_1, \ldots, x_n) \) by \(\phi[x_1, \ldots, x_m, x_1, \ldots, x_n] \).

So, in the obvious sense, this addition to the type inference system is conservative. We can also easily establish the following.

Proposition 7 The following rules are derivable

1. \(x : X, y : X, z : \text{Set}(X) \vdash \text{Pair}_X(x, y, z) \text{ prop} \)
2. \(x : \text{Set}(X), y : \text{Set}(X), z : \text{Set}(X) \vdash \text{Union}_X(x, y, z) \text{ prop} \)
3. \(x : \text{Set}(\text{Set}(X)), y : \text{Set}(X) \vdash \text{Genunion}_X(x, y) \text{ prop} \)
4. \(x : \text{Set}(X), y : \text{Set}(\text{Set}(X)) \vdash \text{Pow}_X(x, y) \text{ prop} \)
5. \(\frac{y : \text{Set}(X) \vdash \phi[y] \text{ prop}}{x : \text{Set}(X) \vdash \{y \in x \cdot \phi\} : \text{Set}(X)} \)

Proof. We illustrate with second. According to the new rule for the specification it is sufficient to show that

\[
 x : \text{Set}(X), y : \text{Set}(X), z : \text{Set}(X) \vdash \forall u : X \cdot u \in x \Rightarrow u \in y \forall u \in z \text{ prop}
\]

and this is straightforward.■

Much the same is true if we wish to type-check relations which are type independent. Here we add the rule

\[
\frac{x_1 : T_1, \ldots, x_n : T_n \vdash \phi[x_1, \ldots, x_n] \text{ prop}}{x_1 : T_1, \ldots, x_n : T_n \vdash R(x_1, \ldots, x_n) \text{ prop}}
\]

The conservative extension result follows the same route as the general case.

3.2 Functions

The situation with the addition of new function symbols is similar to the basic operations of the theory except that we need to ensure they are well-typed. Suppose that we have legitimately introduced a new function symbol via the specification

\[
F[X] \overset{\text{def}}{=} \text{fun}[x : I[X], y : O[X] \mid \psi[X, x, y]]
\]

Then we introduce a new type inference rule

\[
\frac{x : I[X] \vdash \psi[X, x, y] \text{ prop}}{x : I[X] \vdash F[X](x) : O[X] \text{ prop}} \text{ FT}
\]

Call this system \(\mathbf{T} + \mathbf{FT} \). Once more this addition is conservative. In the following * is the translation from the system with a new function symbol to the system without (see [15])

8
Proposition 8 If \(c \vdash_{\text{FT}_T} \Theta \) then \(c \vdash \Theta^* \) where \(\Theta^* \) is obtained from \(\Theta \) by replacing every wff by its translation.

Proof. We illustrate with the total case; the partial one causes no additional complications. We proceed as in the original proof by putting all wff in normal form and then replace each occurrence of \(F[X](x) : O[X] \) by \(x : I[X] \land \exists y : O[X] \cdot \psi[X, x, y] \). We have then only to show that the following is derivable

\[
\begin{align*}
x : I[X], y : O[X] & \vdash \psi[X, x, y] \text{ prop} \\
x : I[X] & \vdash \exists y : O[X] \cdot \psi[X, x, y] \text{ prop}
\end{align*}
\]

which is clear.\(\blacksquare \)

Observe that, given the definition of type membership, by the generation lemma, we have that the following is derivable.

\[
\text{If } c \vdash t : T \text{ prop then } c \vdash t : T
\]

Hence, given FT, the following is admissible

\[
\frac{x : I[X], y : O[X] \vdash \psi[X, x, y] \text{ prop}}{x : I[X] \vdash \exists y : O[X] \cdot \psi[X, x, y] \text{ prop}}
\]

It follows that the following are derivable

\[
\begin{align*}
a : \text{Set}(\text{Set}(X)) & \quad \frac{\frac{a : \text{Set}(X)}}{\cup a : \text{Set}(X)} \\
\quad & \quad \frac{\text{Set}(a) : \text{Set}(\text{Set}(X))}
\end{align*}
\]

Finally, we may drop the type variables on the function symbol when it has been shown to be type independent. For example, we then have the following derived rules for Generalised union and power set.

\[
\begin{align*}
a : \text{Set}(\text{Set}(X)) & \quad \frac{\frac{a : \text{Set}(X)}}{\cup a : \text{Set}(X)} \\
\quad & \quad \frac{\text{Set}(a) : \text{Set}(\text{Set}(X))}
\end{align*}
\]

4 A Strongly Typed Theory

Is CST a typed theory? Certainly it has types and objects in the theory have them. However, we have observed that not every wff provable in CST is well-typed. This follows from our preliminary discussion on the relationship between T and CST. Hence, CST is not a typed theory in the traditional sense of Higher order logic (HOL) where only well-typed wff are provable. In this section we develop a version of CST (CST\(_T\)) that is typed in this more traditional sense. This will enable us to fully explore the relationship between CST and T. In particular, we shall show that CST is a conservative extension of CST\(_T\) - with respect to well-typed expressions. This will throw some mathematical light on the rather curious and somewhat murky relationship between type and logical inference that has emerged from the development of specification languages.
4.1 The Theory CST$_T$

This is a marriage of CST and T. Consequently, the theory now has three judgements which combine those of CST and T.

\[t : T \]
\[\phi \text{ prop} \]
\[\phi \]

We use Θ for a judgment of either kind. In particular, and this is important, we now drop the definition

\[t : T \triangleq \exists x : T \cdot x = t \]

Type membership is now taken as a primitive judgment in all the axioms and rules i.e. it is no longer to be interpreted as the above wff.

Such judgements are made relative to a context Γ that now contains wff and type assignments of the form \(x : T \). We shall write

\[\Gamma \vdash_{\text{CST}_T} \Theta \]

if the sequent follows from the following rules - where we drop the subscript. We shall write \(c_T \) for the subset of Γ which consists of its set of type assignments.

We begin with the structural rules which now take the following form. These subsume the structural rules of CST and T.

\[\text{Ax}_1 \quad x : T \vdash x : T \]
\[\text{Ax}_2 \quad \Gamma \vdash \phi \text{ prop} \]
\[\quad \Gamma, \phi \vdash \phi \]
\[\text{W}_1 \quad \Gamma, x : T \vdash \Theta \]
\[\quad \Gamma, x : T \vdash \Theta \]
\[\text{W}_2 \quad \Gamma, x : T \vdash \Theta \]
\[\quad \Gamma, \phi \vdash \Theta \]
\[\Gamma, \phi \vdash \Theta \]
\[\text{W}_2 \quad \Gamma, \phi \vdash \Theta \]
\[\Gamma, \phi \vdash \Theta \]

where \(x \notin \text{FV}(\Gamma) \cup \text{FV}(\Theta) \)

The equality axioms/rules remains intact except for the need to include a premise in E$_2$.

\[E_1 \quad \forall x : X \cdot x = x \]
\[E_2 \quad \Gamma, x : X \vdash \phi[x] \text{ prop} \]
\[\Gamma \vdash \forall x : X \cdot \forall y : X \cdot x = y \rightarrow (\phi[x] \rightarrow \phi[y]) \]

The propositional logical rules are modified to preserve propositions from premises to conclusions. However, only the following rules need to be modified.

\[L_2 \quad \Gamma \vdash \Omega \]
\[\Gamma \vdash \phi \text{ prop} \]
\[\Gamma \vdash \phi \]
\[L_8 \quad \Gamma \vdash \phi \]
\[\Gamma \vdash \psi \text{ prop} \]
\[\Gamma \vdash \phi \lor \psi \]
\[L_9 \quad \Gamma \vdash \psi \]
\[\Gamma \vdash \phi \text{ prop} \]
\[\Gamma \vdash \phi \lor \psi \]
The axioms and rules for the types remain exactly as before except for the following. We must state the induction axioms as rules to get preservation of being a proposition from premises to conclusion.

\[\frac{\phi[0] \land \forall x : N \cdot \phi[x] \rightarrow \phi[x^+]}{\forall x : N \cdot \phi[x]} \]

\[\frac{\phi[0] \land \forall x : X \cdot \forall y : \text{Set}(X) \cdot \phi[y] \rightarrow \phi[x @ y]}{\forall y : \text{Set}(X) \cdot \phi[y]} \]

Almost finally, we modify the bounded quantifier rules to include type inference premises.

\[\frac{x : N \vdash \phi \text{ Prop}}{\forall y : N \cdot \forall x < y \cdot \phi \leftrightarrow \forall x : N \cdot x < y \rightarrow \phi} \]

\[\frac{x : N \vdash \phi \text{ Prop}}{\forall y : N \cdot \exists x < y \cdot \phi \leftrightarrow \exists x : N \cdot x < y \land \phi} \]

\[\frac{x : X \vdash \phi \text{ Prop}}{\forall y : \text{Set}(X) \cdot \forall x \in y \cdot \phi \leftrightarrow \forall x : X \cdot x \in y \rightarrow \phi} \]

\[\frac{x : X \vdash \phi \text{ Prop}}{\forall y : \text{Set}(X) \cdot \exists x \in y \cdot \phi \leftrightarrow \exists x : X \cdot x \in y \land \phi} \]

Alternatively, these could also be stated as pairs of rules without the need to include the type premises. Finally we admit the substitution rules

\[\frac{\Gamma, x : T \vdash \Theta}{\Gamma \vdash \Theta[t/x]} \]

\[\frac{\Gamma \vdash t : T}{\Gamma[\Theta] \vdash \Theta[t]} \]

\[\frac{\Gamma[\Theta] \vdash \Theta[\Theta]}{\Gamma[T] \vdash \Theta[T]} \]

Of course we do not need these for the purely logical cases since they are already derivable form the quantifier rules. This completes the statement of the theory \(\text{CST}_T \).

4.2 Strong Typing

It is obviously more cumbersome to use \(\text{CST}_T \) than \(\text{CST} \) since a great deal of type inference has to be done in the process of carrying out the proofs. Although this can all be mechanized, it is harder to use by hand. However, \(\text{CST}_T \) does have the following very pleasant property that is not shared by \(\text{CST} \).

Theorem 9 (Strong Typing)

1. If \(\Gamma \vdash \text{CST}_T \psi \) then for each \(\phi \) in \(\Gamma \cup \{ \psi \}, \Theta \vdash \phi \) prop
2. If \(\Gamma \vdash \text{CST}_T t : T \) then \(\Theta \vdash t : T \)
3. If \(\Gamma \vdash \text{CST}_T \phi \) prop then \(\Theta \vdash \phi \) prop

Proof. By induction on the structure of derivations. For part (1) we first consider the inference rules. Most of the rules are easy to check; we provide
some illustrations. Consider first the implication introduction rule. Consider
the premise

$$\Gamma, \phi \vdash \psi$$

By part (1) and induction, $c_T \vdash_T \phi \prop$ and $c_T \vdash_T \psi \prop$. This yields
$c_T \vdash_T \phi \rightarrow \psi \prop$. Next consider disjunction introduction. The premise is

$$\Gamma \vdash \phi \quad c_T \vdash_T \psi \prop.$$

By induction, $c_T \vdash_T \phi \prop$. The result now follows by the grammar rule for
disjunction. Next consider existential quantification introduction.

$$\frac{\Gamma \vdash a : T \quad \Gamma \vdash \phi[a/x]}{\Gamma \vdash \exists x : T \cdot \phi}$$

By induction

$$c_T \vdash_T a : T \quad c_T \vdash_T \phi[a/x] \prop$$

By the properties of the type system, we may assume that $x \notin \alpha(c_T)$. Hence,
by the back substitution lemma:

$$c_T, x : T \vdash_T \phi[x] \prop$$

We are then done by the existential formation rule. The axioms and rules for
the types are equally easy to check. In particular the axioms are well-typed by
their declaration contexts. The only other concern is with the structural rules
which are easy to check. This completes part (1). Parts (2) and (3) are by
structural induction and are easy to check.\[\square\]

Part (1) ensures that only propositions are provable and guarantees that if a
propositional term is used in an assumption, the assignment context will guar-
anteed that it is provably a proposition. Notice that, via an obvious induction,
the theorem also yields that all derivations are well typed - i.e. all formula in
the derivation will be. Part (2) is exactly the property which distinguished the
classifier and grammatical roles of types in the theory CST.

5 CST,\text{T} and CST\text{\text{T}}

We shall show that, with respect to well-typed expressions, CST is a con-
servative extension of CST\text{T}. This is achieved by translating CST into CST\text{T}
relative to a context c in such a way that each translated expression is, relative
to c, well-typed.

The types are translated to themselves: we have only to translate the wff
and terms. We deal first with the wff. The tricky clauses are those for the
atomic wff and here we translate the ill-typed cases as false.

\[
(t \in s)^c = \begin{cases}
 t^c \in s^c & \text{if } c \vdash_T t^c : T \text{ and } c \vdash_T s^c : \text{Set}(T) \\
 \Omega & \text{otherwise}
\end{cases}
\]

\[
(t = s)^c = \begin{cases}
 t^c = s^c & \text{if } c \vdash_T t^c : T \text{ and } c \vdash_T s^c : T \text{ for some } T \\
 \Omega & \text{otherwise}
\end{cases}
\]

\[
(t < s)^c = \begin{cases}
 t^c < s^c & \text{if } c \vdash_T t^c : N \text{ and } c \vdash_T s^c : N \\
 \Omega & \text{otherwise}
\end{cases}
\]

For the main connectives and quantifiers, matters are straightforward.

\[
(\phi \circ \psi)^c = \phi^c \circ \psi^c \circ \text{any connective}
\]

\[
(Qx : T \cdot \phi)^c = Qx : T \cdot \phi^c : T \quad Q = \exists, \forall
\]

\[
(QX \cdot \phi)^c = QX \cdot \phi^c : T \quad Q = \exists, \forall
\]

The translation of the bounded quantifiers follows a similar pattern where we have to take care of the bad cases explicitly.

\[
(\exists x < b \cdot \phi)^c = \begin{cases}
 \exists x < b \cdot \phi^c : T & \text{if } c \vdash_T b^c : N \\
 \Omega & \text{otherwise}
\end{cases}
\]

\[
(\forall x < b \cdot \phi)^c = \begin{cases}
 \forall x < b \cdot \phi^c : T & \text{if } c \vdash_T b^c : N \\
 \Omega & \text{otherwise}
\end{cases}
\]

\[
(\exists x \in b \cdot \phi)^c = \begin{cases}
 \exists x \in b \cdot \phi^c : T & \text{if } c \vdash_T b^c : \text{Set}(T) \\
 \Omega & \text{otherwise}
\end{cases}
\]

\[
(\forall x \in b \cdot \phi)^c = \begin{cases}
 \forall x \in b \cdot \phi^c : T & \text{if } c \vdash_T b^c : \text{Set}(T) \\
 \Omega & \text{otherwise}
\end{cases}
\]

Finally, for the translation of the terms we have only to be careful about the cases where the types are inappropriate and then assign the result some arbitrary value.

\[
0^c = 0
\]

\[
(t^+)^c = \begin{cases}
 (t^c)^+ & \text{if } c \vdash_T t^c : N \\
 0 & \text{otherwise}
\end{cases}
\]

\[
(t_1, t_2)^c = (t_1^c, t_2^c)
\]

\[
\pi_i(t)^c = \begin{cases}
 \pi_i(t^c) & \text{if } c \vdash_T t^c : A \otimes B \text{ for some } A, B \\
 0 & \text{otherwise}
\end{cases}
\]

\[
\Phi^c = \Phi
\]

\[
(a \otimes b)^c = \begin{cases}
 a^c \otimes b^c & \text{if } c \vdash_T a^c : T \text{ and } c \vdash_T b^c : \text{Set}(T) \\
 \emptyset & \text{otherwise}
\end{cases}
\]

This completes the translation.
Lemma 10 (Substitution Lemma)

1. If $c \vdash T^c : T$ then $\phi[t/x]^c = \phi^{c;x:T}[t^c/x]$
2. If $c \vdash T^c : T$ then $s[t/x]^c = s^{c;x:T}[t^c/x]$

Proof. By simultaneous induction on the terms and wff. ■

Our first significant result shows that the translation always yields well-typed expressions.

Proposition 11 (Typing) Let c be any context

1. If c covers t/ϕ and $c \subseteq c$ then $t^c = t^c$ and $\phi^c = \phi^c$
2. If c covers ϕ then $c \vdash_T \phi^c$ prop
3. If c covers t then $c \vdash_T t^c : T$ for some T
4. If $c \vdash_T \phi^c$ prop then $\phi = \phi^c$

Proof. (1) is by induction on the terms and wff. For parts 2 and 3, we employ a simultaneous induction on the syntax of terms and wff. For example, consider universal quantification. Assume that c covers $\forall x : T \cdot \phi$. We may assume that $\text{FV}(\forall x : T \cdot \phi)$ are exactly the variables of c. By induction,

$$c, x : T \vdash_T \phi^{c;x:T} \text{ prop}$$

Hence by the type rule for quantifiers

$$c \vdash_T \forall x : T \cdot \phi^{c;x:T} \text{ prop}$$

Part (4) is also by induction but we only need inspection of the clauses. ■

We can now prove the main theorem which ensures the translation preserves provability in the two systems.

Theorem 12 (Soundness) If

$$\Gamma \vdash_{\text{CST}} \phi$$

and c covers Γ, ϕ then

$$\Gamma^c, c \vdash_{\text{CST}^c} \phi^c$$

where Γ^c is the translated context.

Proof. By induction on the derivations in CST. Each of the axioms is easy to verify. We illustrate the logical rules with disjunction introduction, implication elimination and the universal quantification introduction rule. For the first assume c covers $\phi \lor \psi$. Then by induction

$$\Gamma^c, c \vdash \phi^c$$
Hence, since $c \vdash \psi^c$ prop, we are finished by the CST_T disjunction rule. For implication elimination,

\[
\frac{\Gamma \vdash \phi \quad \Gamma \vdash \phi \to \psi}{\Gamma \vdash \psi}
\]

Let c cover the conclusion and expand it to e to cover ϕ as follows: for each $y \in FV(\Gamma \cup \{\phi\}) - FV(\psi)$ we add $y : N$ to c. Then we have by induction

\[
\Gamma^e, e \vdash \phi^e \quad \Gamma^e, e \vdash \phi^e \to \psi^e
\]

Hence by the rules of CST_T,

\[
\Gamma^e, e \vdash \psi^e
\]

Now by the lemma on the properties of the translation,

\[
\Gamma^e, e \vdash \psi^e
\]

For simplicity, suppose that y is the only variable in $FV(\Gamma \cup \{\phi\}) - FV(\psi)$. We then have:

\[
\Gamma^e, e \vdash \forall y : N \cdot \psi^e
\]

Since $y \notin FV(\psi)$, this yields

\[
\Gamma^e, e \vdash \psi^e
\]

as required. For the universal introduction rule i.e.

\[
\frac{\Gamma, x : T \vdash \phi}{\Gamma \vdash \forall x : T \cdot \phi}
\]

We may assume c exactly covers the conclusion. By induction, the premise follows. Hence, by the quantifier rule in CST_T:

\[
\frac{\Gamma^e, x : T \vdash \phi^{c \cdot x : T}}{\Gamma^e \vdash (\forall x : T \cdot \phi)^c}
\]

The introduction rule uses the substitution lemma for the translation.

Putting this together with part 4 of the previous proposition, we have:

Theorem 13 CST is a conservative extension of CST_T relative to well-typed uff.

CST_T is conceptually prior in that it is a typed logic in the traditional and natural sense. It thus provides conceptual underpinning for the half-way house instantiated in CST. Consequently, we are justified in using our original cavalier and practical syntax together with the post-hoc type inference system. It all comes out in the wash. This is advantageous since we really have enough to do constructing the proofs without having to worry about type-checking.
6 Further Work

CST is a core theory that provides a basic framework for exploring some fundamental issues about specification. However, there are many such issues we have still to explore. Recursive specifications and the impact of computability considerations are two such. Set theoretic models of CST need to be developed and explored. In addition, we need to study the inclusion of new type constructors such as recursive types, sub-types, function space types and objects/classes etc. These will be considered in future publications.

References

