
1

Data Extraction from Web Data Sources

Jerome Robinson
Computer Science Department, University of Essex, Colchester, U.K.

robij@essex.ac.uk

Abstract

This paper provides an explanation of the basic
data structures used in a new page analysis technique
to create wrappers (data extractors) for the result
pages produced by web sites in response to user qeries
via web page forms. The key structure called a tpGrid
is a representation of the web page, which is easier to
analyse than the raw html code. The analysis looks for
repetition patterns of sets of tagSets, which are defined
in the paper.

1. Introduction

A web data source in the context of the current paper is
a database backed web server which accepts queries in
web page forms and returns the set of result items for
that query in a web page. We therefore refer to query

extraction from query result web pages, but the method
of wrapper production and data extraction also works

with any web page that displays one or more sets of
items that form collection objects in the web page. (A
collection is a set of items with similar appearance on
screen).
     The key component of a wrapper for a web data
source is the Extractor program. It uses some
description of web page format in order to identify and
extract data items from the html code representing the
web page. Wrapper production therefore requires a
page analysis phase, before the extractor can be used
for the first time. The purpose of page analysis is to
create a suitable page descriptor for the wrapper to use
repeatedly to extract data from future pages from that
web site.
     An HTML document contains only tags and text
items. (Embedded program scripts are not part of the
html code, and are removed before page structure
analysis begins). A web page can therefore be
modelled as the numbered sequence of

tagString/textString pairs in its html code, where a
textString is anything that is not inside angle brackets,

<HTML><HEAD><TITLE> Spa Guide </TITLE></HEAD> (S0)

<BODY> <H1> Nunohiki Spa </H1> (S1)

 <EM> Location </EM> (S2)

   <P> Kita-Saku district, Nagano pref. Japan </P> ( S3)

   <P> TEL: 0268—67—3467 </P> (S4)

 <EM> Open Hours </EM> (S5)

   <P> From 10.15 a.m to 11.30 p.m. </P> (S6)

 <EM> Overview </EM> (S7)

   <P> This facility was established in 1987, and ...   <BR>  (S8)

 The hot spring is located at the front of ... (S9)

     <B> “SAWARA”, </B> (S10)

     on the basement floor ... <BR> (S11)

     The effects of this hot spring are ... </P> (S12)

</BODY></HTML>

Figure 1. An HTML document, showing textStrings and tagStrings



2

so it is not a tag. A tagString is the sequence of tags
that precede any textString. For example, the html
document in Figure 1 shows each textString on a
separate line. The lines have been labelled, in Figure 1,
with the numbers of the textStrings S0, S1, S2, etc., in
order to explain what is meant by a numbered sequence
of text items in each html page.

The tagString preceding textString S0 is
<HTML><HEAD><TITLE>. The tagString preceding
textString S1 is </TITLE></HEAD><BODY><H1> . Each
tagString/textString pair has the same number as the
textString it contains. The numbered sequence of
tagString/textString pairs for the whole HTML
document in Figure 1 is shown in Figure 2.

    All textStrings are visible on the Web Page
represented by an HTML document. So a search for
repetition in text items in an html document is a
suitable way to start the search for collection objects in
a web page. Figure 1 shows a document that contains
only one record, but the real web page listing spas has
a similar record for each of a number of different spas.
Each record is displayed on-screen in the same format
as the other records, so that  the web page structure is
understandable to a person reading the page. The
format is produced by tags in the html document, and
we can discover repeating patterns in the sequence of
tagStrings.

   The task of searching for repetitive patterns is
simplified by observing that within the local context of
tagStrings, the order of tags is not important. This is an
experimental observation. So each tagString is
represented by a tagSet. A tagSet is a set of tag names
with a count value for each name that occurs in the
corresponding tagString.

For example: The tagStrings shown in Figure 2 are
too simple to illustrate the idea of tagSets, so a typical
tagString from a real web page is now used:

</td></tr></table><table valign="top" width="757"
border="0" cellspacing="0" cellpadding="0"><tr><td
valign="top" width="146"><table border="0"
cellspacing="0" cellpadding="0" width="146"><tr><td
width="146"><img src="/images/spacer.gif" width=1
height=10 border="0" alt="></td></tr><tr><td
align="right" width="146" valign="middle"><a
class=header href="http://www.bl.uk/index.shtml">

This tagString precedes a textString in the html
document. Ignoring tag attributes (inside the angle
brackets) shows that it contains the following tag
names:

</td></tr></table><table><tr><td><table><tr><td>

<img></td></tr><tr><td><a>
Start and end tags (such as td and /td) are treated as
different tag names. Counting the number of times
each tag name occurs in the tagString produces the
tagSet:

</td – 2>  </tr – 2> </table – 1> <table – 2> <tr – 3>
<td – 3> <img – 1> <a – 1>

In order to facilitate tagSet comparisons, we represent
each tagSet as a vector of count values. The number of
elements in the vector is the number of tag names in
the whole html document. There were 41 tag names in
the document from which this tagString was taken, so
its tagSet is represented as:

0,0,0,0,0,0,0,0,2,3,3,1,1,0,0,2,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0

Which is a 41-element vector of count values. The
41 tag names were:

html, head, title, /title, meta, link, /head, body, table,
tr, td, a, img, /a, br, /td, /tr, /table, SPAN, div, /div, form,
center, input, /center, hr, strong, /strong, p, font, /font,
select, option, /select, b, /span, /FORM, blockquote,
/blockquote, /body, /html.

0 <HTML><HEAD><TITLE> Spa Guide
1 </TITLE></HEAD><BODY><H1> Nunohiki Spa
2 </H1><EM> Location
3 </EM><P> Kita-Saku district, Nagano pref. Japan
4 </P><P> TEL: 0268—67—3467
5 </P><EM> Open Hours
6 </EM><P> From 10.15 a.m to 11.30 p.m.
7 </P><EM> Overview
8 </EM><P> This facility was established in 1987, and ...
9 <BR> The hot spring is located at the front of ...
10 <B> “SAWARA”,
11 </B> on the basement floor ...
12 <BR> The effects of this hot spring are ...

Figure 2.  The numbered list of tagString/ textString pairs



3

2. Automatic wrapper production example

The web page shown in Figure 3 is the result of a
search query on the UK Public Records Office

catalogue. The query sought any reports on
‘unidentified flying object’.

Each result is displayed on a separate line in the
web page. The task, when creating a wrapper (data
extractor program), is to find the set of results in the
html document and find a way for the extractor
program to identify each of the fields in each record in
order to create a database table containing all the result
records on the page. A page analysis operation is
needed, to create a page description for the extractor to
use. That page analysis process is now described. The
method proceeds, as explained above, by first
converting the html document into a numbered
sequence of tagSet/textString pairs.
The first 25 textStrings in Figure 3’s html document
are:

S0:   Search Results
S1:   You ran a basic search on "unidentified AND
flying AND object" .

S2:   &nbsp;
S3:   There were 19 hits within catalogue entry details.
Hits 1 to 19 are shown below sorted by catalogue
reference.
S4:   PRO Reference

S5:   Title/Scope and Content
S6:   Covering Dates
S7:   AIR 2/16918
S8:   Unidentified Flying Objects (UFOs): sightings;
reports by members of public
S9:   1961-1963
S10:   AIR 2/18115
S11:   Unidentified flying objects: reports
S12:   1967
S13:   AIR 2/18116
S14:   Unidentified flying objects: reports
S15:   1967
S16:   AIR 2/18117
S17:   Unidentified flying objects: reports
S18:   1967-1968
S19:   AIR 2/18183
S20:   Unidentified flying objects
S21:   1968-1969
S22:   AIR 2/18871

Figure 3.  A results page from http://catalogue.pro.gov.uk/



4

S23:   Unidentified flying objects: reports and
newspaper cuttings
S24:   1972

There are 69 textStrings (and therefore
tagSet/textString pairs) in the whole document. In the
69 tagSets that occur in these pairs, there are only 12
different tagSets, because some of the tagSets are re-
used in many different tagSet/textString pairs.  The 12
Distinct TagSets are shown in Figure 4.

Each row in that table represents a different tagSet.
Each tagSet is a vector of 24 count values, for each of
the 24 tag names found in the whole of the html
document. The 24 tag names are: html, head, meta,
/head, body, table, tbody, tr, td, p, b, /p, a, img, /a, font,
/font, /td, /tr, /tbody, /table, /b, /body, /html.

   Each row is numbered with the number of the
tagSet/textString pair in which the tagSet was first used
in the html code. TagSet10 is the third row from the
end. All tagSet/textString pairs from 11 to 66 (in the
sequence of numbered pairs that represent the html
code) must contain one of the tagSets already used,

because the next tagSet/textString pair to contain a new
tagSet is the one containing textString 67

An itemSet is the set of one or more
tagSet/textString pairs associated with each distinct
tagSet. If we represent each item by its number (in the
sequence of numbered pairs) and display the itemSet
associated with each of the 12 distinct tagSets shown
in Figure 4, we obtain a tagSet Progression Grid
(tpGrid) shown in Figure 5. This is the abstraction of
the html document that we use to analyse page

structure for repetitive features.  It is much easier to see
repetition in this grid structure than in the raw html
code.

In order to avoid confusion it is important to
distinguish the meaning of figures 4 and 5. Figure 4
shows all the Distinct TagSets in the html document.

Figure 5, on the other hand, does not show any tagSets.
Although the rows in Figure 5 are labelled with tagSet
numbers, which correspond to those for the same rows
in Figure 4, each row in Figure 5 shows the itemSet
associated with each tagSet.

The row cluster T8, T9, T10 in Figure 5 reveals the
position of the collection of 3-field result records in the

 T0: 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0
 T1: 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1 , 0, 0, 0, 0, 0, 0, 0, 0
 T2: 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0 , 1, 1, 1, 0, 0, 0, 0, 0
 T3: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 , 0, 1, 1, 1, 1, 0, 0, 0
 T4: 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1 , 1, 0, 0, 0, 0, 0, 0, 0
 T5: 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1 , 1, 1, 0, 0, 0, 1, 0, 0
 T7: 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1 , 1, 1, 1, 0, 0, 1, 0, 0
 T8: 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1 , 1, 1, 0, 0, 0, 0, 0, 0
 T9: 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1 , 1, 1, 0, 0, 0, 0, 0, 0
T10: 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1 , 1, 1, 1, 0, 0, 0, 0, 0
T67: 0, 0, 0, 0, 0, 0, 0, 2, 3, 0, 0, 0, 3, 2, 2, 1 , 1, 3, 2, 0, 0, 0, 0, 0
T68: 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1 , 1, 1, 1, 0, 0, 0, 0, 0

Figure 4.  The Distinct TagSets in Figure 3’s html document

T0:  0
T1:  1
T2:  2
T3:  3
T4:  4
T5:  5, 6
T7:  7
T8:  8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41,  44, 47, 50, 53, 56, 59, 62, 65
T9:  9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42,  45, 48, 51, 54, 57, 60, 63, 66
T10: 10,13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43,  46, 49, 52, 55, 58, 61, 64
T67: 67
T68: 68, 69

Figure 5. A tpGrid.  It shows the itemSet associated with each Distinct TagSet in Fig 4



5

web page.  It also provides all the information an
extractor program needs to accurately find and extract
the data item for each field in each result record.

Figure 5 contains all the text items visible on the
web page. Each text item is identified by its position
number in sequential order. Rows T8, T9, T10 contain
items 8 to 66. This cluster of long rows corresponds to
the set of 3-field results in the web page. By
constructing the tpGrid we have found the position of
the results set in the web page, discovered that result
records contain three fields, identified distinct tagSets
that mark the start and end of the results section of the
html document, and found other tagSets that uniquely
label each field’s data items so that accurate extraction
of data items into correctly formatted records is
ensured.
      The way to discover and interpret patterns in a
tpGrid (e.g Figure 5) is to follow the TRAIL of item
numbers. If consecutive item numbers were linked
with a line the result would be the Trail. It shows the
order in which tagSets are used in the web page by
following the sequence of numbered tagSet/textString
pairs that correspond to the html document.  For
example, in Figure 5, tagSet T0 occurs only once in the
whole document: before textString 0. Similarly we see
that tagSets T1, T2, T3, T4, T7 and T67 each appear
only once in the entire html document (preceding
textStrings 1, 2, 3, 4, 7 and 67, respectively). TagSet
T5, in contrast, has an itemSet containing two items: 5
and 6. This means that the two tagSet/textString pairs
numbered 5 and 6 both contain the same tagSet, T5.
   TagSets T8, T9 and T10 have large itemSets. A large
itemSet is shown as a long row of integers. Each
integer represents by number a numbered
tagSet/textString pair that contains the same tagSet as
all the other items in the row. TagSet T8 occurs before
twenty textStrings, namely textStrings 8, 11, 14, 17,
20, 23, etc.  Notice that the sequence of item numbers
forms an arithmetic progression with common
difference 3. This is because result records contain
three fields. The Trail follows repeated vertical
sequences of three items while it is inside the row
cluster. TextStrings 8 to 66 on the web page use only
tagSets 8,9 and 10, and the use of those three tagSets is
cyclic.

   Each of the three fields in each record has a
distinct tagSet to identify items belonging to that field.
However, tagSet T8 does not identify first field items,
as might be supposed. Instead, the row cluster
representing a set of results has a characteristic
structure in tpGrids, which is shown in Figure 6, where
Trail entry and exit points are shown by arrows.

Rows T7 to T10 in Figure 5 are an example. The
tagSet before the first record (row A in figure 6) is
different from the tagSet (row N) before each

subsequent record in the result set. A is tagSet T7 and
N is tagSet T10 in figure 5. So item 7 is the first field
data for the first record and item 10 is the first field of
the second record. The first field items of all the other
records are in row T10.  The reason for this structure is
that the tagSet before the whole set of results uses
different tags from that which just separates records
within the collection of results.

3. The Data Extraction Algorithm

The tpGrid (Figure 5) provides the information
needed by an extractor (wrapper) program to extract
data from result pages from this web site. The extractor
program proceeds as follows:

1. Search for tagSet T7 which occurs only once
in the html document. It marks the start of the result
set.  TagSet T7 is immediately followed by the data
item for the first field of the first record. Records have
three fields.

2. TagSet T67 follows the last data item in the
result set. It can be used either to isolate the results
section from the html document, or just as a stopcode:
stop extracting data items when tagSet T67 is
encountered.

3. After the first field of the first record, a field2
data item is preceded by tagSet T8; a field3 data item is
preceded by tagSet T9, and a field1 item is preceded by
tagSet T10. Each data item is, in effect, labelled in the
html code by the tagSet that precedes it.  In result sets
whose field order can vary between records, this
unique labelling is a significant benefit. And also when
field values are missing from result records.

4. The extractor continues to extract data as long
as the specified tagSets are found. Pages which contain
no data (because the query produced no results) cause
no problem because the tagSet labels for data items
will not be present either. So the extractor recognizes
an empty result set.

   Figure 6. The characteristic structure of a result set
row cluster in tpGrids.



6

4. Rearranging tpGrids

The tpGrid representing a web page allows
collections of result records to be identified as blocks
of long rows (i.e. row clusters) with the structure
shown in Figure 6.  But sometimes items or whole
rows in a tpGrid are displaced from their correct
position in the row cluster to which they belong. A row
is displaced if its tagSet happens to be used somewhere
else in the web page, as well as in the part of the page
containing the results. Individual items are displaced if
an insignificant variation in their set of preceding tags
gives them a different tagSet from other items in the
same field position in records. Such displaced entities
in the tpGrid can be automatically moved to their
correct position (in order to reveal the repetition
pattern). The process involves Trail-following and
tagSet comparison, as now illustrated by means of an
example.

An IEEE Search results web page is shown in
Figure7 (from http://www.computer.org). Each result
record is shown in a white rectangle and contains a
fairly large number of potential field items. The tpGrid
for this page, before repositioning displaced rows is
shown in Figure8, and after rearrangement in Figure 9.

The ten result records visible in Figure 7 are shown
in Figure 9 as the 10-column row cluster between rows
T41 and T51. By following the Trail through this
cluster we observe that each record has eleven fields,
because of the eleven items in each column in the
cluster of long rows.

Item 127 is out of place. It should be in the space
above it, in tagSet T50’s row of items. The eleven
fields in other columns associate a particular tagSet
with each different field. So we expected item 127 to
have tagSet T50, but instead it has new tagSet T127.

Comparing tagSets T50 and T127:

 50:0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,0,0,0,...,0,0,0
127:0,0,0,0,0,0,0,0,0,0,0,2,1,1,1,2,0,0,0,...,0,0,0

The 3 extra tags, absent from tagSet 127 are: a, img, /a,
so there is an image hyperlink missing. This absence
can be seen in Figure 7: in the third record (white
rectangle) from the end, the usual row of four icons has
only three. Missing images and hyperlinks are common
variations found between records in result sets, so they
are automatically recognised as insignificant variation
between tagSets.

   The BigBook standard web page from the RISE
repository [11] produces a tpGrid that is structurally
analogous to Figure 9, although the Web Page looks
very different from Figure 7. Our analysis of the
BigBook page structure can be seen at web site [10]. Figure 7. IEEE Search results web page



7

5. Terminology

This section defines some of the key terminology
associated with the ideas introduced during the
discussion of examples above.
    A Pair Sequence  is a numbered sequence of
tagSet/textString pairs. Each tagSet summarises a
corresponding tagString in the html document. The
Pair Sequence for a web page is an indexed version of
the html document representing that page. It contains
all the information in the html code (including the final
tagString that has no textString after it, but is followed
instead by the end of the document/file). It allow Ti/Si
pairs to be identified by number, and accessed by
number when required. So the Pair Sequence is a
lookup table, accessed by item number. The reason it
contains all the html code in the html document is that

each tagSet summarises a corresponding tagString, so
each numbered pair can be seen as a tuple: [ < tagString
||  tagSet  >,  textString ] whose first field is a tagSet
and its corresponding tagString. So information from
the raw html at any point in the document can be
accessed by position number if or when required. The
page analysis process described in the current paper
uses only the tagSet part of the embedded < tagString
||  tagSet  > tuple.

Potential data items (PDIs) are the numbered items in
the Pair Sequence. A basic goal of page analysis is to
discover which of the PDIs contain data items. Data is
contained in tag attributes that are hyperlinks to files,
as well as the textString. The repetition of tagSets
reveals collections of PDI records whose fields are
each a [ < tagString  ||  tagSet  >,  textString ] tuple,
rather than just a textString. So a sequence of field

  T0: 0
  T1: 1
  T2: 2,3,4,  27,  173
  T5: 5
  T6: 6,  152
  T7: 7,8,9,10,  13,14,15,16, 18,  153,154,155,156,   159,160,161,162,164
  T11: 11,  157
  T12: 12,  158
  T17: 17,  163
  T19: 19,  165
  T20: 20,  166
  T21: 21,22,23,24,25,  167,168,169,170,171
  T26: 26,  172
  T28: 28,  174
  T29: 29
  T30: 30
  T31: 31
  T32: 32
  T33: 33
  T34: 34
  T35: 35
  T36: 36
  T37: 37,38,46,48,57,59,68,70,79,81,90,92,101,103, 112,114,123,125,134,136,145,147
  T39: 39
  T40: 40
  T41: 41,52,63,74,85,96,107,118,129,140
  T42: 42,45,53,56,64,67,75,78,86,89,97,100,108,111 ,119,122,130,133,141,144
  T43: 43,54,65,76,87,98,109,120,131,142,176
  T44: 44,55,66,77,88,99,110,121,132,143

  T47: 47,58,69,80,91,102,113,124,135,146

  T49: 49,60,71,82,93,104,115,126,137,148
  T50: 50,61,72,83,94,105,116,138,149
  T51: 51,62,73,84,95,106,117,128,139
  T127: 127
  T150: 150
  T151: 151
  T175: 175
  T177: 177
  T178: 178

Figure 8. The tpGrid before rearrangement, for the web page shown in Figure 7



8

items may be identified in the tagString preceding each
textString. Each single field in the discovered
repetition pattern may thus be subsequently expanded
into several fields (the extra fields are URLs extracted
from tag attributes in the tagString of the PDI).

6. Automatic page format change detection

One of the key problems that has limited interest in
using web data sources is their brittleness of access. A
web site only has to change the layout of its results
page and a wrapper will no longer extract data
correctly.
    A system is needed that monitors page format, so
that any change is detected before a query to the site
fails. This is easily achieved with tpGrids, because a
grid is a fingerprint for page format. Therefore a query

sent repeatedly to a web site will generate the same
structures in the tpGrid for the results page. So by
monitoring the grids from such test queries it is
possible to detect page format changes as soon as they
occur, and also to distinguish between changes that
will affect data extraction and those involving other
parts of the page. This fingerprint for page format is a
valuable resource to ensure reliable data access.

7. Discussion and Experimental Evaluation

The page analysis technique has been applied to a large
number of web site result pages in order to investigate
its effectiveness. Examples of the range of different
pages successfully wrapped by the page analyser can
be seen at our web site. Our ultimate goal is fully
automatic page analysis (and hence wrapper

  T0: 0
  T1: 1
  T2: 2,3,4,27,173
  T5: 5
  T6: 6,152
  T7: 7,8,9,10,13,14,15,16,18,153,154,155,156,159,1 60,161,162,164
  T11: 11,157
  T12: 12,158
  T17: 17,163
  T19: 19,165
  T20: 20,166
  T21: 21,22,23,24,25,167,168,169,170,171
  T26: 26,172
  T28: 28,174
  T29: 29
  T30: 30
  T31: 31
  T32: 32
  T33: 33
  T34: 34
  T35: 35
  T36: 36
  T37: 37,38
  T39: 39
  T40: 40
  T41: 41,52,63,74,85, 96,107,118,129,140
  T42: 42,53,64,75,86, 97,108,119,122,141
  T43: 43,54,65,76,87, 98,109,120,131,142
  T44: 44,55,66,77,88, 99,110,121,132,143
  T42: 45,56,67,78,89,100,111,122,130,144
  T37: 46,57,68,79,90,101,112,123,125,145
  T47: 47,58,69,80,91,102,113,124,135,146
  T37: 48,59,70,81,92,103,114,125,134,147
  T49: 49,60,71,82,93,104,115,126,137,148
  T50: 50,61,72,83,94,105,116,    138,149
  T51: 51,62,73,84,95,106,117,128,139
  T127:                       127
  T150: 150
  T151: 151
  T175: 175
  T177: 177
  T178: 178

Figure 9. The tpGrid after moving displaced rows, for the web page shown in Figure 7



9

production) because this enables new applications for
autonomous agents. But many of the current uses for
wrappers (such as data integration systems, shopping
agents and recommender systems, for example)
probably want some minimal human involvement in
order to provide confidence that completely accurate
data extraction is achieved but also to specify the
schema for the extracted data. Not all available fields
are wanted. They could be extracted and then discarded
or ignored later. Or there may be a wish to divide one
textSring into more than one field during extraction.
(This can alternatively be done later by processing the
extracted database table).
    If the page analysis process is used with human
input to resolve ambiguities then it is effective at
wrapping the majority of web pages seen so far. (We
exclude, of course, plain text documents studied in
NLP Information Extraction research. Our system
looks for repetition patterns in html tags). Pages with
few results provide limited repetition information. This
problem can be solved by comparing the tpGrids for
two or more web pages from the same web site (to find
the results by distinguishing constant from variable
page components).
    Nested iterations were discussed briefly in [12].
Further examples are shown in our web site [10]. Pages
whose data set has a tree structure have a tpGrid results
section that is a nested version of Figure 6.
   Our work is continuing by examining further web
site results pages, to discover and resolve any
problems. A comparison with previous work by
processing the 'standard' web results pages in the RISE
repository [11] will be published in due course. We are
investigating the use of various knowledge sources in
order to automate the process of resolving ambiguities.
The use of repetition patterns of tagSets alone has been
very effective at discovering page structure and
identifying tagSet labels for data items, to be used by
the extractor. But there is a lot of other information that
can be used as well, to advance the aim of fully
automatic wrapper production for any site. Many web
sites have completely regular result sets (in terms of
tagSet repetition) even though some fields may be
missing. Such sites are automatically wrapped just by
tpgrid analysis.

8. Related Work

Previously published work on the task of extracting
data from documents, to create database tables, is
divided into two separate research areas: Information
Extraction and Wrapper Production. The former
applies to plain text documents (rather than web pages)
and uses Natural Language Processing techniques to

obtain some understanding of the document in order to
identify and extract substrings as data items. That is
very different from Wrapper Production, which uses
the html framework to divide up the document and
recognise parts that are required data. This makes
wrapper production language independent since the
techniques apply to html rather than the language
displayed on screen.
   Previous work on wrapper production has included a
lot of work using Machine Learning algorithms on
html pages that have been previously annotated by
hand to identify and describe the data items embedded
in the document. This approach is clearly not an
automatic technique, where a program finds the data
and discovers its structure. Other researchers have tried
to remedy that deficiency. Searching for repetition
patterns has been tried in several ways. Repeating
substrings in the html document have been sought,
repeating subtrees in the html parse tree, and also
repeating individual tags that recur at approximately
equal intervals within the document character string.
These methods experienced difficulties because of the
ways they represented the document. In contrast, the
tpGrid data structure represents a web page in terms of
potential data objects and in a way that immediately
reveals relevant features of page structure. This
abstraction is a much easier thing to analyse than the
document itself, and its item numbering system makes
it a kind of index into parts of the original web page so
that details can be obtained if required during analysis.
   Another method [2] previously described for
automatic wrapper production compared two or more
query result pages from a web site. The purpose was to
recognise constant parts that occur in all result pages
from a site. Hence the other parts may contain data.
   Domain-specific ontologies have also been used to
support wrapper production techniques. These are
specific to the kind of data to be extracted from web
pages. The approach differs from other wrapper
production strategies in considering the text of the data
substrings rather than the html framework. It is thus
language and domain dependent.
   Our approach may compare web pages in order to
distinguish between iterations that contain data and
others that are part of the page structure. A simple
ontology for web result pages, rather than data, is
helpful to recognise parts of the web page such as the
link to fetch the next page-full of query results.

9. Conclusions

Creating an extractor program for the result pages from
a particular web site involves a page structure analysis
process. An analyser program examines one or more



10

pages from the web site and produces a form of page
description to be used later by the extractor program on
any query result pages obtained from that site.
   The tpGrid is a useful object for analysis,
supplementing information a program can obtain by
directly examining the html code for the page. The grid
finds data in the page, discovers its record structure
and also identifies the tagSet ‘labels’ that an extractor
program can use to recognise each type of data item to
extract from other results pages from the same source.
   The tpGrid is a fingerprint for the page structure of a
particular web site. So it is easy to detect page format
changes before they cause a wrapper to fail during
extraction.
   Since the method operates on repetition of items
observed in the results page, it will not find data on
pages that display few result items. For these, either a
test query that generates more data is needed, or else
the comparison of two or more results pages to
distinguish between constant and variable parts of
result pages.
   The method of page analysis discussed in this paper
is quick and simple, showing potential for use by
‘robot’ programs exploring the ‘hidden web’.
Techniques for automatic form-filling were discussed
in [6].

10. References

[1] D. Buttler and L. Liu and C. Pu, A Fully Automated
Object Extraction System for the World Wide Web. Proc. Intl.
Conf. on Distributed Computing Systems, 2001. pp 361 -
371.

[2] V. Crescenzi, G. Mecca and P. Merialdo. Roadrunner:
Towards automatic data extraction from large web sites,
Proc 27th Very Large Databases Conference, VLDB’01,
pages 109-118, 2001.

[3] David W. Embley, Y. S. Jiang, Yiu-Kai Ng, Record-
Boundary Discovery in Web Documents, Proc. ACM
SIGMOD Conference 1999, pages 467-478.

[4] Kushmerick, N. & Thomas, B. Adaptive information
extraction: Core technologies for information agents. In
Intelligent Information Agents R&D in Europe: An
AgentLink perspective, Springer, 2003 (Klusch,
Bergamaschi, Edwards & Petta, eds). LNCS 2586.

[5] Stephen W. Liddle, K. A. Hewett, and D. W. Embley, An
Integrated Ontology Development Environment for Data
Extraction, submitted, April 2003.

[6] S.W. Liddle, D.W. Embley, D.T. Scott, and S.H. Yau,
Extracting Data Behind Web Forms, Proceedings of the
Workshop on Conceptual Modeling Approaches for e-
Business, Tampere, 2002.

[7] I.  Muslea and S. Minton and G. Knoblock.  A
Hierarchical Approach to Wrapper Induction. Proc 3rd Conf
on Autonomous Agents (1999).

[8] W.W. Cohen, W. Fan, Learning Page-Independent
Heuristics for Extracting Data from Web Pages, Proc 8th
International World Wide Web Conference, 1999.

[9] Stephen Soderland, Learning Information Extraction
Rules for Semi-structured and Free Text, Machine Learning
34(1-3) pp 233-272, 1999.

[10] A substantial bibliography of relevant references can be
found via the author’s web site at http://www.page-info.info

[11] The RISE Repository of Online Information Sources
Used in Information Extraction Tasks
http://www.isi.edu/info-agents/RISE/index.html

[12] J. Robinson, Data Extraction from Web Database
Query Result Pages via TagSets and Integer
Sequences, Proc IADIS WWW/Internet International
Conference 2003.


