
Technical Report CSM-401 (March, 2004)
Population Based Incremental Learning Versus Genetic Algorithms: Iterated Prisoners Dilemma
Timothy Gosling, Nanlin Jin and Edward Tsang
University of Essex, England

Population Based Incremental Learning Versus Genetic Algorithms:

Iterated Prisoners Dilemma

Timothy Gosling

Dept. of Computer Science
University Of Essex
C04 3SQ, England

Email: tdbgos@essex.ac.uk

Nanlin Jin

Dept. of Computer Science
University Of Essex
C04 3SQ, England

Email: njin@essex.ac.uk

Prof. Edward Tsang

Dept. of Computer Science
University Of Essex
C04 3SQ, England

Email: edward@essex.ac.uk

Abstract- Axelrod’s originally experiments for evolving
IPD player strategies involved the use of a basic GA. In
this paper we examine how well a simple GA performs
against the more recent Population Based Incremental
Learning system under similar conditions. We find that
while PBIL performs well, GA in general does slightly
better although more experiments should be conducted.

I. INTRODUCTION

Experiments in to evolving strategies to play Iterated
Prisoners Dilemma (IPD) were initially carried by Axelrod
in 1987 [1]. These experiments found that from an
evolutionary stand point Tit-For-Tat was a dominant
strategy. In the years since these early results others have
attempted to evolve IPD strategies and made claims about
the dominance of various other approaches to playing the
game [2][3][4]. This paper is not directly concerned with
the arguments for or against various strategies but is rather
concerned with how the more recent statistical approaches to
evolutionary computation compare with traditional GA
approaches in evolving those strategies.

To this end a series of experiments have been run

comparing the effectiveness of IPD strategies evolved
independently by straightforward GA and PBIL
implementations.

The paper introduces the strategy representation scheme

used, the idea behind PBIL, the way in which PBIL and GA
were compared and the results of that comparison.

II. REPRESENTATION

IPD strategies may be represented in a number of
different ways partially dependent upon the particular
variation of IPD being investigated [5][6]. For the
GA/PBIL comparison being undertaken the original Axelrod
representation for a three-round memory based game was
used [1].

Under this system a 0 represents co-operation and 1
represents defect. A player's memory contains information
on the last three rounds of play each of these rounds being
represented by a bit pair. The bit pair consists of a record of
both the player’s move and its opponent’s move in one of
the previous rounds. Organising the pairs in time order
provides a six-bit string that can be interpreted as a number
between 0 and 63. Assuming a simple cooperate or defect
reaction to any memory there are therefore a maximum of 64
possibly responses to a 3-round memory and the IPD
strategy can thus be represented as a 64 bit string, each
position in the string providing the response co-operate or
defect to a specific memory. The below diagram illustrates
how the player memory and strategy work together to
produce a players move in the current round:

Since at the beginning of a game players start with no
memory of previous rounds additional information is
required as part of the representation. To this end an
additional 6 bits is used to provide the player with an initial
starting memory and so its first index into the strategy. As
play progresses the starting memory is eventually forgotten

1 0 1 0 1 0

Player A Memory

r-3 r-2 r-1

A-B A-B A-B

1 0 1 0 1 0 = 21
16 32 4 8 1 2

1 0 0 1 1
1 0 2 21 62 61 63

1

Player A Strategy

Player Move:

Bit Value:

Move index:

Time:

r = Current Round

0 1 0 1 0 1

Player B Memory

r-3 r-2 r-1

B-A B-A B-A

0 1 0 1 0 1 = 42
16 32 4 8 1 2

Player B Strategy

… …1 1 0 0 0 0
1 0 2 42 62 61 63

1 … …0

Moves in round r
Player A Player B

1 = Defect 0 = Co-op

Figure 1. Player Memory and Strategy Representation

Technical Report CSM-401 (March, 2004)
Population Based Incremental Learning Versus Genetic Algorithms: Iterated Prisoners Dilemma
Timothy Gosling, Nanlin Jin and Edward Tsang
University of Essex, England
and play continues purely based upon true memories of the
current interaction. The starting information could therefore
be considered as a predisposition of a player towards its
opponent. The full IPD representation is shown below:

III. INTRODUCTION TO PBIL

Population based incremental learning (PBIL [7]) is a
statistical approach to evolutionary computation that
combines elements of GAs and Reinforcement Learning.

Under a simple PBIL scenario the basic representation of

a solution can be the same as in a GA but instead of storing
each possibility explicitly the population is replaced by a
probability distribution. To elaborate further. If we
consider a single member of a GA population it consists of a
chromosome with a number of alleles. Each allele often
represents some single variable in the solution and may take
on a number of possible values, for the given population
member though the value of each alleles is fixed. Within the
population of solutions values for particular alleles exist
with differing frequencies, if each population member was
identical then only one value for each alleles would exist in
the population as a whole, at the other extreme a wide
variety of values would exist for each alleles within the
population with little variation in frequency among them.
PBIL essentially represents these frequencies directly and
dispenses with the population itself. Thus under PBIL, each
value of each alleles has a frequency or probability of
existing within a hypothetical population associated with
itself - the probability of each value within an allele must
add up to 1. To generate a real solution string it is possible
to select allele values probabilistically from the PBILs
probability distribution. A diagram illustrating the
difference between GA and PBIL representation can be
found towards the end of this section (Figure 3).

To update a GAs population, population members are

first evaluated and then recombine in some way to generate
a new population. Members with a higher fitness have a
greater probability of either finding their way in to the new
population or helping generate new population members.
Mutation is usually used to help increase diversity and
reintroduce information that may have been lost at an earlier
stage.

PBIL updates in a rather different manner. What needs to

be updated is the probability distribution rather than a fixed

population. The simplest way to perform the update is to
find a good candidate solution and then increase the
probability of each of the values of its alleles in the
distribution (positive learning). The reverse can be done
with a bad candidate solution with probabilities of values
being reduced (negative learning). The rules for updating
the probability of values can be quite simple and are usually
tied to a learning rate (LR). The learning rate determines by
how much the probability of a value under a given allele
should increase and thus by how much the remaining value
probabilities should be reduced. Fixed or variable learning
rates can be used; if the LR is variable it may be tied to the
relative fitness of the candidate solution being used to
update the distribution.

Since a PBIL system will often have no real population of

solutions to draw candidates from a temporary pool of
solutions maybe generated from the distribution. The
solutions in this pool can then be evaluated and the best and
worst used to update the distribution.

Mutation is often used with PBIL to help increase the

search space much as with GA. Various schemes to
implement mutation exist however two approaches are
either to vary the value frequencies by some amount with
low probability or, alternatively, apply mutation with a low
probability to generated population members before they are
evaluated.

5
0

4
1

3
0

2
1

1
0

0
1

0
0

1
1

2
0

3
1

4
0

5
1

58
0

59
1

60
0

61
1

62
0

63
1 …

Initial Memory Strategy

A B A B A B A

B A B A A B B

C A A B A A C

C B B A C A A

C B A A A B A

GA representation

Population Size: 5
Chromosomes: 10
alleles long
Alleles: Draw a value
from the set {A, B, C}

0 1 2 3 4 5 6 Alleles Number:

G
A

Population

Alleles Number:

Allele 0 value
frequencies:
A = 1/5
B = 1/5
C = 3/5

0
0.2
0.2
0.6

A =
B =
C =

V
alue

Freq.

1
0.2
0.6
0.0

2
0.6
0.4
0.0

3
0.4
0.6
0.0

4
0.8
0.0
0.2

5
0.4
0.6
0.0

6
0.6
0.2
0.2

Equivalent PBIL Representation

Probability distribution stores information about frequency of
values at each allele.

Figure 2. Complete IPD Representation

Figure 3.Differences between GA and PBIL representation

Technical Report CSM-401 (March, 2004)
Population Based Incremental Learning Versus Genetic Algorithms: Iterated Prisoners Dilemma
Timothy Gosling, Nanlin Jin and Edward Tsang
University of Essex, England

While the above explanation of PBILs operation is
sufficient to explain how alleles with a discrete set of values
or symbols maybe represented it does not provide explain
how continuous ranges maybe dealt with. Since continuous
ranges are not required in the formation of the IPD strategies
used here, no explanation of how this is accomplished will
be provided.

IV. PBIL SPECIFICS

The PBIL implementation used for running the IPD
experiments represents each allele as a cell with a specific
numeric range and number of symbols. For the purposes of
IPD each cell is ranged 0 to 1 with two symbols, i.e. 0 and 1.
At the beginning of an experiment each cell was set such
that 0 and 1 had an equal probability.

The positive reinforcement rule used in the experiments

was simple (taken from [7]). The mechanism used is
described below:

() ()

solution candidate thein c positionat Bit value-
1) and 0 (between rate learning The -

ondistributi theof c cell in 1a ofty Probabili-

0.1

c

c

ccc

cand

LR

prob

LRcandLRprobprob −+−×=

No negative learning was used in the experiments.

Learning rates were varied between experiments but were
constant within a give experiment. The range of learning
rates used was between 10% and 0.5%.

Mutation was not always used within the experiments

reported on here. When used, it was applied by changing
generated population members with a probability of 0.7%
per allele. When changed a value would simply flip from 1
to 0 or vice versa.

A generation in the sense of PBIL consists of the creation

of a population, evaluation of that population and an update
of the distribution by the fittest population member. In all
the experiments described here PBIL was used with a
greater number of generations than the GA for reasons
described later.

To perform an update of the probability distribution two

sets of IPD strategies were generated. The first ‘update’ or
‘population’ set was relatively small and used for updating
the distribution; the second ‘test’ set was used purely for
evaluating the first set. An example would be a population
set of 10 coupled with a test set of 99. In this case each of
the 10 population members would be tested against each of
the 99 testing members to find its fitness. The population
member with the highest mean score against each of its 99
opponents would be used to update the distribution.

 This mechanism is necessary to even out the disparity in

information use between the GA and PBIL when updating.
While the GA (in a sense) makes use of its entire population
to create a new population the PBIL system only uses one
population member to update the distribution. Different
ways of resolving this disparity might be used but the one
above was selected for its ease of understanding. By
selecting a smaller population size played against a larger
testing pool the quality of individual evaluations may be
maintained. By repeating the process for a larger number of
generations than the GA a fairer use of information by both
is maintained. In each case the total number of games
played and solution evaluations must be maintained or bias
will be introduced. To help prevent bias the following must
hold:

()

runs system PBIL thegeneration ofnumber The - PBILgens
system PBIL theof size pool testingThe - pPBILtestpo

system PBIL theof size population The - PBILpop
for runs GA thesgeneration ofnumber The - GAgens

size population GA The - GApop
sevaluation solution ofnumber Total - ILevalsGAevals/PB

1

evalsevals

evals

evals

PBILGA

PBILgenspPBILtestpoPBILpopPBIL

GAgensGApopGApopGA

=
××=

×−×=

With the above in mind a population size 100 GA running

for a 100 generations could be played against a PBIL system
using a population size of 10 and a testing pool of 99
running for 1000 generations. If however the GAs
population was reduced a corresponding reduction in the
population size, test pool size or number of generations
would be required by the PBIL system. Some combinations
evidently will be more effective than others and in the
course of these experiments different variations were
considered.

For the purposes of comparison with the GA ten IPD

strategies are generated at various points through out the
experimental run (the GA records corresponding data after
every generation). The ten strategies are generated in
exactly the same way as for evaluation or testing. The
interval between points at which comparison strategies are
recorded can be determined by:

GAgensPBILgensrvalOutputInteComparison /=

The experimental random number generator seeds were

select from the system clock, the random number generator
itself can be found in [8].

Technical Report CSM-401 (March, 2004)
Population Based Incremental Learning Versus Genetic Algorithms: Iterated Prisoners Dilemma
Timothy Gosling, Nanlin Jin and Edward Tsang
University of Essex, England

V. GA SPECIFICS

Individual strings (strategies) in the initial population are
generated randomly with 50% possibility of choosing
“Defection” and 50% possibility of choosing “Cooperation”
at every bit of every 70-bits string.

Performance (fitness) of a string is evaluated by the

average score that it earns from playing Iterated Prisoners’
Dilemma with every other string in the same population.

Like natural selection, individuals having higher fitness

are selected with higher probability. First of all, the fittest
string is ensured to be selected as a parent, which is called
“Elitism”. Each of rest parents is chosen using the “Roulette-
Wheel Algorithm”. A random number

),0[21 popSizefffr +++∈ � is created, then the string i

whose fitness notated if is selected,

where ii fffrfff +++<≤+++ − �� 21121 .[9]

Strings are selected pair-wise and undergo one-point

crossover, exchanging portions of strings of each other.
Newly created intermediate strings mutate with very low rate
(0.7%) by randomly alternating one bit of “cooperation” to
“defection”, or vice verse.

The offspring of the parent strings go on to form a

completely new population for the next generation.

Strings used for comparison with PBIL are the first 10

strings chosen of every generation by Roulette-Wheel
selection without Elitism.

VI. GAMES

Part of the evaluation process of an IPD strategy involves
playing against other IPD strategies. To this end each game
used for evaluation consisted of 150 moves being played
and the standard score grid below being used:

The same game parameters were used for the comparison
discussed below.

VII. GA AND PBIL COMPARISON

Providing a comparison between GA and PBIL systems in
a way that provides neither with an advantage is difficult,
however as much bias as possible has been removed. The
following describes how the comparison was eventually
realized.

To provide a comparison between the GA and PBIL

systems for evolving IPD strategies, both systems were run
independently and their resulting strategies tested against
one another.

 In running the comparison between GA and PBIL it was

important to not provide a significant advantage to either, it
was also critical that the comparison mechanism itself not be
unfair or subject to too much uncertainty.

 To counter the first problem the PBIL and GA systems

were run for a differing number of generations with differing
population sizes, the total number of evaluations and
individual evaluation quality was maintained however. See
‘PBIL Specifics’ above for more details. To sensibly
compare the GA and PBIL strategies at comparable intervals
in the runs, ten strategies were generated by the PBIL and
recorded for comparison and ten strategies were selected
probabilistically and recorded for comparison by the GA.
The recording process began at initialization and was
performed at regular intervals up until the end of the run in
each system. In the experiments reported here GA runs
lasted 100 or 300 generations, PBIL runs lasted between
1000 and 6000 generations.

 To provide a comparison between a single GA and PBIL

experiment for a given time, each of the ten strategies from
each was played against all the strategies from the
opposition. The results of these games, the mean scores and
standard deviations were recorded. The mean strategy score
for the GA and PBIL at the specified time can then be found
easily. A single comparison such as this results in 100
games being played. When comparing GA and PBIL runs in
total this process is repeated for all compatible comparison
points in both the PBIL and GA systems (either 100 or 300
points).

 To improve the validity of the results each PBIL and GA

experiment was repeated ten times (unless otherwise stated).
Each of the PBIL and GA experiments could then be
compared to one another and the results averaged. This
results in 100 comparisons being done for a single time
instance and so 10000 games being played between 200
strategies.

3

3

5

0

0

5

Score A

Score B
Co-op Defect

Player A

C
o-op

D
efect

Player B
 1

1

Figure 4. Standard Pay-off table

Technical Report CSM-401 (March, 2004)
Population Based Incremental Learning Versus Genetic Algorithms: Iterated Prisoners Dilemma
Timothy Gosling, Nanlin Jin and Edward Tsang
University of Essex, England

VIII. EXPERIMENTAL RESULTS

While a large number of PBIL configurations and
somewhat smaller number of GA configurations were tried,
the most effective GA and PBIL configuration tried are
shown below:

Type GA PBIL
Population Size 100 5
Learning Pool NA 99
Mutation Rate 0.007 Not Used
Learning Rate NA 0.025
Generations 300 6000
Data Points 300 300

Table 1: Comparison of most effective GA and PBIL configurations

These two configurations form the basis for comparison
within the rest of this section. The relative mean fitness
used in the graphs below is determined by the mean fitness
of all of player A’s strategies divided by the mean fitness of
all of player B’s strategies. Player A and B are determined
by what the graph is attempting to demonstrate. When
comparing various PBIL configurations against GA, player
A will always be the best GA configuration while player B is
each of the tested PBIL configurations. As a result any
score above 1 shows greater effectiveness for player A
strategies and anything below 1 shows greater effectiveness
for player B strategies.

 The following diagram shows the relative performance

of different PBIL configurations against GA. In this case
the GA parameters are identical to those above and the PBIL
parameters only vary in terms of the learning rate (Figure 5):

0.5

0.75

1

1.25

1.5

1.75

1 51 101 151 201 251

Generations

R
el

at
iv

e
M

ea
n

Fi
tn

es
s

0.1 0.05 0.025 0.01 0.005

Figure 5: Best GA v Population 5, no mutation PBIL with varying learning
rates. PBIL initial fares well or poorly depending on LR but ultimately
does worse than GA.

 If mutation is applied to PBIL its performance is
generally reduced. At low learning rates this effect is
minimal but at higher learning rates the negative effect
becomes more evident The diagrams below show the
reduction in effectiveness caused by mutation at different
learning rates (Figure 6, 7):

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1 51 101 151 201 251

Generations

R
el

at
iv

e
M

ea
n

Fi
tn

es
s

No Mutation Mutation

Figure 6: PBIL performance against GA with and without GA at low
learning rate (0.005). Generation 1- 51, GA does very well compared to
PBIL. Generation 51-101, PBIL recovers somewhat. Generation 101
onwards, PBIL performance stabilizes but is less effective than GA.

Technical Report CSM-401 (March, 2004)
Population Based Incremental Learning Versus Genetic Algorithms: Iterated Prisoners Dilemma
Timothy Gosling, Nanlin Jin and Edward Tsang
University of Essex, England

0.4

0.6

0.8

1

1.2

1.4

1.6

1 51 101 151 201 251

Generations

R
el

at
iv

e
M

ea
n

Fi
tn

es
s

No Mutation Mutation

Figure 7: PBIL performance against GA with and without mutation at high
learning rate (0.05). Generations 1-51, PBIL initial performs well but
rapidly looses out to GA. Generation 51 onwards, PBIL stabalizes doing
worse than PBIL. Mutated configuration PBIL does worse than non
mutation equivelent

Increasing the number of tournaments played while

reducing the number of generations of the PBIL yields
results that are generally not quite as favorable although
early performance does tend to be a little better (Figure 8).

 In the results show below the PBIL population size has
been increased to 10 while the number of generations has
been reduced to three thousand, various learning rates are
shown:

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

1 51 101 151 201 251
Generations

R
el

at
iv

e
M

ea
n

Fi
tn

es
s

0.1 0.05 0.025 0.01 0.005

Figure 8: Best GA v Population 10, no mutation PBIL with varying
learning rate. Generation 1-51, PBIL performs well or poorly depending
on LR. Generation 51-101, PBIL performance begins to stabalize if it
hasn’t already. Generation 101 onwards, PBIL performance stabailizes but
does worse than GA.

The population 10 PBIL experiments run with mutation
enabled again perform somewhat worse (Figure 9):

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

1 51 101 151 201 251

Generations

R
el

at
iv

e
M

ea
n

Fi
tn

es
s

0.1 0.05 0.025 0.01 0.005

Figure 9: GA v Population size 10 PBIL with mutation and varying
learning rates. Generation 1-51, PBIL performs according to learning rate
well or poorly. Generation 51-101, PBIL performance stabalizes if it
hasn’t already. Generation 101 onwards, PBIL performance stabalizes and
is worse than GA, often increasingly so.

Having seen various PBIL configurations performance in
relation to the best GA configuration next is to show some
variations in the GA configuration in relation to the PBIL.

Technical Report CSM-401 (March, 2004)
Population Based Incremental Learning Versus Genetic Algorithms: Iterated Prisoners Dilemma
Timothy Gosling, Nanlin Jin and Edward Tsang
University of Essex, England
In this comparison the ‘best’ PBIL configuration is used
against the best GA configuration with a varying mutation
rate (Figure 10):

0.8

1

1.2

1.4

1.6

1.8

1 26 51 76

Generation

R
el

at
iv

e
M

ea
n

Fi
tn

es
s

0.4% 0.7% 1%

Figure 10: The effect of mutation rate on GA performance (against best
PBIL configuration). Generation 1-25, PBIL does better than GA.
Generation 25 onwards, GA generally does better than PBIL except at the
higher mutation rate.

As can be seen (Figure 10) the selected ‘best’ GA (0.7%)
provides an effective performance taking an early leading
and continuing to do better than PBIL. The lower mutation
rate further improves this result but takes longer to get there.
Note that the 0.4% mutation rate result was achieved using
only three experiment repetitions.

GA population size has also been experimented with to

some limited degree. Reducing the population size casues
GA considerable problems and in general PBIL will perform
relatively better. The diagram below (Figure 11) shows a
population size 20 GA running for 300 generations with a
mutation rate of 0.7%. This appoximates the original
experiments run by Axelrod [1], except that it runs for
slightly longer. The opponent PBIL uses a population size
of 5, training pool of 19 and runs for 1200 generations.

0.6

0.8

1

1.2

1.4

1.6

1 101 201

Generations

R
el

at
iv

e
M

ea
n

Fi
tn

es
s

Axelrod like GA v PBIL

Figure 11: Axelrod like GA versus PBIL. Generation 1-51, PBIL initially
does badly against the GA due to its low learning rate but is rapidly
gaining ground after about 25 generations. Generation 51-101, PBIL
continues to gain grownd and reaches a peak in realtive performance.
Generation 101-201, PBILs relative performance is degraded but is still
better than GA. Generation 201 onwards, PBILs performance stabilizes
and does better than GA.

As can be seen from the above when the GAs population
is quite small the use of a probability distribution by PBIL
comes in to its own – it might not use any more evaluation
but it can certainly generate more effective strategies even if
it takes it a while.

IX. CONCLUSIONS

The results above would tend to suggest that a GA
approach to evolving IPD strategies is very slightly superior
to a PBIL approach. When both systems have stabilized the
GA consistently scores slightly higher than PBIL system.

The initial relative performance of PBIL may be superior

to GA if the learning rate is high enough as it is able to learn
fairly effective strategies quickly, however this tends to be
accompanied by later worse performance due to overly rapid
convergence. Setting the learning rate of the PBIL system
lower tends to allow the GA a better run in the beginning
and reduces the negative effects of rapid convergence, under
these condition PBIL performs favorably although GA
arguably still fares very slightly better. Tuning the learning
rate more precisely may ultimately provide a more
comparable performance.

Increasing the PBIL population size seems to cause far

greater variation in performance relative to the learning rate
used but may help provide a way to close any perceived
performance gap.

Technical Report CSM-401 (March, 2004)
Population Based Incremental Learning Versus Genetic Algorithms: Iterated Prisoners Dilemma
Timothy Gosling, Nanlin Jin and Edward Tsang
University of Essex, England

Introducing mutation into the PBIL system doesn’t seem

to remedy the effects of overly rapid convergence and
indeed seems to generally exacerbate the problem. At
higher learning rates and larger population sizes mutation
would seem to help smooth performance out a little over
time if not actually improve it.

When the GA population size is reduced PBIL comes into

its own and is able to perform significantly better than GA.
While the GA struggles under a lack of evaluations the PBIL
is able to use what evaluations it has in the context of a
hypothetically infinite population and respond accordingly.
When the GA population is increased PBIL’s advantage
tends to be lost.

Any set of comparisons is difficult. The set of

comparisons shown here only encompasses one particular
problem using a limited number of configurations of both
systems, as such its results shouldn’t be considered
definitive in arguing whether PBIL or GA is more
appropriate under much wider conditions.

Further work on the effectiveness of comparable GA and

PBIL systems should be undertaken to better understand
when each is more applicable; some form of co evolutionary
approach may yield interesting results for instance. It is
important to establish when a technique is effective and
when it is not.

REFERENCES

[1] Robert Axelrod, The Evolution of Strategies in the Iterated
Prisoner's Dilemma, in Davis, L. (ed.), Genetic algorithms and
simulated annealing, Research notes in AI, Pitman/Morgan
Kaufmann, 1987, 32-41

[2] Ken Binmore, Game Theory and the Social Contract I, playing
fair, MIT Press, 1994

[3] Ken Binmore, Game Theory and the Social Contract II, just
playing, MIT Press, 1998

[4] Linster, B., Evolutionary Stability in the Repeated Prisoners'
Dilemma Played by Two-State Moore Machines, Southern
Economic Journal, 1992, pages 880-903

[5] Fogel, D.B. (1993). Evolving behaviors in the iterated prisoner's
dilemma. Evolutionary Computation, 1(1), 77-97.

[6] Crowley, P.H. (1996). Evolving cooperation: strategies as
hierarchies of rules. BioSystems, 37:67-80.

[7] Shumeet Baluja, Population Based Incremental Learning – A
Method for Integrating Genetic Search Based Function
Optimisation and Competitive Learning, (Tech. Rep. No. CMU-
CS-94-163). Pittsburgh, PA: Carnegie Mellon University (1994)

[8] Numerical Recipes in C++: The Art of Scientific Computing – p?
- William H. Press, Saul A. Teukolsky, William T. Vetterling,
Brian P. Flannery

[9] Course cc385, “Genetic Programming and its Applications”, 2003
– University Of Essex, Prof Riccardo Poli

