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Abstract 

The terms architecture, design, and implementation are 
typically used informally in partitioning software specifi-
cations into three coarse strata of abstraction. But these 
strata are not well-defined in either research or practice 
and often overlap causing confusion and needless discus-
sion.  

To remedy this problem we formally define two crite-
ria: the Intension and the Locality Criteria, and show that 
the intuitive discrimination between the three terms archi-
tecture, design, and implementation is qualitative and not 
merely quantitative. We demonstrate that architectural 
styles are intensional and non-local; that design patterns 
are intensional and local; and that implementations are 
extensional and local.  

 

1. Introduction 

In their seminal article, Perry and Wolf [31] developed 
“an intuition about software architecture through analo-
gies to existing disciplines.” Building on this, Shaw and 
Garlan [39] suggest that “software architecture involves 
the description of elements from which systems are built.” 
A considerable body of work, stemming back to DeRemer 
and Kron’s module interconnection languages (MIL) [8], 
focuses on the specification, construction, and analysis of 
large software systems defined by these terms (e.g., [34], 
[27], [16]). Architecture description languages (ADL) 
combine a formal specification language with tools sup-
porting the construction and analysis of software systems 
from such specifications. 

Seeking to separate architectural design from other de-
sign activities, definitions of software architecture stress 
the following:  
§ “architecture is concerned with the selection of archi-

tectural elements, their interaction, and the constraints 
on those elements and their interactions… Design is 
concerned with the modularization and detailed inter-
faces of the design elements, their algorithms and pro-

cedures, and the data types needed to support the archi-
tecture and to satisfy the requirements.” [31] 

§ Software Architecture is “concerned with issues ... be-
yond the algorithms and data structures of the compu-
tation.” [17] 

§  “architecture … is specifically not about … details of 
implementations (e.g., algorithms and data structures.)  
… Architectural design involves a richer collection of 
abstractions than is typically provided by OOD.” [30] 

§ “Architecture ? Design? … Design is an activity. Ar-
chitecture, or architectural design, is design at a higher 
level of abstraction.” [23] 

§ Architecture focuses on the externally visible proper-
ties of software “components.” [2]  
In suggesting typical “architectures” and “architectural 

styles”, existing definitions consist of examples and offer 
anecdotes rather then provide unambiguous, clear notions.  

In practice, the terms “architecture”, “design” and “im-
plementation” appear to connote milestones in a contin-
uum between complete details (“implementation”), few 
details (“design”), and the highest form of abstraction 
(“architecture”). But the amount of detail alone is insuffi-
cient to characterize the differences, because architecture 
and design documents often contain information that is 
not explicit in the implementation (e.g., design constraints, 
standards, performance goals) and therefore they cannot 
result from mere omission of detail. A clear distinction 
has remained elusive and this lack of distinction is the 
cause of much muddy thinking, imprecise communication, 
and wasted, overlapping effort. 

Confusion inevitably arises from this imprecision, and 
architecture is often used as a mere synonym for design. 
For example, the “Siemens” catalogue [4] defines “archi-
tectural patterns” that are in par with “design patterns” 
defined by the “Gang of Four” [15].   

Confusion also stems from the use of the same specifi-
cation language for both architectural and design specifi-
cations. For example, the Software Engineering Institute 
(SEI) classifies UML [3] as an architectural description 
language [38], and it has become the industry de facto 
standard ADL, although UML was specifically designed 



to manifest detailed design decisions (and this is its most 
common use). 

Confusion also exists with respect to the artifacts of 
design and implementation. UML class diagrams [3], for 
instance, are a prototypical artifact of the design phase. 
Nonetheless, class diagrams may accumulate enough de-
tail to allow code generation of very detailed programs, an 
approach that is promoted by CASE tools such as Ra-
tional Rose® [36] and System Architect® [33]. Using the 
same specification language further blurs the distinction 
between artifacts of the design (class diagrams) from the 
implementation (source code.) 

Why are we interested in such distinctions? With time, 
terms that are used interchangeably lose their meaning and 
end up as mere platitudes, resulting inevitably in ambigu-
ous descriptions given by developers, and significant ef-
fort is wasted in discussions of the form “by design I 
mean… and by architecture I mean…” 

The contribution of this paper is to provide insight on 
the largely-informal dialectic by appealing to both intui-
tion and to formal ontology. By putting these terms on a 
solid footing not only do we disambiguate the progres-
sively murky discourse in “architectural specifications” 
but provide a foundation for formal reasoning and analy-
sis, as well as a firm foundation for informal “chalk-talk” 
discussions. Finally, tools supporting design and architec-
tural specifications, where intuitive perceptions are insuf-
ficient, will benefit by accurately defining this distinction. 

1.1 The Intension/Locality Thesis 

The term “abstraction” has been used in many different 
contexts with various interpretations. To elucidate the 
relationship between architecture, design, and implemen-
tation, we distinguish at least two separate interpretations 
for abstraction in our context:  
1. Intensional (vs. extensional) specifications are “ab-

stract” in the sense that they can be formally character-
ized by the use of logic variables that range over an 
unbounded domain; 

2. Non-local (vs. local) specifications are “abstract” in 
the sense that they pervade all parts of the system (as 
opposed to being limited to some part thereof).   
Both of these interpretations turn out to be critical in 

distinguishing among the terms architecture, design, and 
implementation, which we jointly refer to as the inten-
sion/locality thesis:  

(i) Architectural specifications are intensional and 
non-local; 

(ii) Design specifications are intensional but local; 
and 

(iii) Implementation specifications are both exten-
sional and local.  

The intension/locality thesis is summarized, for easier 
reference, in Table 1.   

Table 1. The Intension/Locality Thesis 

Architecture Intensional  Non-local  
Design Intensional Local 
Implementation Extensional Local 

 

1.2 Clarification and Structure of This Paper 

The intension/locality thesis can be understood cor-
rectly only in the context of the ontology defined in the 
following section. In Section 0 we define design models, 
which are crucial to the remainder of out discussion. De-
sign models are abstractions which provide the underlying 
“meaning” of programs. Design models are associated 
with programs using a “meaning” (denotation) function, 
which allow us to determine whether a specification is 
“satisfied” by a program.  

In Section 3, we formally define the Intension criterion 
and the Locality criterion. We distinguish our interpreta-
tion for “intensionality” from the accepted usage, as we 
define it in terms of the “meaning” (denotation) that pro-
grams have, i.e., in terms of design models. 

Sections 4, 5, and 6 provide case studies in applying 
the Intension and Locality criteria using our formal ontol-
ogy. In Section 4 we demonstrate that implementations 
any programming language, including generics and C++ 
templates are extensional and local. In Section 5 we show 
that design patterns such as the Factory Method and de-
sign specifications such as the Enterprize JavaBeans™ 
and Java™ Swing’s MVC are intensional and local. In 
Section 6 we demonstrate that architectural styles such as 
Pipes and Filters and Layered Architecture are intensional 
and non-local, , and so is the Law of Demeter. 

In Section 7, we discuss some of the ramifications of 
our criteria. The discussion in UML class diagrams re-
veals that, indeed, class diagrams have a separate place in 
the hierarchy of abstractions we describe. Section 8 sum-
marizes the contributions of this paper 

2. Setting the Scene 

In this section, we provide the underlying formal on-
tology that underlies the Intension/Locality criteria. 

2.1 Design Models 

Turing [43] and random-access machines [5] provide 
robust computational models suitable for reasoning about 



algorithms. Other computational models and formalisms 
(e.g., Petri nets [32], statecharts [20], and temporal logic 
[24]) facilitate reasoning about certain behavioral specifi-
cations. 

The discussion in architectural and design specifica-
tions, however, involves reasoning on constructs such as 
classes, methods, and function calls. Most other formal-
isms incorporate too many implementation detail and do 
not allow a discussion in the appropriate level of abstrac-
tion. As we seek to establish the relation between architec-
tural or design specifications and implementations, we 
base our discussion on a formalism that abstracts pro-
grams to a more convenient representation. 

On par with evolving algebras [19], Eden and 
Hirshfeld [12] demonstrate how to model source code as 
design models, which are first order, finite structures in 
mathematical logic [1]:  
Definition I. Let m  designate the pair 〈Um ,Rm〉 , such 
that Um={a1,…ak} is a finite set of atoms, and 
Rm={R1,…Rn} is a finite set of ground relations 
amongst these atoms.  

We say that m  is a design model. The set of all design 
models is designated M.  

Table 2.  A Java™ program and its denotation (from 
[11].) 

abstract class Decorator { 
   public void Draw(); 
} 
class BorderDecorator extends Decorator { 
   public void Draw() {  
      Decorator.Draw(); 
   } 
   private int BorderWidth; 
} 

The design model of this program consists of the following: 
Atoms: 

C={Decorator, BorderDecorator, int, void} 

F={BorderDecorator.Draw, Decorator.Draw } 

Relations: 
Abstract(Decorator) 
Member(Decorator.Draw, Decorator) 
Member(BorderDecorator.Draw, BorderDecorator) 
Inherit(BorderDecorator, Decorator) 
Reference(BorderDecorator, int) 
Invoke(BorderDecorator.Draw, Decorator.Draw) 
ReturnType(Decorator.Draw, void) 
ReturnType(BorderDecorator.Draw, void) 
 

Table 2 depicts a detailed example of a trivial Java™ 
program and a design model that represents it. As this 
example demonstrates, an object-oriented program is ab-
stracted as a collection of definitions of classes and meth-
ods (also routines or function members) and their rela-
tions. Atoms represent classes and methods declared in the 
program, such as the class Decorator and the method 
Decorator.Draw. Relations represent their correlations, 
such as   

Inherit(BorderDecorator,Decorator) 
Invoke(BorderDecorator.Draw,Decorator.Draw) 
 

Note that design models are abstractions which were 
made to reflect only the structural aspects of computer 
programs that are relevant to design and architecture. 
Hence, our analysis focuses on the declarations of pro-
gram constructions. Obviously, this representation limits 
the type of reasoning we may perform (e.g., for discussing 
fairness [24]), but it is appropriate for the purposes of our 
discussion.  

2.2 Specifications, Denotations, and Programs 

In this subsection, we discuss specifications, programs, 
and their relations. We make some reasonable assump-
tions on the languages used to write specifications. These 
assumptions allow us to provide a clear definition for the 
intensional criterion (Definition VI). 

Let us designate SPEC as the set of formal languages 
of any order [1]. Let SPEC* designate the set of all ex-
pressions made in some language in SPEC. A specifica-
tion is an element of SPEC*.  

SPEC includes familiar specification languages such 
as Z [40], as demonstrated in formulas (3.1) and (3.2), 
and LePUS [9], as demonstrated in formula (2). SPEC 
also includes programming languages such as Eiffel [28], 
C++ [41], and Java™ [18]. Naturally SPEC is not re-
stricted to known programming or specification lan-
guages. 

A specification is only useful if we can determine 
whether it is “satisfied” or not. Having chosen design 
models as our semantics we can ask: Does this model “sat-
isfy” our specification? More importantly, we would like 
to be able to answer the question: Does this program sat-
isfy our specification?  

To answer these questions, we first define an “in-
stance” of a specification:  
Definition II. Let ϕ(x1,…xn) be a first order expression 
in SPEC*, such that x1,…xn are free variables in ϕ. Let 
m  designate a design model (Definition I) containing the 
n-tuple of atoms (a1,…an). Let A be the consistent as-
signment [1] of a1,…an to x1,…xn.  



If the result of assignment A in ϕ is true in m  then we 
say that (a1,…an) is “an instance of ϕ in the context of 
A”. If there exists such an assignment A, we say that 
“m  instantiates ϕ”, written m�ϕ.  

Definition II extends naturally to n-tuples of sets of at-
oms of any order, and to include expressions in higher 
order languages, such as LePUS. 

Observe that, in the degenerate case where ϕ has no 
free variables (also closed formula, sentence), ϕ is either 
true or false in each model m . This distinction will serve 
us in defining the Locality criterion (Definition VIII). 

What is the expected relation between a program and 
an instance? An instance is only a part of the program, and 
depending on the specification, every program can contain 
zero, one, or any number of instances. In addition, we 
expect a “program” to be as a specification that is associ-
ated with only one design model. The association between 
“real” programs and design models is provided by a mor-
phism we refer to as the denotation function:  
Definition III. Let D  : SPEC*→M designate a rela-
tion that maps each element in a subset of SPEC* into a 
design model, such that for every expression ϕ in 
dom(D ) the domain of D , the following conditions 
hold: 

§ There is exactly one design model mϕ such that  

mϕ�ϕ   (mϕ instantiates ϕ) 

§ D (ϕ)=mϕ (D  maps ϕ to mϕ) 
 
We say that D  is a denotation function.  

The Java™ example in Table 2 and the C++ example 
in Table 3 demonstrate typical denotations.  

Observe that we expect dom(D ) to include only a 
small subset of the expressions in SPEC*. Obviously, 
there are expressions in SPEC* that are true in more than 
one design model, as well as expressions are not true in 
any design model.   
Definition IV. Based on Definition III, we introduce the 
following nomenclature:  
PD   The set of all programs (the domain of D ) 

§π¨D  D (π) 

program An element of PD  
 

Note that only programs have denotations (one denota-
tion for every program). 

By Definition IV, there is only one possible denotation 
to each program π. Thereof, we may refer to §π¨D  as 
“the design model (the denotation) of π according to 
D .” The converse, however, is not true, and any number 

of programs in PD  can be denoted by (i.e., mapped by 
D  to) a single design model (also D  is not one-to-one 
function.) This conforms to our view of D  as means of 
abstracting programs. Additional examples for denota-
tions for O-O programming languages are provided in [9].  

In the reminder of our discussion, unless specified oth-
erwise, we assume a fixed denotation D , defined along 
the lines as demonstrated in Table 2. Thus, we are free to 
speak of “a program π” and of “the design model (denota-
tion) of π”, marked §π¨. 

We now have a well-defined notion of programs and 
specifications. In combination with the definition of an 
“instance” of a specification, we can conclusively deter-
mine whether a program satisfies a given specification:  
Definition V. Let ϕ designate a specification. Let π des-
ignate a program. We say that π satisfies ϕ iff §π¨�ϕ, 
namely, iff the design model of π instantiates ϕ.  

In the following sections we will set apart: architecture, 
design, and implementation specifications based on ob-
serving properties of the groups of programs that satisfy 
each specification  

3. The Intension/Locality Criteria 

We will now define the concepts of intension and lo-
cality. In the following sections, we will apply these crite-
ria, both formally and informally, to distinguish between 
architectural specifications, design specifications, and 
implementations.  

3.1 The Intension Criterion 

Perry and Wolf [31] have established that architectural 
specifications must be made in intensional terms. Speak-
ing of the desired properties of an ideal specification lan-
guage for software architecture they write: “We want a 
means of supporting a ‘principle of least constraint’ to be 
able to express only those constraints in the architecture 
that are necessary at the architectural level of the system 
description”. It constrains only what it needs to, in terms 
of properties imposed over free variables. 

Traditionally, intensional specifications define a con-
cept via a list of constraints. For example, mathematical 
concepts are usually defined intensionally. For instance: 
“A prime number is a number that divides only by itself 
and by the number 1”. In contrast, NATO is an organiza-
tion that is defined extensionally, namely, by itemizing its 
members: United States, United Kingdom, France, and so 
forth. 

Using the distinction made by Immanuel Kant [22], we 
treat program as an analytic notion, not synthetic, that is, 
similar to a mathematical concept. In these terms, we say 



that this paper constitutes of analytical reasoning (the In-
tension/Locality criteria) to empirical manifestations of 
selection design patterns and architectural styles. 

The notion of intensionality that we define here di-
verges slightly from the philosophical concept. We say 
that a specification is intensional if and only if it has an 
unbounded number of instances (Definition II):   
Definition VI. We say that a specification is intensional 
iff there are infinitely-many possible instances (Definition 
II) thereof. Conversely, all other expressions are exten-
sional.  

The corollary that follows establishes the intuition that, 
given infinitely many instances, there should also be infi-
nitely many design models that “satisfy” the specification.  
Corollary 1. An intensional specification can be instanti-
ated (Definition II) by a non-finite number of design mod-
els. 
Proof: According to Definition I and Definition III, every 
element in the range of the denotation function is a finite 
structure. Thus, for any given formula ϕ and design 
model m , m  may contain at most a finite number of in-
stances to ϕ. Thus, to allow an infinite number of in-
stances to ϕ, there must be a non-finite number of design 
models that instantiate ϕ. 

?  
Following the ‘principle of least constraint’, an archi-

tectural specification, must have an unbounded number of 
instances, or using our terms, is expected to be “inten-
sional”. The same applies to design patterns, as demon-
strated in sections 5.2 and 5, respectively. But what about 
other forms of specifications? 

Prima facie, it appears that some programming specifi-
cations (such as C++ templates and Eiffel generics) might 
also be intensional. This is not true in the context of de-
sign models: As we show in section 4 with detail, specifi-
cations in any programming language, including generics 
and interpreted code are, under the assumptions provided 
in Definition I and Definition III, extensional. This is an 
important point: implementations are extensional and this 
alone distinguishes them from design and architecture 
specifications. The remaining distinction, between design 
and architecture, is one of locality, which is explored next. 

3.2 The Locality Criterion 

Monroe et. al [30] argue that “Architectural designs are 
typically concerned with the entire system.” Similarly, we 
observe that an architectural style that pervades a system 
[17] manifests a property that is shared across modules of 
the system. This intuition motivates the locality criterion: 

It captures the intuition that a design specification that is 
restricted only to part(s) of the system does not reflect an 
architectural property. Consequently, if there are modules 
that do not satisfy a certain constraint, then either the con-
straint is not architectural in this program, or else these 
modules are not part of the same “program”.  

As a simple example, consider applications designed 
with a “universal base class”. Although the language does 
not require it, several C++ class libraries (e.g., NIHCL 
and Microsoft’s MFC) are constructed by this rule. For-
mally, this property can be expressed as follows:  

∀c •Class(c)⇒Inherit*(c,Object) 
 

 
 (1) 

 (where Inherit* is the transitive closure of the binary 
relation Inherit.) The intension/locality thesis argues that 
formula (1) is architectural not only because it is inten-
sional but also because it pervades all parts of the system. 
In our example, any class must be bound to Object, so 
this clearly has architectural implications. 

Subsumption. The locality criterion requires the notion of 
subsumption relation between two structures, which re-
quires the following definition:  
Definition VII. Let m=〈Um ,Rm〉 , n=〈Un ,Rn〉  be 
design models (Definition I). We say that n  subsumes m , 
written m°n ,  iff the following conditions hold:  
§ Um⊆Un  
§ For every relation R∈Rm  there exists a relation  

R
_

∈Rn  such that R⊆R
_

.  
Informally, we say that model n  subsumes model m  if 

m  is a “submodel” of n . We can also view n  as an “ex-
tension” to m , not unlike “strict inheritance” [42].   
Definition VIII. We say that a specification ϕ is local iff 
the following condition holds: 

If ϕ is satisfied in some design model m  then it is sat-
isfied by every design model that subsumes m .  

We will now use the Intension and Locality criteria to 
illustrate the difference between programs, design specifi-
cations, and architecture specifications. 

4. Programs 

The definition of instance and the precise expression to 
the Intension criterion (Definition VI) allows us to prove 
part (iii) of the intension/locality thesis:  
The lemma of “extensions”: Programs are extensional 
specifications. 
Proof: Let π be an element of PD . Let us assume by 
negation that π is intensional. By Corollary 1, π can be 



instantiated by a non-finite number of distinct design 
models. Let us designate this set as P . By  
Definition II, π is true in every model in P . However, by 
Definition III, there is only one design model such π is 
true therein, §π¨D . This contradicts with P  in our as-
sumption. Therefore, π cannot be intensional. 

?   
One may wonder how the lemma of extensions, 

phrased to match the wording of the intension/locality 
thesis, is different from the very definition of a program 
(Definition IV). The subtlety that needs consideration is 
the difference between one instance of a formula vs. a 
design model that incorporates such an instance (i.e., sat-
isfies the formula.)  
Corollary 2. C++ templates are extensional.  

We illustrate the proof to this corollary using the de-
sign model of a C++ program with templates, shown in 
Table 3. The general proof follows directly from this ex-
ample. 

Table 3.  A C++ program and its denotation 
template <class C> class Stack  
 {/* ... /*} 
 
int main() {  
 Stack<int> si; 
 return 0;  
} 

This program is interpreted by only one design model, 
which consists of the following: 

Atoms: 
C={Stack, si} 

F={main} 

Relations: 
Generic(Stack) 
Instantiate(Stack, si, int) 
Return(main, int) 
 

This example illustrates that, while C++ templates may 
be viewed as intensional with respect to other semantic 
frameworks, the ontology we have provided assigns each 
program with just one “interpretation”. The reason is that 
the formal semantics of a program (its interpretation) is 
defined by the respective design model and not otherwise, 
e.g., by the machine code generated from its compilation. 
Thus, a template is a concrete construct even if it can be 
used to define other concrete constructs, since the notions 
of design models and of a denotation we provided guaran-
tee that expressions in every conventional programming 
language are extensional. 

5. Design Specifications 

Design specifications in industry are commonly de-
scribed informally. For the purpose of our discussion, we 
use formal specification of widely used design patterns 
and class libraries. 

5.1 Factory Method 

The following example is drawn from the published 
patterns literature. This allows us to test our ideas on some 
of the most widely published and used design specifica-
tions. 

According to the intension/locality thesis, we expect 
design pattern specifications to be local and intensional. 
First we will develop an intuition about this claim and 
then formalize it.  

Coplien and Schmidt [6] argue that “design patterns 
capture the static and dynamic structures of solutions that 
occur repeatedly when producing applications in a par-
ticular context”. Stripped from the context of a particular 
application, design patterns represent categories of solu-
tions, each pattern has an unbounded number of imple-
mentations (as implied by the very choice of the name 
“pattern”). Thus they are expected to be intensional. 

Design patterns are commonly perceived as “less ab-
stract” than architectural specifications. For example, they 
are commonly referred to as “microarchitectures” [37], 
that is, as if they were like architectures that only apply to 
a limited module. Using our terminology, we thus expect 
them to be local. 

Consider, for example, the Factory Method design pat-
tern [15]. Essentially, the pattern’s solution offers three 
sets of participants:   
1. A set of product classes  
2. A set of factory classes 
3. A set of factory methods  

The collaborations between these participants are con-
strained as follows:  
4. All factory methods share the same signature (thereby 

allowing for dynamic binding), and each is defined in a 
different factory class.  

5. Each factory method produces instances of exactly one 
products class.   
Figure 1 illustrates the general notion of the pattern. 

Observe that the set of 〈factory-i, factory-method-i, 
product-i〉 triplets is unbounded, because the number of 
possible factory and product classes is not bounded.  



factory-
method-1 product-1Produce

factory-
method-n product-nProduce

factory-1

factory-n

Member

Member

. . .

. . .

. . .

 
Figure 1. The general structure of the “Factory 

Method” pattern 

For our discussion in design patterns we use LePUS, a 
formal specification language for object-oriented design. 
A detailed definition of the language appears in [9]. The 
five parts of the Factory Method definition are formally 
expressed by expressions (2.1) to (2.5) as follows:  
Products : P(C) 
Factories : P(C) 
FactoryMethods : P(F) 
Clan(FactoryMethods,Factories) 
Produce↔(FactoryMethods,Products) 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 
 

Expressions (2.1) through (2.3) declare two sets of 
classes and one set of methods. Expression (2.4) indicates 
that the pair 〈FactoryMethods,Factories〉  satisfies 
the predicate Clan, meaning that –  
1. All “factory methods” share the same signature (i.e., 

they share the same dispatch table); 
2. The relation Member is a bijection (i.e., one-to-one 

and onto function) between the sets FactoryMethods 
and Factories.  
Finally, expression (2.5) indicates that the ground rela-

tion Produce is a bijective function between the set 
FactoryMethods and the set Products.  

It is evident that the composite expression (2.1) to 
(2.5), designated φ? below, is intensional.  
Corollary 3. “Factory method” is local.  
Proof: We will show that, given any design model m 
such that φ

å
 is true therein, then φ

å
 is true in any design 

model that subsumes m . 

Let m=〈U,R〉  be a design model such that φ
å

 is true 

therein. The complete specification of φ
å
 is thus: 

 

∃Products,Factories,FactoryMethods • 
 (∀m1,m2 ∈FactoryMethods •    
  SameSignature(m1,m2)) ∧ 
 (∀m∈FactoryMethods ∃ f∈Factories •  
  Member(m,f)) ∧  
 (∀ f∈Factories ∃m∈FactoryMethods • 
  Member(m,f)) ∧  
 (∀m∈FactoryMethods ∃p∈Products •  
  Produce(m,p)) ∧  
 (∀p∈Products ∃m∈FactoryMethods •  
  Produce(m,p)) 
 

Since φ
å

 is true in m , Um  must contain three sets of at-

oms, p1,…pn, f1,…fn, and m1,…mn, such that they satisfy 

the existentially-quantified variables Products, 
Factories, and FactoryMethods in φ

å
, respectively. 

Thus, we infer the following: 
 

1. SameSignature(mi,mj) holds for every pair of 
methods mi,mj; 

2. There exists n “triplets” in the form 〈pi,fj,mk〉  
such that: 
§ Member(mk,fj) 
§ Produce(mk,pi) 

3. Every element of one of the sets p1,…pn, f1,…fn, 
and m1,…mn occurs in exactly one “triplet”.  

Let n=〈Un ,Rn〉  designate a design model that sub-

sumes m . To conclude our proof we will show that φ
å

 is 

true in n . 

By Definition VII, p1,…pn, f1,…fn, and m1,…mn exist 

also in Un . Also, Rn  includes relations Member and 

Produce that are supersets of the respective relations in 

Rm . Thus, the same triplets satisfy the relations Member 

and Produce in Rn . Thus, φ
å

 is true in n.  
?  

Less formally, we say that Factory Method is local be-
cause if one design models incorporates an instance of the 
pattern then any design model that subsumes it also con-
tains the atoms and relations that constitute the same in-
stance, i.e., the same instance of φ?. 

The same line of reasoning can be applied to the speci-
fications [9] of most of the design patterns from the 
Gamma et. al [15] catalogue. 



5.2 Other Design Specifications 

The place of other design specifications within the in-
tension/locality classification may be less obvious then 
that of design patterns. Thus, we have carried out our 
analysis on the formal rendering of two additional design 
specifications: MVC (Model-View-Controller) “usage 
pattern” in Java™ Swing class library, and of Enterprise 
JavaBeans™. 

In lack of space, we cannot quote here the formal 
specifications but only the results of our analysis. The 
interested reader may find both specifications in [10]. We 
can report that our analysis confirms that, as predicted by 
the intension/locality thesis, both specifications fall under 
the “design” category, namely, they are intensional and 
local. 

6. Architectural Specifications 

In this section, we demonstrate that two of the most 
common architectural styles are both intensional and non-
local, fitting with our definition of what it means to be 
“architectural”, from section 1.1. We also demonstrate 
that the Law of Demeter is, in fact, architectural. 

6.1 Layered Architecture 

Garlan and Shaw [17] describe the layered architec-
ture style such that “An element of layer k may depend 
only on elements of layers 1,…k.” Formally, this descrip-
tion can be rephrased in Z as follows:  

∀e ∃!k∈{N}•Layer(e)=k 
 

(3.1) 

(i.e., each element is defined in exactly one layer), and  
∀x,y •  

Depends(x,y)⇒Layer(x)≥Layer(y) 
  

(3.2) 

(i.e., the definition of each element may “depend” only 
on the definition of elements of same layer or of lower 
layers.) 

It is trivial to prove that conjunction of formulas (3.1) 
and (3.2) (designated α below) can be satisfied by an 
unbounded number of programs. Thus, α is intensional.  
Corollary 4. “Layered architecture” is non-local.  
Proof: Let m=〈U,R〉  designate a design model such 
that m�α. It is easy to construct a new model  
m
_

=〈 U
_

,R
_

〉  that subsumes m  (namely, m°m
_

), but α is 
not true therein (namely, m

_
�α), as follows:  

§ U
_

 @ U∪{ξ} , where ξ is an entity that is not in 
U; 

§ R
_

 @ R 

 
Clearly, m

_
 subsumes m . As Layer(ξ) is not defined, 

expression (3.1) is not true in m
_

 and m
_

�α. Thus, α is 
non-local. 

?  
Less formally, to prove this corollary we simply show 

that, to any program that is layered, it is easy to add an 
element that violates the principle. 

Of course, we may selectively apply a non-local speci-
fication ϕ only to certain parts of a program. But what 
does it mean if only part of our program is “layered”? 
Does it mean that Layered architecture can sometimes be 
local? 

Discussion.  Is it possible for a non-local specification, 
such as layered architecture, be restricted only to a part of 
the program? Obviously. That simply means that parts of 
the program satisfy the non-local rule, while other parts 
violate it. In fact, this property is exactly what makes the 
layered architecture non-local: Because it may be violated 
anywhere in the program, we say that is not localized to a 
specific portion of the system. This example is illustrated 
in Figure 2 and in the discussion which follows.  

A
Layered

B
Layered

C
Not layered

 
Figure 2. A three-module, partially-layered program 
1. Is layered architecture (expressions 

(3.1) and (3.2)) non-local? 
True (always, 
by definition) 

2. Does this program satisfy the lay-
ered-architecture? 

False 

3. Does part of this program satisfy 
layered architecture? 

True 

 
Does it mean that non-locality is meaningless? Not at 

all. Non-locality is a property of a specification; and, as 
we further demonstrate in the following subsections, ar-
chitectural specifications are always non-local. However, 
we may choose to apply a specification only to some parts 
of the system, and violate it in others.  

To summarize, it is not meaningless neither contradic-
tory to state that architectural specifications can be ap-
plied selectively such that they are violated by some parts 
of a specific program. Formally:  



Corollary 5. If a specification ϕ is (deliberately) violated 
in module m in program π,  then either one of the follow-
ing is true:  
§ ϕ  is not satisfied by π, or 
§ m is not part of π (i.e., it belongs to a separate 

program.)  
In conclusion, if an architectural style is violated by 

even one part of the program, it can no longer be consid-
ered an architectural property of this program. 

In the example of layered architecture, a module that 
does “layer bridging” in a layered architecture program 
(i.e., violates the layering principle) should not be consid-
ered as part of the layered program; instead, we perceive it 
a separate program.  

While this conclusion may seem counter-intuitive at 
first, it is actually a powerful view on exceptions to archi-
tectural constraints. A module that does layer bridging 
requires different reasoning and different management 
than the rest of the layered system. It not only should, but 
must, be treated as an exception, or else the power of the 
layering will be compromised. Exceptions to an architec-
tural style should have attention called to them and be 
made the focus of intense analysis. Our reasoning pro-
vides a sound, formal basis for saying when a portion of a 
program is an exception to an architectural style. 

6.2 Pipes and Filters 

According to Garlan and Shaw [17], ”In a pipes and 
filter style each component has a set of inputs and a set of 
outputs. A component reads streams of data on its inputs 
and produces streams of data on its outputs.”  

Dean and Cordy [7] present a visual formalism defined 
as a context-free grammar, and formulate the pipes and 
filter style as follows:  

P&F+ + ::= + +

+ + P&F +

 
Figure 3. Pipes and Filters (adapted from [7]). A 

circle in the visual language represents a “task”, ar-
rows represent streams. The plus sign is the BNF 

symbol for “one or more.” 

T1

. . .

. . .. . .

. . .T2 Tk+1

S1,1

S1,N1

S2,1

S2,N2

Sk,1

Sk,Nk  
Figure 4. The general structure of programs that 

parse Figure 3. 

A “program” in STSA (in absence of an explicit name, 
the authors’ initials serve us with reference to the formalism) is 
represented as a typed, directed multigraph. An architec-
tural style is defined as a context-free language. Thus, an 
expression in STSA defines a collection of graphs in a 
visual notation, such as Figure 3. Hence, according to 
Dean and Cordy, a “program” satisfies the pipes and fil-
ters architecture if it “parses” Figure 3. Figure 4 illustrates 
the kind of programs that parse the grammar defined in 
Figure 3. 

Before we can reason about Figure 3, we must demon-
strate a denotation function which maps every “program” 
in STSA to a design model. For the purpose of our discus-
sion in this section, it suffices to restrict ourselves to mul-
tigraphs that contain tasks and streams. More specifically, 
let G designate a multigraph whose nodes are “tasks” and 
whose arcs are “streams”. In the denotation we choose, 
tasks and streams are mapped into atoms. The relations we 
have in our respective design model consist of   
§ the unary relations Task(x) and Stream(x), and 
§ the binary relation Connect(x,y)  

which indicates that the directed arc representing 
stream x terminates at the node representing task y (or that 
the directed arc representing stream y begins at the node 
representing task x.)  

It is easy to see that the general form of programs that 
parses Figure 3 is that of a directed multi-path, as depicted 
in Figure 4, and that the design models of these programs 
have the general form illustrated in formula (4).  
Connect(T1,S1,1),…Connect(T1,S1,N1), … 
   Connect(S1,1,T2),…Connect(S1,N1,T2), 
… 
Connect(Tk,Sk,1), …Connect(Tk,Sk,Nk), … 
   Connect(Sk,1,Tk+1),…Connect(Sk,Nk,Tk+1) 

(4) 

 
It is trivial to see that there is an unbounded number of 

such programs. Therefore, the architectural style Pipes 
and Filters (denoted φ) is intensional.  
Corollary 6. “Pipes and Filters” is non-local.  
Proof: Let m  designate a model that satisfies φ. It is easy 
to construct a model that subsumes m  but does not satisfy 
φ: By simply adding a new task to the model, Tx, such 



that no stream connects to Tx, we get a new model that 
subsumes m  and yet does not satisfy π. Therefore φ is 
not local. 

?  
6.3 Law of Demeter 

So far we have shown that two classic architectural 
styles meet our criteria for being “architectural”. This is 
expected. But our criteria also turn up some less expected 
results: The Law of Demeter [26] was created as a design 
heuristic. It was introduced to simplify modifications to a 
program and to reduce its complexity. The informal de-
scription of the law for functions is given in Table 4. 

Table 4. Law of Demeter for functions 
For all classes C, and for all methods M attached to C, 

all objects to which M sends a message must be instances 
of classes associated with the following classes:  
§ The argument classes of M (including C). 
§ The instance variable classes of C.  
(Objects created by M, or by functions or methods 

which M calls, and objects in global variables, are consid-
ered arguments of M.)  

We may formulate the language of Table 4 as follows:  
∀ f1,f2,c1,c2 •   
 Member(f1,c1) ∧  
 Member(f2,c2)∧  
 Invoke(f1,f2) ⇒  
 Member(c1,c2) ∨ ArgOf(c2,f1) ∨ c1=c2 

(5) 

 
Formula (5) is evidently intensional and non-local. 

That is, it has infinitely many instantiations and it per-
vades the entire program. To prove this, observe that any 
program that satisfies (5) can be expanded with source 
code that violates the law of Demeter, such as demon-
strated by the C++ source code in Table 5.  In fact, it is 
the violation that proves that the law of Demeter is non-
local. 

Table 5. An add-on to a C++ program which violates 
the Law of Demeter 

struct NewName1 { 
 void foo(); 
}; 
struct NewName2 { 
 NewName1 y; 
}; 
class NewName3 {  
 NewName2 x; 
 void bar() { 
  x.y.foo(); 
 } 
}; 
 

In conclusion, the law of Demeter, which was created 
as a design rule, is in fact architectural, i.e., it is not ex-
pected to be limited to one part of the system but satisfied 
throughout, in coding practices and in design walk-
throughs.  

This example demonstrates the benefit of making our 
distinctions explicit and the power of rendering them pre-
cise, without which we would be unable to determine this 
property (of the Law of Demeter) conclusively. 

7. Analysis 

Clearly, the case studies in Sections 5 and 5.2 are not 
coincidental. The same line of reasoning used for the Fac-
tory Method can be used for many other (if not all) of the 
design patterns in [15], as well as for the architectural 
styles by Garlan and Shaw [17]. Examples drawn from 
other formal languages proposed for the specification of 
design patterns, such as Constraint Diagrams [25], DisCo 
[29], and Contracts [21], bring forth sample specifica-
tions, are clearly intensional as well. This motivates the 
following hypothesis:  
The hypothesis of intensional specifications. All “design 
patterns” and “architectural styles” are intensional.  

A direct proof for this hypothesis requires a formaliza-
tion of “all” design patterns and architectural styles. The 
first problem with this is that no given catalogue purports 
to contain “all” patterns and styles, nor do we expect such 
a catalogue to be possible (except perhaps in the analytic 
sense.) Another problem arises from the mostly informal 
definitions given to patterns and styles. Limited attempts 
have been made to prove this hypothesis [14] [11], but 
naturally the proofs provided do not cover all known pat-
terns and styles. That is why the “hypothesis of intensional 
specifications” remains a hypothesis. 

7.1 Specific “Design” and “Architectures” 

With the increase in popularity of the terms and their 
proliferation in the literature, the terms design and archi-
tecture often appear in a concrete context, as in “the de-
sign of this program.” This usage implies that these terms 
can also be used with reference to extensional specifica-
tions, but only with reference to a concrete program. We 
suggest that “the design of program x” refers to the in-
stance implemented in a program of a general design rule 
(e.g., design pattern.) Since instances (Definition II) are 
extensions, this resolves the apparent difficulty in the in-
tension/locality thesis. 



7.2 “Extensional” Vs. “Local” 

It appears that non-locality is a “stronger” property 
than intensionality. For example, we expect every pro-
gram to be local. Below, we prove this intuition.   
Definition IX. The sequence of natural extensions to a 
design model m=〈Um ,Rm〉  is the infinite sequence of 
models m0,m 1,m 2,… such that:  
§ m 0 @ m  
§ m i @ 〈Ui,R〉  and Ui=Ui-1∪{ei}  

where e1,e2… is an infinite sequence of “new” entities 
that are pairwise distinct and none of which is in Um .   
Corollary 7. It is trivial to show that each design model in 
the sequence of natural extensions to m  subsumes it.  
Theorem. Non-local specifications are also intensional. 
Proof: We prove this by showing that if a specification is 
extensional then it is local. Let ϕ designate an exten-
sional specification. Let m=〈Um ,Rm〉  designate a de-
sign model such that m�ϕ. It suffices to show that there 
exists a design model n  such that m°n  but n�ϕ.  

From Corollary 1 we conclude that the set of design 
models where ϕ is true is finite, while the set of natural 
extensions (Definition IX) to m: m 0,m 1,m2,… is infi-
nite. Therefore, there exists a model n  in the sequence of 
natural extensions to m  such that n�ϕ. By Definition 
IX, m°n . 

?  
We may conclude that the relation between exten-

sional, intensional, and non-local specifications can be 
summarized in the following Venn diagram:  

Extensional
specifications

Intensional
specifications

Non-local
specifications

 
Figure 5. Intensional vs. non-local specifications 

7.3 UML Class Diagrams 

Since UML is used widely as a design and architectural 
notation, it is of particular interest to understand the place 

of UML diagrams in the classification we introduced: Are 
they local? Intensional? 

Despite the wide-spread attempts towards rendering the 
notation with well-defined semantics (e.g., the research 
group known as pUML [35]), most types of UML dia-
grams have no well-defined semantics. Thus, our discus-
sion therein is largely informal, assuming that any formal 
interpretation for class diagrams will be consistent with 
the informal semantics.  

In terms of design models, we can assume that any 
such interpretation will associate class icons with atoms of 
type class, operations with atoms of type method, as 
well as provide us with a specification of a set of associ-
ated relations. It is easy to see why the specification given 
by a class diagram is local; but is it intensional? 

To answer this question, observe that a UML class dia-
gram is commonly viewed as an under-specification; that 
is, it is a specification whose implementations may have 
any number of additional elements that are not mentioned 
in the diagram. Under this assumption, UML class dia-
grams are intensional, since there is an unbounded number 
of elements that can be added to any implementation. 

Unlike the formulas used in our examples, however, 
the abstraction that class diagrams provide is of the most 
rudimentary type, that is, by omitting information but 
without using free variables. A UML diagram provides no 
information on the elements that are not explicitly de-
scribed. Thus, class diagrams are intensional only in a 
trivial sense, in the same way that the code excerpts in 
Table 2 and Table 3, if taken not as complete programs 
but just as excerpts thereof, are intensional. Clearly, this 
sense is quite unlike the way architectural and design 
specifications are intensional. The following definition 
facilitates this distinction:  
Definition X. An intensional specification ϕ is quasi-
extensional iff §ϕ¨, namely, the set of design models that 
satisfy ϕ,  has a single lower bound with respect to the 
partial-ordering relation “subsumption”.  

It is trivial to show that subsumption induces partial 
ordering on a set of design models. Definition X, how-
ever, assigns specific importance to sets of design models 
that contain one member such that all other design models 
subsume it.  
Corollary 8. UML class diagrams are quasi-extensional.  

Figure 6 illustrates why UML class diagrams are quasi-
extensional. In contrast, it is trivial to show that the inten-
sional specifications quoted in this paper are not quasi-
extensional. 
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The minimal design model that satisfies this diagram ap-
pears in Table 2. Since every program that implements this 
diagram satisfies it, there are infinitely-many other design 
models that satisfy it. 

Figure 6. A UML class diagram and its interpretations 

8. Summary 

The terms architecture, design, and implementation 
have been heavily used by both researchers and practitio-
ners for over a decade, but this usage has always been 
informal and intuitive. But this intuition has not always 
provided a sound basis for reasoning, discussion, and 
documentation. This paper provided a sound formal basis 
for the distinction between the three terms, based upon 
best practices. 

The intension/locality thesis argues that architectural 
styles are intensional and non-local, design patterns are 
intensional and local, and implementations are exten-
sional and local. We provided a proof for parts of our 
thesis and demonstrated in detail the truth underlying the 
remainder. 

What are the consequences of precisely knowing the 
differences between the terms architecture, design and 
implementation? The ramifications are many. Among oth-
ers, these distinctions facilitate –  
§ the distinction between architecture and design docu-

ments; 
§ the distinction between local and non-local rules, i.e., 

between the design rules that need be enforced 
throughout a project vs. those that are of a more limited 
domain; 

§ determining what constitutes a uniform program, e.g., a 
collection of modules that satisfy the same architectural 
specifications.  
For example, in the industrial practice of software ar-

chitecture, many statements that are said to be 'architec-
tural' are in fact local, e.g., both tasks A and B execute on 

the same node, or task A controls B. Instead, a truly Ar-
chitectural statement would be, for instance, for each tasks 
A,B which satisfy ϕ, A and B will execute on the same 
node and Control(A,B). More generally, for each speci-
fication we know we should determine whether it is a de-
sign statement, describing a purely local phenomenon 
(and hence of secondary interest in documentation, dis-
cussion, or analysis), or whether it is this an instance of an 
underlying, more general rule.(2) 
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