
On the Definitions of Architecture, Design, and Implementation (*)

Amnon H. Eden
Center for Inquiry, Amherst, NY, and

Department of Computer Science,
University of Essex, UK

Rick Kazman
Software Engineering Institute, Pittsburgh, PA

and University of Hawaii, Honolulu, HI

eden@acm.org kazman@sei.cmu.edu

* Technical report, January 2003, Dept. of Computer Science, University of Essex, United Kingdom.

Abstract

The terms architecture, design, and implementation are
typically used informally in partitioning software specifi-
cations into three coarse strata of abstraction. But these
strata are not well-defined in either research or practice
and often overlap causing confusion and needless discus-
sion.

To remedy this problem we formally define two crite-
ria: the Intension and the Locality Criteria, and show that
the intuitive discrimination between the three terms archi-
tecture, design, and implementation is qualitative and not
merely quantitative. We demonstrate that architectural
styles are intensional and non-local; that design patterns
are intensional and local; and that implementations are
extensional and local.

1. Introduction

In their seminal article, Perry and Wolf [31] developed
“an intuition about software architecture through analo-
gies to existing disciplines.” Building on this, Shaw and
Garlan [39] suggest that “software architecture involves
the description of elements from which systems are built.”
A considerable body of work, stemming back to DeRemer
and Kron’s module interconnection languages (MIL) [8],
focuses on the specification, construction, and analysis of
large software systems defined by these terms (e.g., [34],
[27], [16]). Architecture description languages (ADL)
combine a formal specification language with tools sup-
porting the construction and analysis of software systems
from such specifications.

Seeking to separate architectural design from other de-
sign activities, definitions of software architecture stress
the following:
§ “architecture is concerned with the selection of archi-

tectural elements, their interaction, and the constraints
on those elements and their interactions… Design is
concerned with the modularization and detailed inter-
faces of the design elements, their algorithms and pro-

cedures, and the data types needed to support the archi-
tecture and to satisfy the requirements.” [31]

§ Software Architecture is “concerned with issues ... be-
yond the algorithms and data structures of the compu-
tation.” [17]

§ “architecture … is specifically not about … details of
implementations (e.g., algorithms and data structures.)
… Architectural design involves a richer collection of
abstractions than is typically provided by OOD.” [30]

§ “Architecture ? Design? … Design is an activity. Ar-
chitecture, or architectural design, is design at a higher
level of abstraction.” [23]

§ Architecture focuses on the externally visible proper-
ties of software “components.” [2]
In suggesting typical “architectures” and “architectural

styles”, existing definitions consist of examples and offer
anecdotes rather then provide unambiguous, clear notions.

In practice, the terms “architecture”, “design” and “im-
plementation” appear to connote milestones in a contin-
uum between complete details (“implementation”), few
details (“design”), and the highest form of abstraction
(“architecture”). But the amount of detail alone is insuffi-
cient to characterize the differences, because architecture
and design documents often contain information that is
not explicit in the implementation (e.g., design constraints,
standards, performance goals) and therefore they cannot
result from mere omission of detail. A clear distinction
has remained elusive and this lack of distinction is the
cause of much muddy thinking, imprecise communication,
and wasted, overlapping effort.

Confusion inevitably arises from this imprecision, and
architecture is often used as a mere synonym for design.
For example, the “Siemens” catalogue [4] defines “archi-
tectural patterns” that are in par with “design patterns”
defined by the “Gang of Four” [15].

Confusion also stems from the use of the same specifi-
cation language for both architectural and design specifi-
cations. For example, the Software Engineering Institute
(SEI) classifies UML [3] as an architectural description
language [38], and it has become the industry de facto
standard ADL, although UML was specifically designed

to manifest detailed design decisions (and this is its most
common use).

Confusion also exists with respect to the artifacts of
design and implementation. UML class diagrams [3], for
instance, are a prototypical artifact of the design phase.
Nonetheless, class diagrams may accumulate enough de-
tail to allow code generation of very detailed programs, an
approach that is promoted by CASE tools such as Ra-
tional Rose® [36] and System Architect® [33]. Using the
same specification language further blurs the distinction
between artifacts of the design (class diagrams) from the
implementation (source code.)

Why are we interested in such distinctions? With time,
terms that are used interchangeably lose their meaning and
end up as mere platitudes, resulting inevitably in ambigu-
ous descriptions given by developers, and significant ef-
fort is wasted in discussions of the form “by design I
mean… and by architecture I mean…”

The contribution of this paper is to provide insight on
the largely-informal dialectic by appealing to both intui-
tion and to formal ontology. By putting these terms on a
solid footing not only do we disambiguate the progres-
sively murky discourse in “architectural specifications”
but provide a foundation for formal reasoning and analy-
sis, as well as a firm foundation for informal “chalk-talk”
discussions. Finally, tools supporting design and architec-
tural specifications, where intuitive perceptions are insuf-
ficient, will benefit by accurately defining this distinction.

1.1 The Intension/Locality Thesis

The term “abstraction” has been used in many different
contexts with various interpretations. To elucidate the
relationship between architecture, design, and implemen-
tation, we distinguish at least two separate interpretations
for abstraction in our context:
1. Intensional (vs. extensional) specifications are “ab-

stract” in the sense that they can be formally character-
ized by the use of logic variables that range over an
unbounded domain;

2. Non-local (vs. local) specifications are “abstract” in
the sense that they pervade all parts of the system (as
opposed to being limited to some part thereof).
Both of these interpretations turn out to be critical in

distinguishing among the terms architecture, design, and
implementation, which we jointly refer to as the inten-
sion/locality thesis:

(i) Architectural specifications are intensional and
non-local;

(ii) Design specifications are intensional but local;
and

(iii) Implementation specifications are both exten-
sional and local.

The intension/locality thesis is summarized, for easier
reference, in Table 1.

Table 1. The Intension/Locality Thesis

Architecture Intensional Non-local
Design Intensional Local
Implementation Extensional Local

1.2 Clarification and Structure of This Paper

The intension/locality thesis can be understood cor-
rectly only in the context of the ontology defined in the
following section. In Section 0 we define design models,
which are crucial to the remainder of out discussion. De-
sign models are abstractions which provide the underlying
“meaning” of programs. Design models are associated
with programs using a “meaning” (denotation) function,
which allow us to determine whether a specification is
“satisfied” by a program.

In Section 3, we formally define the Intension criterion
and the Locality criterion. We distinguish our interpreta-
tion for “intensionality” from the accepted usage, as we
define it in terms of the “meaning” (denotation) that pro-
grams have, i.e., in terms of design models.

Sections 4, 5, and 6 provide case studies in applying
the Intension and Locality criteria using our formal ontol-
ogy. In Section 4 we demonstrate that implementations
any programming language, including generics and C++
templates are extensional and local. In Section 5 we show
that design patterns such as the Factory Method and de-
sign specifications such as the Enterprize JavaBeans™
and Java™ Swing’s MVC are intensional and local. In
Section 6 we demonstrate that architectural styles such as
Pipes and Filters and Layered Architecture are intensional
and non-local, , and so is the Law of Demeter.

In Section 7, we discuss some of the ramifications of
our criteria. The discussion in UML class diagrams re-
veals that, indeed, class diagrams have a separate place in
the hierarchy of abstractions we describe. Section 8 sum-
marizes the contributions of this paper

2. Setting the Scene

In this section, we provide the underlying formal on-
tology that underlies the Intension/Locality criteria.

2.1 Design Models

Turing [43] and random-access machines [5] provide
robust computational models suitable for reasoning about

algorithms. Other computational models and formalisms
(e.g., Petri nets [32], statecharts [20], and temporal logic
[24]) facilitate reasoning about certain behavioral specifi-
cations.

The discussion in architectural and design specifica-
tions, however, involves reasoning on constructs such as
classes, methods, and function calls. Most other formal-
isms incorporate too many implementation detail and do
not allow a discussion in the appropriate level of abstrac-
tion. As we seek to establish the relation between architec-
tural or design specifications and implementations, we
base our discussion on a formalism that abstracts pro-
grams to a more convenient representation.

On par with evolving algebras [19], Eden and
Hirshfeld [12] demonstrate how to model source code as
design models, which are first order, finite structures in
mathematical logic [1]:
Definition I. Let m designate the pair 〈Um ,Rm〉 , such
that Um={a1,…ak} is a finite set of atoms, and
Rm={R1,…Rn} is a finite set of ground relations
amongst these atoms.

We say that m is a design model. The set of all design
models is designated M.

Table 2. A Java™ program and its denotation (from
[11].)

abstract class Decorator {
 public void Draw();
}
class BorderDecorator extends Decorator {
 public void Draw() {
 Decorator.Draw();
 }
 private int BorderWidth;
}

The design model of this program consists of the following:
Atoms:

C={Decorator, BorderDecorator, int, void}

F={BorderDecorator.Draw, Decorator.Draw }

Relations:
Abstract(Decorator)
Member(Decorator.Draw, Decorator)
Member(BorderDecorator.Draw, BorderDecorator)
Inherit(BorderDecorator, Decorator)
Reference(BorderDecorator, int)
Invoke(BorderDecorator.Draw, Decorator.Draw)
ReturnType(Decorator.Draw, void)
ReturnType(BorderDecorator.Draw, void)

Table 2 depicts a detailed example of a trivial Java™
program and a design model that represents it. As this
example demonstrates, an object-oriented program is ab-
stracted as a collection of definitions of classes and meth-
ods (also routines or function members) and their rela-
tions. Atoms represent classes and methods declared in the
program, such as the class Decorator and the method
Decorator.Draw. Relations represent their correlations,
such as

Inherit(BorderDecorator,Decorator)
Invoke(BorderDecorator.Draw,Decorator.Draw)

Note that design models are abstractions which were
made to reflect only the structural aspects of computer
programs that are relevant to design and architecture.
Hence, our analysis focuses on the declarations of pro-
gram constructions. Obviously, this representation limits
the type of reasoning we may perform (e.g., for discussing
fairness [24]), but it is appropriate for the purposes of our
discussion.

2.2 Specifications, Denotations, and Programs

In this subsection, we discuss specifications, programs,
and their relations. We make some reasonable assump-
tions on the languages used to write specifications. These
assumptions allow us to provide a clear definition for the
intensional criterion (Definition VI).

Let us designate SPEC as the set of formal languages
of any order [1]. Let SPEC* designate the set of all ex-
pressions made in some language in SPEC. A specifica-
tion is an element of SPEC*.

SPEC includes familiar specification languages such
as Z [40], as demonstrated in formulas (3.1) and (3.2),
and LePUS [9], as demonstrated in formula (2). SPEC
also includes programming languages such as Eiffel [28],
C++ [41], and Java™ [18]. Naturally SPEC is not re-
stricted to known programming or specification lan-
guages.

A specification is only useful if we can determine
whether it is “satisfied” or not. Having chosen design
models as our semantics we can ask: Does this model “sat-
isfy” our specification? More importantly, we would like
to be able to answer the question: Does this program sat-
isfy our specification?

To answer these questions, we first define an “in-
stance” of a specification:
Definition II. Let ϕ(x1,…xn) be a first order expression
in SPEC*, such that x1,…xn are free variables in ϕ. Let
m designate a design model (Definition I) containing the
n-tuple of atoms (a1,…an). Let A be the consistent as-
signment [1] of a1,…an to x1,…xn.

If the result of assignment A in ϕ is true in m then we
say that (a1,…an) is “an instance of ϕ in the context of
A”. If there exists such an assignment A, we say that
“m instantiates ϕ”, written m�ϕ.

Definition II extends naturally to n-tuples of sets of at-
oms of any order, and to include expressions in higher
order languages, such as LePUS.

Observe that, in the degenerate case where ϕ has no
free variables (also closed formula, sentence), ϕ is either
true or false in each model m . This distinction will serve
us in defining the Locality criterion (Definition VIII).

What is the expected relation between a program and
an instance? An instance is only a part of the program, and
depending on the specification, every program can contain
zero, one, or any number of instances. In addition, we
expect a “program” to be as a specification that is associ-
ated with only one design model. The association between
“real” programs and design models is provided by a mor-
phism we refer to as the denotation function:
Definition III. Let D : SPEC*→M designate a rela-
tion that maps each element in a subset of SPEC* into a
design model, such that for every expression ϕ in
dom(D) the domain of D , the following conditions
hold:

§ There is exactly one design model mϕ such that

mϕ�ϕ (mϕ instantiates ϕ)

§ D (ϕ)=mϕ (D maps ϕ to mϕ)

We say that D is a denotation function.

The Java™ example in Table 2 and the C++ example
in Table 3 demonstrate typical denotations.

Observe that we expect dom(D) to include only a
small subset of the expressions in SPEC*. Obviously,
there are expressions in SPEC* that are true in more than
one design model, as well as expressions are not true in
any design model.
Definition IV. Based on Definition III, we introduce the
following nomenclature:
PD The set of all programs (the domain of D)

§π¨D D (π)

program An element of PD

Note that only programs have denotations (one denota-
tion for every program).

By Definition IV, there is only one possible denotation
to each program π. Thereof, we may refer to §π¨D as
“the design model (the denotation) of π according to
D .” The converse, however, is not true, and any number

of programs in PD can be denoted by (i.e., mapped by
D to) a single design model (also D is not one-to-one
function.) This conforms to our view of D as means of
abstracting programs. Additional examples for denota-
tions for O-O programming languages are provided in [9].

In the reminder of our discussion, unless specified oth-
erwise, we assume a fixed denotation D , defined along
the lines as demonstrated in Table 2. Thus, we are free to
speak of “a program π” and of “the design model (denota-
tion) of π”, marked §π¨.

We now have a well-defined notion of programs and
specifications. In combination with the definition of an
“instance” of a specification, we can conclusively deter-
mine whether a program satisfies a given specification:
Definition V. Let ϕ designate a specification. Let π des-
ignate a program. We say that π satisfies ϕ iff §π¨�ϕ,
namely, iff the design model of π instantiates ϕ.

In the following sections we will set apart: architecture,
design, and implementation specifications based on ob-
serving properties of the groups of programs that satisfy
each specification

3. The Intension/Locality Criteria

We will now define the concepts of intension and lo-
cality. In the following sections, we will apply these crite-
ria, both formally and informally, to distinguish between
architectural specifications, design specifications, and
implementations.

3.1 The Intension Criterion

Perry and Wolf [31] have established that architectural
specifications must be made in intensional terms. Speak-
ing of the desired properties of an ideal specification lan-
guage for software architecture they write: “We want a
means of supporting a ‘principle of least constraint’ to be
able to express only those constraints in the architecture
that are necessary at the architectural level of the system
description”. It constrains only what it needs to, in terms
of properties imposed over free variables.

Traditionally, intensional specifications define a con-
cept via a list of constraints. For example, mathematical
concepts are usually defined intensionally. For instance:
“A prime number is a number that divides only by itself
and by the number 1”. In contrast, NATO is an organiza-
tion that is defined extensionally, namely, by itemizing its
members: United States, United Kingdom, France, and so
forth.

Using the distinction made by Immanuel Kant [22], we
treat program as an analytic notion, not synthetic, that is,
similar to a mathematical concept. In these terms, we say

that this paper constitutes of analytical reasoning (the In-
tension/Locality criteria) to empirical manifestations of
selection design patterns and architectural styles.

The notion of intensionality that we define here di-
verges slightly from the philosophical concept. We say
that a specification is intensional if and only if it has an
unbounded number of instances (Definition II):
Definition VI. We say that a specification is intensional
iff there are infinitely-many possible instances (Definition
II) thereof. Conversely, all other expressions are exten-
sional.

The corollary that follows establishes the intuition that,
given infinitely many instances, there should also be infi-
nitely many design models that “satisfy” the specification.
Corollary 1. An intensional specification can be instanti-
ated (Definition II) by a non-finite number of design mod-
els.
Proof: According to Definition I and Definition III, every
element in the range of the denotation function is a finite
structure. Thus, for any given formula ϕ and design
model m , m may contain at most a finite number of in-
stances to ϕ. Thus, to allow an infinite number of in-
stances to ϕ, there must be a non-finite number of design
models that instantiate ϕ.

?
Following the ‘principle of least constraint’, an archi-

tectural specification, must have an unbounded number of
instances, or using our terms, is expected to be “inten-
sional”. The same applies to design patterns, as demon-
strated in sections 5.2 and 5, respectively. But what about
other forms of specifications?

Prima facie, it appears that some programming specifi-
cations (such as C++ templates and Eiffel generics) might
also be intensional. This is not true in the context of de-
sign models: As we show in section 4 with detail, specifi-
cations in any programming language, including generics
and interpreted code are, under the assumptions provided
in Definition I and Definition III, extensional. This is an
important point: implementations are extensional and this
alone distinguishes them from design and architecture
specifications. The remaining distinction, between design
and architecture, is one of locality, which is explored next.

3.2 The Locality Criterion

Monroe et. al [30] argue that “Architectural designs are
typically concerned with the entire system.” Similarly, we
observe that an architectural style that pervades a system
[17] manifests a property that is shared across modules of
the system. This intuition motivates the locality criterion:

It captures the intuition that a design specification that is
restricted only to part(s) of the system does not reflect an
architectural property. Consequently, if there are modules
that do not satisfy a certain constraint, then either the con-
straint is not architectural in this program, or else these
modules are not part of the same “program”.

As a simple example, consider applications designed
with a “universal base class”. Although the language does
not require it, several C++ class libraries (e.g., NIHCL
and Microsoft’s MFC) are constructed by this rule. For-
mally, this property can be expressed as follows:

∀c •Class(c)⇒Inherit*(c,Object)

 (1)

 (where Inherit* is the transitive closure of the binary
relation Inherit.) The intension/locality thesis argues that
formula (1) is architectural not only because it is inten-
sional but also because it pervades all parts of the system.
In our example, any class must be bound to Object, so
this clearly has architectural implications.

Subsumption. The locality criterion requires the notion of
subsumption relation between two structures, which re-
quires the following definition:
Definition VII. Let m=〈Um ,Rm〉 , n=〈Un ,Rn〉 be
design models (Definition I). We say that n subsumes m ,
written m°n , iff the following conditions hold:
§ Um⊆Un
§ For every relation R∈Rm there exists a relation

R
_

∈Rn such that R⊆R
_

.
Informally, we say that model n subsumes model m if

m is a “submodel” of n . We can also view n as an “ex-
tension” to m , not unlike “strict inheritance” [42].
Definition VIII. We say that a specification ϕ is local iff
the following condition holds:

If ϕ is satisfied in some design model m then it is sat-
isfied by every design model that subsumes m .

We will now use the Intension and Locality criteria to
illustrate the difference between programs, design specifi-
cations, and architecture specifications.

4. Programs

The definition of instance and the precise expression to
the Intension criterion (Definition VI) allows us to prove
part (iii) of the intension/locality thesis:
The lemma of “extensions”: Programs are extensional
specifications.
Proof: Let π be an element of PD . Let us assume by
negation that π is intensional. By Corollary 1, π can be

instantiated by a non-finite number of distinct design
models. Let us designate this set as P . By
Definition II, π is true in every model in P . However, by
Definition III, there is only one design model such π is
true therein, §π¨D . This contradicts with P in our as-
sumption. Therefore, π cannot be intensional.

?
One may wonder how the lemma of extensions,

phrased to match the wording of the intension/locality
thesis, is different from the very definition of a program
(Definition IV). The subtlety that needs consideration is
the difference between one instance of a formula vs. a
design model that incorporates such an instance (i.e., sat-
isfies the formula.)
Corollary 2. C++ templates are extensional.

We illustrate the proof to this corollary using the de-
sign model of a C++ program with templates, shown in
Table 3. The general proof follows directly from this ex-
ample.

Table 3. A C++ program and its denotation
template <class C> class Stack
 {/* ... /*}

int main() {
 Stack<int> si;
 return 0;
}

This program is interpreted by only one design model,
which consists of the following:

Atoms:
C={Stack, si}

F={main}

Relations:
Generic(Stack)
Instantiate(Stack, si, int)
Return(main, int)

This example illustrates that, while C++ templates may
be viewed as intensional with respect to other semantic
frameworks, the ontology we have provided assigns each
program with just one “interpretation”. The reason is that
the formal semantics of a program (its interpretation) is
defined by the respective design model and not otherwise,
e.g., by the machine code generated from its compilation.
Thus, a template is a concrete construct even if it can be
used to define other concrete constructs, since the notions
of design models and of a denotation we provided guaran-
tee that expressions in every conventional programming
language are extensional.

5. Design Specifications

Design specifications in industry are commonly de-
scribed informally. For the purpose of our discussion, we
use formal specification of widely used design patterns
and class libraries.

5.1 Factory Method

The following example is drawn from the published
patterns literature. This allows us to test our ideas on some
of the most widely published and used design specifica-
tions.

According to the intension/locality thesis, we expect
design pattern specifications to be local and intensional.
First we will develop an intuition about this claim and
then formalize it.

Coplien and Schmidt [6] argue that “design patterns
capture the static and dynamic structures of solutions that
occur repeatedly when producing applications in a par-
ticular context”. Stripped from the context of a particular
application, design patterns represent categories of solu-
tions, each pattern has an unbounded number of imple-
mentations (as implied by the very choice of the name
“pattern”). Thus they are expected to be intensional.

Design patterns are commonly perceived as “less ab-
stract” than architectural specifications. For example, they
are commonly referred to as “microarchitectures” [37],
that is, as if they were like architectures that only apply to
a limited module. Using our terminology, we thus expect
them to be local.

Consider, for example, the Factory Method design pat-
tern [15]. Essentially, the pattern’s solution offers three
sets of participants:
1. A set of product classes
2. A set of factory classes
3. A set of factory methods

The collaborations between these participants are con-
strained as follows:
4. All factory methods share the same signature (thereby

allowing for dynamic binding), and each is defined in a
different factory class.

5. Each factory method produces instances of exactly one
products class.
Figure 1 illustrates the general notion of the pattern.

Observe that the set of 〈factory-i, factory-method-i,
product-i〉 triplets is unbounded, because the number of
possible factory and product classes is not bounded.

factory-
method-1 product-1Produce

factory-
method-n product-nProduce

factory-1

factory-n

Member

Member

. . .

. . .

. . .

Figure 1. The general structure of the “Factory

Method” pattern

For our discussion in design patterns we use LePUS, a
formal specification language for object-oriented design.
A detailed definition of the language appears in [9]. The
five parts of the Factory Method definition are formally
expressed by expressions (2.1) to (2.5) as follows:
Products : P(C)
Factories : P(C)
FactoryMethods : P(F)
Clan(FactoryMethods,Factories)
Produce↔(FactoryMethods,Products)

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

Expressions (2.1) through (2.3) declare two sets of
classes and one set of methods. Expression (2.4) indicates
that the pair 〈FactoryMethods,Factories〉 satisfies
the predicate Clan, meaning that –
1. All “factory methods” share the same signature (i.e.,

they share the same dispatch table);
2. The relation Member is a bijection (i.e., one-to-one

and onto function) between the sets FactoryMethods
and Factories.
Finally, expression (2.5) indicates that the ground rela-

tion Produce is a bijective function between the set
FactoryMethods and the set Products.

It is evident that the composite expression (2.1) to
(2.5), designated φ? below, is intensional.
Corollary 3. “Factory method” is local.
Proof: We will show that, given any design model m
such that φ

å
 is true therein, then φ

å
 is true in any design

model that subsumes m .

Let m=〈U,R〉 be a design model such that φ
å

 is true

therein. The complete specification of φ
å
 is thus:

∃Products,Factories,FactoryMethods •
 (∀m1,m2 ∈FactoryMethods •
 SameSignature(m1,m2)) ∧
 (∀m∈FactoryMethods ∃ f∈Factories •
 Member(m,f)) ∧
 (∀ f∈Factories ∃m∈FactoryMethods •
 Member(m,f)) ∧
 (∀m∈FactoryMethods ∃p∈Products •
 Produce(m,p)) ∧
 (∀p∈Products ∃m∈FactoryMethods •
 Produce(m,p))

Since φ
å

 is true in m , Um must contain three sets of at-

oms, p1,…pn, f1,…fn, and m1,…mn, such that they satisfy

the existentially-quantified variables Products,
Factories, and FactoryMethods in φ

å
, respectively.

Thus, we infer the following:

1. SameSignature(mi,mj) holds for every pair of
methods mi,mj;

2. There exists n “triplets” in the form 〈pi,fj,mk〉
such that:
§ Member(mk,fj)
§ Produce(mk,pi)

3. Every element of one of the sets p1,…pn, f1,…fn,
and m1,…mn occurs in exactly one “triplet”.

Let n=〈Un ,Rn〉 designate a design model that sub-

sumes m . To conclude our proof we will show that φ
å

 is

true in n .

By Definition VII, p1,…pn, f1,…fn, and m1,…mn exist

also in Un . Also, Rn includes relations Member and

Produce that are supersets of the respective relations in

Rm . Thus, the same triplets satisfy the relations Member

and Produce in Rn . Thus, φ
å

 is true in n.
?

Less formally, we say that Factory Method is local be-
cause if one design models incorporates an instance of the
pattern then any design model that subsumes it also con-
tains the atoms and relations that constitute the same in-
stance, i.e., the same instance of φ?.

The same line of reasoning can be applied to the speci-
fications [9] of most of the design patterns from the
Gamma et. al [15] catalogue.

5.2 Other Design Specifications

The place of other design specifications within the in-
tension/locality classification may be less obvious then
that of design patterns. Thus, we have carried out our
analysis on the formal rendering of two additional design
specifications: MVC (Model-View-Controller) “usage
pattern” in Java™ Swing class library, and of Enterprise
JavaBeans™.

In lack of space, we cannot quote here the formal
specifications but only the results of our analysis. The
interested reader may find both specifications in [10]. We
can report that our analysis confirms that, as predicted by
the intension/locality thesis, both specifications fall under
the “design” category, namely, they are intensional and
local.

6. Architectural Specifications

In this section, we demonstrate that two of the most
common architectural styles are both intensional and non-
local, fitting with our definition of what it means to be
“architectural”, from section 1.1. We also demonstrate
that the Law of Demeter is, in fact, architectural.

6.1 Layered Architecture

Garlan and Shaw [17] describe the layered architec-
ture style such that “An element of layer k may depend
only on elements of layers 1,…k.” Formally, this descrip-
tion can be rephrased in Z as follows:

∀e ∃!k∈{N}•Layer(e)=k

(3.1)

(i.e., each element is defined in exactly one layer), and
∀x,y •

Depends(x,y)⇒Layer(x)≥Layer(y)

(3.2)

(i.e., the definition of each element may “depend” only
on the definition of elements of same layer or of lower
layers.)

It is trivial to prove that conjunction of formulas (3.1)
and (3.2) (designated α below) can be satisfied by an
unbounded number of programs. Thus, α is intensional.
Corollary 4. “Layered architecture” is non-local.
Proof: Let m=〈U,R〉 designate a design model such
that m�α. It is easy to construct a new model
m
_

=〈 U
_

,R
_

〉 that subsumes m (namely, m°m
_

), but α is
not true therein (namely, m

_
�α), as follows:

§ U
_

 @ U∪{ξ} , where ξ is an entity that is not in
U;

§ R
_

 @ R

Clearly, m

_
 subsumes m . As Layer(ξ) is not defined,

expression (3.1) is not true in m
_

 and m
_

�α. Thus, α is
non-local.

?
Less formally, to prove this corollary we simply show

that, to any program that is layered, it is easy to add an
element that violates the principle.

Of course, we may selectively apply a non-local speci-
fication ϕ only to certain parts of a program. But what
does it mean if only part of our program is “layered”?
Does it mean that Layered architecture can sometimes be
local?

Discussion. Is it possible for a non-local specification,
such as layered architecture, be restricted only to a part of
the program? Obviously. That simply means that parts of
the program satisfy the non-local rule, while other parts
violate it. In fact, this property is exactly what makes the
layered architecture non-local: Because it may be violated
anywhere in the program, we say that is not localized to a
specific portion of the system. This example is illustrated
in Figure 2 and in the discussion which follows.

A
Layered

B
Layered

C
Not layered

Figure 2. A three-module, partially-layered program
1. Is layered architecture (expressions

(3.1) and (3.2)) non-local?
True (always,
by definition)

2. Does this program satisfy the lay-
ered-architecture?

False

3. Does part of this program satisfy
layered architecture?

True

Does it mean that non-locality is meaningless? Not at

all. Non-locality is a property of a specification; and, as
we further demonstrate in the following subsections, ar-
chitectural specifications are always non-local. However,
we may choose to apply a specification only to some parts
of the system, and violate it in others.

To summarize, it is not meaningless neither contradic-
tory to state that architectural specifications can be ap-
plied selectively such that they are violated by some parts
of a specific program. Formally:

Corollary 5. If a specification ϕ is (deliberately) violated
in module m in program π, then either one of the follow-
ing is true:
§ ϕ is not satisfied by π, or
§ m is not part of π (i.e., it belongs to a separate

program.)
In conclusion, if an architectural style is violated by

even one part of the program, it can no longer be consid-
ered an architectural property of this program.

In the example of layered architecture, a module that
does “layer bridging” in a layered architecture program
(i.e., violates the layering principle) should not be consid-
ered as part of the layered program; instead, we perceive it
a separate program.

While this conclusion may seem counter-intuitive at
first, it is actually a powerful view on exceptions to archi-
tectural constraints. A module that does layer bridging
requires different reasoning and different management
than the rest of the layered system. It not only should, but
must, be treated as an exception, or else the power of the
layering will be compromised. Exceptions to an architec-
tural style should have attention called to them and be
made the focus of intense analysis. Our reasoning pro-
vides a sound, formal basis for saying when a portion of a
program is an exception to an architectural style.

6.2 Pipes and Filters

According to Garlan and Shaw [17], ”In a pipes and
filter style each component has a set of inputs and a set of
outputs. A component reads streams of data on its inputs
and produces streams of data on its outputs.”

Dean and Cordy [7] present a visual formalism defined
as a context-free grammar, and formulate the pipes and
filter style as follows:

P&F+ + ::= + +

+ + P&F +

Figure 3. Pipes and Filters (adapted from [7]). A

circle in the visual language represents a “task”, ar-
rows represent streams. The plus sign is the BNF

symbol for “one or more.”

T1

. . .

.

. . .T2 Tk+1

S1,1

S1,N1

S2,1

S2,N2

Sk,1

Sk,Nk
Figure 4. The general structure of programs that

parse Figure 3.

A “program” in STSA (in absence of an explicit name,
the authors’ initials serve us with reference to the formalism) is
represented as a typed, directed multigraph. An architec-
tural style is defined as a context-free language. Thus, an
expression in STSA defines a collection of graphs in a
visual notation, such as Figure 3. Hence, according to
Dean and Cordy, a “program” satisfies the pipes and fil-
ters architecture if it “parses” Figure 3. Figure 4 illustrates
the kind of programs that parse the grammar defined in
Figure 3.

Before we can reason about Figure 3, we must demon-
strate a denotation function which maps every “program”
in STSA to a design model. For the purpose of our discus-
sion in this section, it suffices to restrict ourselves to mul-
tigraphs that contain tasks and streams. More specifically,
let G designate a multigraph whose nodes are “tasks” and
whose arcs are “streams”. In the denotation we choose,
tasks and streams are mapped into atoms. The relations we
have in our respective design model consist of
§ the unary relations Task(x) and Stream(x), and
§ the binary relation Connect(x,y)

which indicates that the directed arc representing
stream x terminates at the node representing task y (or that
the directed arc representing stream y begins at the node
representing task x.)

It is easy to see that the general form of programs that
parses Figure 3 is that of a directed multi-path, as depicted
in Figure 4, and that the design models of these programs
have the general form illustrated in formula (4).
Connect(T1,S1,1),…Connect(T1,S1,N1), …
 Connect(S1,1,T2),…Connect(S1,N1,T2),
…
Connect(Tk,Sk,1), …Connect(Tk,Sk,Nk), …
 Connect(Sk,1,Tk+1),…Connect(Sk,Nk,Tk+1)

(4)

It is trivial to see that there is an unbounded number of

such programs. Therefore, the architectural style Pipes
and Filters (denoted φ) is intensional.
Corollary 6. “Pipes and Filters” is non-local.
Proof: Let m designate a model that satisfies φ. It is easy
to construct a model that subsumes m but does not satisfy
φ: By simply adding a new task to the model, Tx, such

that no stream connects to Tx, we get a new model that
subsumes m and yet does not satisfy π. Therefore φ is
not local.

?
6.3 Law of Demeter

So far we have shown that two classic architectural
styles meet our criteria for being “architectural”. This is
expected. But our criteria also turn up some less expected
results: The Law of Demeter [26] was created as a design
heuristic. It was introduced to simplify modifications to a
program and to reduce its complexity. The informal de-
scription of the law for functions is given in Table 4.

Table 4. Law of Demeter for functions
For all classes C, and for all methods M attached to C,

all objects to which M sends a message must be instances
of classes associated with the following classes:
§ The argument classes of M (including C).
§ The instance variable classes of C.
(Objects created by M, or by functions or methods

which M calls, and objects in global variables, are consid-
ered arguments of M.)

We may formulate the language of Table 4 as follows:
∀ f1,f2,c1,c2 •
 Member(f1,c1) ∧
 Member(f2,c2)∧
 Invoke(f1,f2) ⇒
 Member(c1,c2) ∨ ArgOf(c2,f1) ∨ c1=c2

(5)

Formula (5) is evidently intensional and non-local.

That is, it has infinitely many instantiations and it per-
vades the entire program. To prove this, observe that any
program that satisfies (5) can be expanded with source
code that violates the law of Demeter, such as demon-
strated by the C++ source code in Table 5. In fact, it is
the violation that proves that the law of Demeter is non-
local.

Table 5. An add-on to a C++ program which violates
the Law of Demeter

struct NewName1 {
 void foo();
};
struct NewName2 {
 NewName1 y;
};
class NewName3 {
 NewName2 x;
 void bar() {
 x.y.foo();
 }
};

In conclusion, the law of Demeter, which was created
as a design rule, is in fact architectural, i.e., it is not ex-
pected to be limited to one part of the system but satisfied
throughout, in coding practices and in design walk-
throughs.

This example demonstrates the benefit of making our
distinctions explicit and the power of rendering them pre-
cise, without which we would be unable to determine this
property (of the Law of Demeter) conclusively.

7. Analysis

Clearly, the case studies in Sections 5 and 5.2 are not
coincidental. The same line of reasoning used for the Fac-
tory Method can be used for many other (if not all) of the
design patterns in [15], as well as for the architectural
styles by Garlan and Shaw [17]. Examples drawn from
other formal languages proposed for the specification of
design patterns, such as Constraint Diagrams [25], DisCo
[29], and Contracts [21], bring forth sample specifica-
tions, are clearly intensional as well. This motivates the
following hypothesis:
The hypothesis of intensional specifications. All “design
patterns” and “architectural styles” are intensional.

A direct proof for this hypothesis requires a formaliza-
tion of “all” design patterns and architectural styles. The
first problem with this is that no given catalogue purports
to contain “all” patterns and styles, nor do we expect such
a catalogue to be possible (except perhaps in the analytic
sense.) Another problem arises from the mostly informal
definitions given to patterns and styles. Limited attempts
have been made to prove this hypothesis [14] [11], but
naturally the proofs provided do not cover all known pat-
terns and styles. That is why the “hypothesis of intensional
specifications” remains a hypothesis.

7.1 Specific “Design” and “Architectures”

With the increase in popularity of the terms and their
proliferation in the literature, the terms design and archi-
tecture often appear in a concrete context, as in “the de-
sign of this program.” This usage implies that these terms
can also be used with reference to extensional specifica-
tions, but only with reference to a concrete program. We
suggest that “the design of program x” refers to the in-
stance implemented in a program of a general design rule
(e.g., design pattern.) Since instances (Definition II) are
extensions, this resolves the apparent difficulty in the in-
tension/locality thesis.

7.2 “Extensional” Vs. “Local”

It appears that non-locality is a “stronger” property
than intensionality. For example, we expect every pro-
gram to be local. Below, we prove this intuition.
Definition IX. The sequence of natural extensions to a
design model m=〈Um ,Rm〉 is the infinite sequence of
models m0,m 1,m 2,… such that:
§ m 0 @ m
§ m i @ 〈Ui,R〉 and Ui=Ui-1∪{ei}

where e1,e2… is an infinite sequence of “new” entities
that are pairwise distinct and none of which is in Um .
Corollary 7. It is trivial to show that each design model in
the sequence of natural extensions to m subsumes it.
Theorem. Non-local specifications are also intensional.
Proof: We prove this by showing that if a specification is
extensional then it is local. Let ϕ designate an exten-
sional specification. Let m=〈Um ,Rm〉 designate a de-
sign model such that m�ϕ. It suffices to show that there
exists a design model n such that m°n but n�ϕ.

From Corollary 1 we conclude that the set of design
models where ϕ is true is finite, while the set of natural
extensions (Definition IX) to m: m 0,m 1,m2,… is infi-
nite. Therefore, there exists a model n in the sequence of
natural extensions to m such that n�ϕ. By Definition
IX, m°n .

?
We may conclude that the relation between exten-

sional, intensional, and non-local specifications can be
summarized in the following Venn diagram:

Extensional
specifications

Intensional
specifications

Non-local
specifications

Figure 5. Intensional vs. non-local specifications

7.3 UML Class Diagrams

Since UML is used widely as a design and architectural
notation, it is of particular interest to understand the place

of UML diagrams in the classification we introduced: Are
they local? Intensional?

Despite the wide-spread attempts towards rendering the
notation with well-defined semantics (e.g., the research
group known as pUML [35]), most types of UML dia-
grams have no well-defined semantics. Thus, our discus-
sion therein is largely informal, assuming that any formal
interpretation for class diagrams will be consistent with
the informal semantics.

In terms of design models, we can assume that any
such interpretation will associate class icons with atoms of
type class, operations with atoms of type method, as
well as provide us with a specification of a set of associ-
ated relations. It is easy to see why the specification given
by a class diagram is local; but is it intensional?

To answer this question, observe that a UML class dia-
gram is commonly viewed as an under-specification; that
is, it is a specification whose implementations may have
any number of additional elements that are not mentioned
in the diagram. Under this assumption, UML class dia-
grams are intensional, since there is an unbounded number
of elements that can be added to any implementation.

Unlike the formulas used in our examples, however,
the abstraction that class diagrams provide is of the most
rudimentary type, that is, by omitting information but
without using free variables. A UML diagram provides no
information on the elements that are not explicitly de-
scribed. Thus, class diagrams are intensional only in a
trivial sense, in the same way that the code excerpts in
Table 2 and Table 3, if taken not as complete programs
but just as excerpts thereof, are intensional. Clearly, this
sense is quite unlike the way architectural and design
specifications are intensional. The following definition
facilitates this distinction:
Definition X. An intensional specification ϕ is quasi-
extensional iff §ϕ¨, namely, the set of design models that
satisfy ϕ, has a single lower bound with respect to the
partial-ordering relation “subsumption”.

It is trivial to show that subsumption induces partial
ordering on a set of design models. Definition X, how-
ever, assigns specific importance to sets of design models
that contain one member such that all other design models
subsume it.
Corollary 8. UML class diagrams are quasi-extensional.

Figure 6 illustrates why UML class diagrams are quasi-
extensional. In contrast, it is trivial to show that the inten-
sional specifications quoted in this paper are not quasi-
extensional.

Decorator.Draw();

Decorator

Draw()

BorderDecorator

Draw()

– BorderWidth : int

The minimal design model that satisfies this diagram ap-
pears in Table 2. Since every program that implements this
diagram satisfies it, there are infinitely-many other design
models that satisfy it.

Figure 6. A UML class diagram and its interpretations

8. Summary

The terms architecture, design, and implementation
have been heavily used by both researchers and practitio-
ners for over a decade, but this usage has always been
informal and intuitive. But this intuition has not always
provided a sound basis for reasoning, discussion, and
documentation. This paper provided a sound formal basis
for the distinction between the three terms, based upon
best practices.

The intension/locality thesis argues that architectural
styles are intensional and non-local, design patterns are
intensional and local, and implementations are exten-
sional and local. We provided a proof for parts of our
thesis and demonstrated in detail the truth underlying the
remainder.

What are the consequences of precisely knowing the
differences between the terms architecture, design and
implementation? The ramifications are many. Among oth-
ers, these distinctions facilitate –
§ the distinction between architecture and design docu-

ments;
§ the distinction between local and non-local rules, i.e.,

between the design rules that need be enforced
throughout a project vs. those that are of a more limited
domain;

§ determining what constitutes a uniform program, e.g., a
collection of modules that satisfy the same architectural
specifications.
For example, in the industrial practice of software ar-

chitecture, many statements that are said to be 'architec-
tural' are in fact local, e.g., both tasks A and B execute on

the same node, or task A controls B. Instead, a truly Ar-
chitectural statement would be, for instance, for each tasks
A,B which satisfy ϕ, A and B will execute on the same
node and Control(A,B). More generally, for each speci-
fication we know we should determine whether it is a de-
sign statement, describing a purely local phenomenon
(and hence of secondary interest in documentation, dis-
cussion, or analysis), or whether it is this an instance of an
underlying, more general rule.(2)

Acknowledgements
Many thanks to Jens Jahnke and Alejandro Allievi for

their comments. We thank Mary U. Anna for her inspira-
tion. This research was supported in part by the Natural
Sciences and Engineering Research Council, Canada and
by the U.S. Department of Defense.

References
[1] J. Barwise, ed., (1977). Handbook of Mathematical

Logic. Amsterdam: North-Holland Publishing Co.
[2] L. Bass, P. Clements, R. Kazman (1998). Software

Architecture in Practice. Reading, MA: Addison
Wesley Longman, Inc.

[3] G. Booch, I. Jacobson, J. Rumbaugh (1999). The
Unified Modeling Language Reference Manual.
Reading, MA: Addison-Wesley.

[4] F. Buschmann, R. Meunier, H. Rohnert, P.
Sommerlad, M. Stal (1996). Pattern-Oriented Soft-
ware Architecture – A System of Patterns. New
York, NY: Wiley and Sons.

[5] S. A. Cook, R. A. Reckhow (1973). “Time-Bounded
Random Access Machines.” Journal of Computer
and System Sciences, Vol. 7, pp. 354—475.

[6] J. Coplien, D. Schmidt, eds. (1995). Pattern Lan-
guages of Program Design. Reading, MA: Addison-
Wesley.

[7] T. R. Dean, J. R. Cordy. "A Syntactic Theory of
Software Architecture." IEEE Trans. on Software
Engineering 21 (4), Apr. 1995, pp. 302—313.

[8] F. DeRemer, H. H. Kron. "Programming-in-the-
large versus programming-in-the-small." IEEE
Trans. in Software Engineering 2 (2), June 1976,
pp. 80—86.

[9] A. H. Eden. “Formal Specification of Object-
Oriented Design.” International Conference on
Multidisciplinary Design in Engineering CSME-
MDE 2001, Nov. 21—22, 2001, Montreal, Canada.

[10] A. H. Eden. "LePUS: A Visual Formalism for Ob-
ject-Oriented Architectures." The 6th World Con-
ference on Integrated Design and Process Technol-
ogy, Pasadena, California, June 26—30, 2002.

2 This final example was suggested by an anonymous

ICSE reviewer.

[11] A. H. Eden. "A Theory of Object-Oriented Design."
Information Systems Frontiers 4 (4), Nov.—Dec.
2002. Kluwer Academic Publishers.

[12] A. H. Eden, Y. Hirshfeld. "Principles in Formal
Specification of Object Oriented Architectures."
CASCON 2001, Nov. 5—8, 2001, Toronto, Canada.

[13] A. H. Eden, R. Kazman (2003). “On the Definitions
of Architecture, Design, and Implementation”.
Technical report, Department of Computer Science,
University of Essex.

[14] P. van Emde Boas (1997). "Resistance Is Futile;
Formal Linguistic Observations on Design Pat-
terns." Research Report no. CT-19997-03, The In-
stitute for Logic, Language, and Computation,
Universiteit van Amsterdam.

[15] E. Gamma, R. Helm, R. Johnson, J. Vlissides
(1994). Design Patterns: Elements of Reusable Ob-
ject Oriented Software. Addison-Wesley.

[16] D. Garlan, R. Monroe, D. Wile (1997). "ACME: An
Architectural Description Interchange Language."
Proceedings of CASCON'97. Toronto, Ontario.

[17] D. Garlan, M. Shaw (1993). "An Introduction to
Software Architecture." In V. Ambriola, G. Tortora,
eds., Advances in Software Engineering and
Knowledge Engineering, Vol. 2, pp. 1—39. New
Jersey: World Scientific Publishing Company.

[18] J. Gosling, B. Joy, G. Bracha (2000). The Java™
Language Specification, 2nd edition. Reading, MA:
Addison Wesley Longman, Inc.

[19] Y. Gurevich. "Sequential Abstract State Machines
Capture Sequential Algorithms". ACM Trans. on
Computational Logic 1 (1), July 2000, pp. 77—111.

[20] D. Harel. "Statecharts: A Visual Formalism for
Complex Systems." Science of Computer Pro-
gramming 8 (3), June 1987, pp. 231—274.

[21] R. Helm, I. M. Holland, D. Gangopadhyay. "Con-
tracts: Specifying Behavioral Compositions in Ob-
ject-Oriented Systems." Proceedings OPP-
SLA/ECOOP, Oct. 21—25, 1990, Ottawa, Canada.

[22] I. Kant (1781). “The Critique of Pure Reason”.
Translated into English by N. K. Smith, Macmillan
Press Ltd.

[23] R. Kazman (1999). "A New Approach to Designing
and Analyzing Object-Oriented Software Architec-
ture." Guest talk, Conference On Object-Oriented
Programming Systems, Languages And Applica-
tions – OOPSLA'99.

[24] L. Lamport (1994). "The Temporal Logic of Ac-
tions." ACM Trans. on Programming Languages
and Systems 16 (3), May 1994, pp. 872—923.

[25] A. Lauder, S. Kent (1998). "Precise Visual Specifi-
cation of Design Patterns." In Proceedings of the
12th ECOOP, Brussels, Belgium, July 1998. Lec-
ture Notes in Computer Science 1445. E. Jul (ed.)
Berlin: Springer-Verlag.

[26] K. Lieberherr, I. Holland, A. Riel (1988). "Object-
oriented programming: an objective sense of style."
Conference proceedings OOPLA'88. San Diego,
CA, pp. 323—334.

[27] D. C. Luckham et. al. "Specification and Analysis of
System Architecture Using Rapide." IEEE Trans. on
Software Engineering 21 (4), Apr. 1995, pp. 336—
355.

[28] B. Meyer (1991). Eiffel: The Language. New Jer-
sey, NJ: Prentice Hall.

[29] T. Mikkonen (1998). "Formalizing Design Pat-
terns." Proceedings of the International Conference
on Software Engineering, April 19—25, 1998, pp.
115—124. Kyoto, Japan.

[30] R. T. Monroe, A. Kompanek, R. Melton, D. Garlan.
“Architectural Styles, Design Patterns, and Ob-
jects.” IEEE Software 14(1), Jan. 1997, pp. 43—52.

[31] D. E. Perry, A. L. Wolf (1992). “Foundation for the
Study of Software Architecture.” ACM SIGSOFT
Software Engineering Notes, 17 (4), pp. 40—52.

[32] C. A. Petri (1962). "Communications with Auto-
mata." Technical report RADC-TR-65-377. Prince-
ton, NJ, Applied Data Research.

[33] Popkin Software (2000). System Architect 2001.
New York, NY: McGraw-Hill.

[34] R. Prieto-Diaz, J. Neighbors. "Module Interconnec-
tion Languages." Journal of Systems and Software 6
(4), 1986, pp. 307—334.

[35] The Unambiguous UML Consortium page:
www.cs.york.ac.uk/puml/

[36] T. Quatrani (1999). Visual Modelling with Rational
Rose 2000 and UML, Revised. Reading, MA: Addi-
son Wesley Longman, Inc.

[37] D. C. Schmidt, M. Stal, H. Rohnert, F. Buschmann
(2000). Pattern-Oriented Software Architecture,
Vol. 2: Patterns for Concurrent and Networked Ob-
jects. New York, NY: John Wiley & Sons, Ltd.

[38] SEI (2002). Carnegie Mellon’s Software Engineer-
ing Institute. http://www.sei.cmu.edu.

[39] M. Shaw, D. Garlan (1996). Software Architecture:
Perspectives on an Emerging Discipline. Upper
Saddle River, NJ: Prentice Hall.

[40] J. M. Spivey (1989). The Z Notation: A Reference
Manual. New Jersey: Prentice Hall.

[41] B. Stroustrup (1997). The C++ Programming Lan-
guage, 3rd edition. Reading, MA: Addison-Wesley.

[42] A. Taivalsaari (1996). "On the Notion of Inheri-
tance." ACM Computing Surveys, Vol. 28, No. 3,
pp. 438—479.

[43] A. Turing (1936). “On Computable Numbers, with
an Application to the Entscheidungsproblem.” Pro-
ceedings of the London Mathematical Society 2
(42), 1936-7, pp. 230—236.

[44] J. M. Vlissides, J. O. Coplien, N. L. Kerth (1996).
Pattern Languages in Program Design 2. Reading,
MA: Addison-Wesley.

