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Abstract

Likelihood-based encoding models founded on point-processes have received signifi-

cant attention in the literature because of their ability to significantly improve neural

decoding in Brain-Machine Interface applications. We propose an approximation to the

likelihood of a point-process model of neurons which holds under assumptions about

the continuous time process that are physiologically reasonable for neural spike trains:

the presence of a refractory period, the predictability of the conditional intensity func-

tion, and its integrability. These are properties which apply to a large class of point-

processes arising in applications other than neuroscience. The proposed approach has

several advantages over state-of-the-art conventional ones. In particular, one can use
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standard fitting procedures for generalized linear models (GLMs) based on iteratively-

reweighted least-squares (IRWLS) while improving the accuracy of the approximation

to the likelihood and reducing bias. As a result, the proposed approach can use a larger

bin size to achieve the same accuracy as conventional approaches would with a smaller

bin size. This is particularly important when analyzing neural data with high mean and

instantaneous firing rates. We demonstrate these claims on simulated and real neural

spiking activity. By allowing a substantive increase in the required bin size, our algo-

rithm has the potential of lowering the barrier to the use of point-process methods in an

increasing number of neural engineering applications.

1 Introduction

Technological advances of the past decade have given us an unprecedented glimpse into

the inner workings of the brain. A common paradigm in experimental neuroscience is

to record the activity of groups of neurons in various behavioural settings and/or in re-

sponse to sensory stimuli. In computational neuroscience, this paradigm is exploited by

building models of the encoding process from behaviour/stimulus to neural responses.

In recent years, likelihood-based encoding models based on point-processes have re-

ceived significant attention in the literature (Paninski et al., 2007; Barbieri et al., 2001;

Wang and Principe, 2010; Berger et al., 2011; Meng et al., 2011; So et al., 2012) be-

cause of their ability to significantly improve neural decoding tasks (Brown et al., 2001;

Paninski et al., 2010; Srinivasan et al., 2006; Barbieri et al., 2005b). The goal of en-

coding models is to improve our understanding of brain function and, most importantly,
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to help to design algorithms for inferring behaviour/stimulus from previously unseen

neural data, a processed referred to as decoding and commonly used in the design of

brain-machine interfaces (BMIs) (Shoham et al., 2005; Srinivasan et al., 2007; Sanchez

et al., 2008).

Likelihood-based models of neural spike trains are based on a continuous-time

point-process model of a neuron. A point-process is fully characterized by its condi-

tional intensity function (CIF), which generalizes the notion of rate of a Poisson process

to include time and history dependence. Generalized linear models (GLMs) are a class

of discrete-time models based on log-linear expansions of a discrete-time version of

the conditional intensity function (CIF) of a point process (Berman and Turner, 1992;

Paninski, 2004; Truccolo et al., 2005). Berman and Turner (1992) were among the first

to suggest the use of discretization for approximate maximum likelihood estimation of

point-process models using the GLM framework. In neuroscience, this has resulted

in the development of successful frameworks to characterize the dynamics of various

neural systems (Paninski, 2004; Truccolo et al., 2005) and to develop algorithms for

decoding based on neural data, with applications to BMIs (Chiel and Thomas, 2011).

In this paper, we demonstrate that this approximation can be significantly improved

by imposing a biophysically-motivated structure on the continuous-time CIF of a point-

process model of a neuron. Coincidentally, this translates into a specific, data-dependent,

form of the weighting function in Berman’s approximation. The proposed approxima-

tion holds under assumptions about the continuous time process that are reasonable for

neural spike trains: the presence of a refractory period, the predictability and integra-

bility of the CIF. These properties are not exclusive to neural point processes, but also
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apply to point process models of geysers, heart beats and repeated failures of compo-

nents in engineering systems (see Section 2.4).

The resulting point-process likelihood has several advantages over state-of-the-art

approximations (Paninski, 2004; Truccolo et al., 2005). First, one can use standard

fitting procedures for GLMs based on iteratively-reweighted least-squares (IRWLS)

while improving the accuracy of the approximation to the likelihood and reducing bias.

Stated otherwise, the proposed approach can use a larger bin size to achieve the same

accuracy as the mentioned approaches with a smaller bin size. This latter aspect is

particularly important when analyzing neurons with high spiking rates which often re-

quire a sampling frequency of at least 10 kHz. Tested on one example of this type

of recordings, our method achieved at 1 kHz results comparable to those of a Poisson

GLM (Paninski, 2004; Truccolo et al., 2005) at 10 kHz. This noteworthy improvement

might translate into a reduced computational cost, reduced storage cost and less strin-

gent requirements for the hardware acquisition and processing chain of BMIs. Second,

we find that our formulation partly obviates the use of the correction techniques intro-

duced in (Haslinger et al., 2010) for goodness-of-fit assessment using the time-rescaling

theorem and discrete-time approximations to the CIF. We demonstrate our claims on

simulated data, as well as real data from rat thalamic neurons recorded in response to

periodic whisker deflections varying in velocity (Temereanca et al., 2008). These data

are characterized by high mean and instantaneous firing rates, on the order of 20 and

200 Hz respectively.

The remainder of our treatment proceeds as follows. First, we introduce our model

of continuous-time point processes with refractoriness (Section 2), along with the re-
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sulting discrete-time likelihoods. In this section, we also compare the latter to con-

ventional discrete-time approximations of continuous-time point process likelihoods.

We use simulations to demonstrate the power of our new model which accounts for

refractoriness. Then, in Section 3, we propose a class of parametric log-linear models

and discuss the connections with conventional GLMs and iteratively re-weighted least-

squares. We apply the log-linear models to analysis of real neural data. Finally, we

provide concluding remarks in Section 4.

2 A model of continuous-time point process with refrac-

toriness

We consider a continuous-time point process defined in (0, T ], with conditional inten-

sity function (CIF) λ(t |Ht) where Ht is a left-continuous filtration representing the

history of the point process, of its afferent point process covariates, of other covariates

and of deterministic inputs up to, but excluding, time t. Let N(t) be the counting pro-

cess associated with the point process. For each realization,N(t) is a càdlàg (continue à

droite, limite à gauche; right continuous with left limits) function counting the number

of events observed up to, and including, time t (Andersen et al., 1995) (see Figure 1).

2.1 Key assumptions

We assume that the continuous-time point process belongs to the family of point pro-

cesses for which the following properties hold.

(P1) Refractoriness: The CIF, λ(t |Ht), is a piecewise Lipschitz continuous function
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in t which jumps to zero immediately after the occurrence of every event:

lim
ε→0+

λ(t+ ε |Ht+ε) = 0 ∀t : dN(t) = 1 . (1)

A graphical representation of this property is given in Figure 1. This assumption

is plausible for point processes with a refractory period such as neural spike trains,

motor-unit firing trains (Hu et al., 2004), and others (see Section 2.4).

(P2) Predictability: The CIF changes slowly in response to new information coming

from covariates and deterministic inputs. For all ε > 0 there exist ∆ > 0 such

that, given s ∈ (0, T ], τ ∈ (0,∆] and N(s) = N(s+ τ), we have:

sup
t∈(s,s+τ)

|λ(t |Ht)− λ(t |Hs)| < ελ(t |Hs) . (2)

(P3) Integrability: Given the history at a time s, the function λ(t |Hs) is Riemann

integrable for t ∈ (s, T ]. This implies that for all ε > 0 there exists ∆ > 0 such

that for t1 ∈ (s, s+ ∆]:

∣∣∣∣∣∣λ(t1 |Hs) ∆−
s+∆∫
s

λ(t |Hs) dt

∣∣∣∣∣∣ < ε . (3)

Therefore, we can define a representative value λ̃ of λ(t |Hs) in (s, s + ∆] such

that the former approximates the integral mean value of the latter inside the inter-

val:

λ̃ ' 1

∆

s+∆∫
s

λ(t |Hs) dt . (4)

6



[Figure 1 about here.]

2.2 Implications of key assumptions on discrete-time approxima-

tion

Given ∆, small enough so that the key assumptions hold and that the probability of

two events in the same bin is negligible, we partition the observation interval in I bins

of width ∆ and attempt to relate the original continuous-time point process with the

resulting discrete-time point-process.

Probabilities of key events: When (P2) and (P3) apply, the probability of observing

no events in (ῑ∆, i∆] (ῑ is short for i−1) can be approximated as:

Pr (N(i∆)−N(ῑ∆)=0) = e
−
i∆∫̄
ι∆

λ(t |Hs) dt

' e
−
i∆∫̄
ι∆

λ(t |Hῑ∆) dt

' e−λi∆ (5)

where λi is the representative value of the CIF inside the i-th bin according to (4). If

(P1) also applies and ∆ is sufficiently small, the probability of more than one event in a

given bin is negligible because the first event causes the CIF to be approximately zero

for the remaining of the bin. In fact, while for a generic point process the probability

of two events occurring in the same bin of infinitesimal size ∆ is O(∆2), when (P1)

holds, one can prove that this probability is O(∆3) (see Appendix A). Therefore, the

probability of observing exactly one event is simply 1 − e−λi∆. As expected, for ∆

infinitesimal, the first order Taylor expansions of the probability of no events and of

that of one event coincide with 1− λi∆ and λi∆, respectively, i.e., with the results of a
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Bernoulli approximation of the Poisson process.

Discrete-time point-process PMF: We define the indicator function of the discrete-

time point process as ∆Ni = min{1, N(i∆)−N(ῑ∆)}, a function that takes value zero

if no events were observed in the i-th bin and one otherwise. Therefore, a given realiza-

tion of the point process can be represented as a binary sequence ∆N1:I = {∆Ni}Ii=1

with probability mass function (PMF):

Pn(∆N1:I) =
I∏
i=1

(
1− e−λi∆

)∆Ni (
e−λi∆

)1−∆Ni (6)

where we use the subscript “n” to remind us that this is the PMF of a discrete-time

version of the continuous-time point process obtained using the properties of neural

spike trains, in particular the presence of a refractory period, as per (P1). The log-

probability is simply:

lnPn(∆N1:I) =
I∑
i=1

∆Ni ln
(
1− e−λi∆

)
− (1−∆Ni)λi∆ . (7)

In Appendix B we prove that, as ∆→ 0, (7) converges to the continuous time case:

ln f(N0:T ) =

T∫
0

lnλ(t |Ht) dN(t)−
T∫

0

λ(t |Ht) dt . (8)

Useful approximation: We introduce an approximation of (7) that leads to a simpler

and computationally attractive form for the log-likelihood, once a log-linear parametriza-
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tion of λi is adopted. Noting that

ln

(
1− e−ξ

ξ

)
= −ξ

2
+ o(ξ) as ξ → 0 , (9)

(7) can be approximated as

lnPn(∆N1:I) =
I∑
i=1

∆Ni

[
ln(λi∆) + ln

(
1− e−λi∆

λi∆

)]
− (1−∆Ni)λi∆

=
I∑
i=1

∆Ni ln(λi∆)−
(

1− ∆Ni

2

)
λi∆ + o(∆) .

(10)

Therefore, we define the approximated likelihood as:

lnPn′(∆N1:I) =
I∑
i=1

∆Ni ln(λi∆)−
(

1− ∆Ni

2

)
λi∆ . (11)

We will see in Section 2.5 that in most cases this approximation introduces an accept-

able error. Later, in Section 3, we will show how this formulation allows an efficient

procedure of fitting a log-linear model by means of an IRWLS algorithm. One can inter-

pret (11) as a data-dependent choice of the weighting proposed by Berman and Turner

(1992). We would like to stress that Berman’s motivation behind the use of weight-

ing functions is mostly heuristic. However, in our setting, the weighting function is

dictated by the conditions imposed on the continuous-time point process, in particular

refractoriness.
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2.3 Comparison with conventional discrete-time approximation

We now compare (11) with a discretized version of (8) which is usually taken as (see

Truccolo et al., 2005, Equation (3)):

lnPd(∆N1:I) =
I∑
i=1

∆Ni ln(λi∆)− λi∆ . (12)

While both approximations, (11) and (12), converge in the limit to the continuous PDF

(8), they do so with a different linear coefficient for ∆. Specifically, while the first term

is the same in both cases, the second term differs. From an empirical point of view, we

can think of this second term as the numerical computation of the integral in the second

term of (8) and the two implementations, (11) and (12), differ only in the way the CIF

is integrated inside those bins containing an event. The contribution of one such bin to

the second term of (8) is:

i∆∫
ῑ∆

λ(t |Ht) dt

∣∣∣∣∣∣
∆Ni=1

'


λi∆/2 in (11),

λi∆ in (12).

(13)

Defining τ = sup{0 < τ ≤ ∆ |N(ῑ∆ + τ) = N(ῑ∆)}, i.e., the time when the event

occurs relative to the start of the bin, and using the properties (P1), (P2) and (P3) in this

order, we obtain:

i∆∫
ῑ∆

λ(t |Ht) dt

∣∣∣∣∣∣
∆Ni=1

'
ῑ∆+τ∫
ῑ∆

λ(t |Ht) dt '
ῑ∆+τ∫
ῑ∆

λ(t |Hῑ∆) dt ' λiτ . (14)

10



We use a one-jump point process to find the expected value of τ conditioned to the fact

that an event occurred inside the bin:

E[τ |∆Ni = 1] =

∆∫
0

τλi e
−λiτ dτ

∆∫
0

λi e−λiτ dτ

=
e−λi∆

λi

eλi∆−λi∆− 1

1− e−λi∆
=

1

2
∆ + o(∆) (15)

Replacing (15) in (14) we see that for those bins where an event occurs, approximately

half of λi∆ should be considered. Looking at (13), we see that this corresponds to what

our solution does, while (12) tends to overestimate the LHS of (13).

2.4 Point-processes with refractoriness are pervasive

The assumptions about the continuous time process under which the approximation

holds (the presence of a refractory period, the predictability of the CIF, and its integra-

bility) are not exclusive to neural point processes, but also apply to a wide spectrum of

point processes, such as models of geysers, heart beats, and repeated failures of com-

ponents in engineering systems (e.g., light bulbs).

There are two main approaches to modelling point-process data. One can either

model the CIF, or the probability density (assuming it exists) of the inter-event-intervals

(IEIs). In some sense, these two approaches are equivalent because the following one-

to-one transformation between CIFs and IEI PDFs holds:

λ(t |Ht) =
f(t |Ht)

∞∫
t

f(τ |Ht) dτ

. (16)

In this paper, we have adopted the former approach. In light of the above transforma-
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tion, it is not hard to show that the refractory property of the CIF in (1) holds if and

only if the IEI distribution has a PDF that vanishes as its argument goes to zero. There-

fore, the proposed framework for modeling point-processes with refractoriness is also

applicable to a much broader range of problems. For example, the log-normal, inverse-

Gaussian, Weibull and gamma (with shape parameter k > 1) distributions, which are

commonly used in survival analysis (Kalbfleisch and Prentice, 2002), models of heart

beats (Barbieri et al., 2005a), geyser and seismic data (Nishenko and Buland, 1987),

satisfy the property that their respective PDFs vanish as their argument goes to zero.

The corresponding CIFs must therefore satisfy the refractory property of (1), which is

the backbone of the framework developed in this paper.

2.5 Simulations

In this section, we simulate three different examples of renewal continuous-time point

processes to compare, as a function of the bin size ∆, the accuracy of estimates of the

log-PDF (and consequently the log-likelihood) obtained using (7), (11), and (12).

Example 1: The first example is a homogeneous Poisson (P) process which, by defi-

nition, has constant CIF λP and exponentially distributed inter-spike-intervals (ISIs), as

shown in Figure 2. For such a process, (P2) and (P3) hold while (P1) does not.

Example 2: The second case considers a Rayleigh (R) distribution for the ISIs. The

corresponding CIF is λR(z) = z/σ2
R, which increases linearly with the time since the

last event, z. We chose this example because it has the simplest form of CIF that

also complies with (P1). The Rayleigh distribution is a special case of the Weibull
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distribution; it is skewed and bell-shaped (see Figure 2) and can be used to approximate

the ISIs of neural spike trains (Lansky and Greenwood, 2005; Tyrcha, 2008).

Example 3: The last example we consider is a renewal process for which the ISIs

follow an inverse Gaussian (IG) distribution. The IG distribution is particularly suited

to model spike trains because it represents the distribution of the first threshold pas-

sage time of an integrate-and-fire neuron driven by a Wiener process with drift (Brown,

2005). Given the time since the last event, the CIF corresponding to IG-distributed ISIs

with mean µ and shape parameter k, is

λIG(z) =
α3(z)ϕ(α1(z)− α2(z))

Φ(α1(z)− α2(z))− e2α1(z)α2(z) Φ(α1(z) + α2(z))
(17)

where the vector α(z) = [−
√
kz/µ,−

√
k/z,

√
k/z3] while ϕ(x) and Φ(x) are the

probability density function and the cumulative distribution function of a standard Gaus-

sian random variable.

[Figure 2 about here.]

Simulation parameters: For each of the three distributions above, we simulated one

realization in (0, T ] with T = 300 s, assuming that the last event before the observation

interval happened at u0 = 0. Given the set of event times, {uk}N(T )
k=1 , the continuous

time log-PDF is simply:

ln fD(N0:T ) =

N(T )∑
k=1

ln fD(uk − uk−1) + ln
(
1− FD(T − uN(T ))

)
(18)
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where D ∈ {P,R, IG} and fD(z) and FD(z) are the PDF and CDF associated with the

ISIs.

We binned each process for 31 values of the bin size, ∆, logarithmically spaced

between 10−4.5 and 10−1.5, i.e., roughly 0.03 ms and 30 ms. Then, we evaluated the

log-PMF using (7), (11) and (12) in turn, followed by subtraction of the correcting

factor (ln(∆)
∑I

i=1 ∆Ni) to obtain an estimate of the log-PDF from the log-PMF. For

large bin sizes, realizations of all three processes (and P in particular) may have more

than one event in some bins. To account for this, we also tested a variant of (12) where

∆Ni is replaced with a non-capped version ∆N∗i = N(ῑ∆)−N(i∆).

Results: Results of these simulations are presented in the right panels of Figure 2.

For the homogeneous Poisson process, all methods of estimating the log-PDF starting

from a discrete-time process, fail miserably unless a very small bin size is used. The

only exception is the one that allows for more than one event per bin. As this type of

point process does not comply with (P1), this result was expected.

Both for the Rayleigh and the inverse Gaussian distributions, the two formulations

presented in this paper, (7) and (11), show a very remarkable improvement compared

with the legacy approach of (12). For example, for the Rayleigh distribution, the con-

ventional approach requires a bin size of 0.1 ms to achieve a result comparable to the

one that our method shows at 5 ms, while for the IG distribution it requires 0.3 ms to

achieve the same result that our method shows at around 4 ms.

14



3 Log-linear models of discrete-time point-process data

In this section, we compare our formulation of the point-process PMF with the legacy

approach in parametric, likelihood-based modelling of neural data. Parametric, likelihood-

based, models of neural spike trains use the log-PMF of the data as the likelihood func-

tion. It is natural to expect that inference algorithms for these models would benefit

from our novel formulation of the discretized point-process likelihood. In the next sec-

tion we will show that this is indeed the case.

Parametric models of the log-likelihood in (12) have been successfully applied to

the identification of neural systems (Paninski, 2004; Truccolo et al., 2005). Their main

advantage is the ability to relate neuronal firing to extrinsic covariates such as stimuli

or intrinsic ones which capture the internal dynamics of neurons. In log-linear models,

one expresses ln(λi) as a linear function of the covariates (Truccolo et al., 2005). This

turns (12) into a generalized linear model (GLM) with Poisson observations and log

link (Fahrmeir and Tutz, 2001). Below, we show that a log-linear model of λi in (11)

leads to a parametric model which can be fit as efficiently as conventional GLMs of

discrete-time point-process data (Paninski, 2004; Truccolo et al., 2005).

3.1 IRWLS algorithm for log-linear model fitting

GLMs are a generalization of linear least-squares to observations from the exponential

family. GLMs are computationally very attractive because they can be fit by iteratively-

reweighted least-squares (IRWLS), that is to say by solving a sequence of weighted

least-squares problems (Fahrmeir and Tutz, 2001).

If we assume ln(λi) = βTxi, for a d−dimensional vector of parameters β and a
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vector xi of covariates of the same dimension, then (11) becomes

lnPn′(∆N1:I , β;X) ∝
I∑
i=1

∆Ni β
Txi −

(
1− ∆Ni

2

)
exp(βTxi) (19)

where X is the I-by-d matrix with xT
i in the rows. One can maximize (19) using New-

ton’s method. In order to draw a parallel between (19) and conventional GLMs, we

consider the following generalization of (19):

lnPm(∆N1:I , β;X, ρ) ∝
I∑
i=1

∆Ni β
Txi − ρi exp(βTxi) (20)

where ρi=1 − ∆Ni
2

and m=n′ for (19), while ρi=1 and m=d for conventional GLMs

arising from maximizing Pd in (12) using a log-linear parametrization of λi. In Ap-

pendix C, we derive the IRWLS algorithm for maximizing (20) showing that, up to

a choice of a weighting function (ρ), maximizing (19) and fitting conventional GLMs

are equivalent. This implies that fast implementations (Komarek and Moore, 2005) of

IRWLS can be modified in a simple way to maximize the log-likelihood (19).

3.2 Goodness-of-fit assessment

Quantitatively measuring the agreement between a proposed model and a spike train is

crucial for establishing the model’s validity prior to using it to make inferences about

the neural system being studied. The time rescaling theorem can be used to check the

goodness of fit of statistical models of neural spike trains (Brown et al., 2002).

In a recent study, Haslinger and colleagues (2010) have drawn attention to the fact

that the finite temporal resolution of discrete time models introduces some bias in the
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application of the time rescaling theorem, which can lead to misleading results, that is,

indicating poor goodness of fit even for accurate models. They found two root causes

and proposed analytical corrections for these effects. The first cause is that, as an un-

avoidable consequence of binning, there is a lower bound on the smallest possible ISI

(one bin). The second arises using Bernoulli discrete models (with logit link) and then

naı̈vely applying the time rescaling theorem assuming pi = λi∆ as the probability of a

spike in a given bin.

Our method does not suffer from the second issue because it directly estimates λi,

a discretized version of the continuous time function λ(t), rather than the probability

of one event in a discrete bin (as in the Bernoulli case). As we have presented in

Section 2.2, when properties (P1)–(P3) hold, these two variables are related by pi =

Pr(∆Ni = 1) = 1 − e−λi∆ which is exactly the inverse of the correction that the

authors propose in equation (2.35) of their manuscript.

In our proposed approach, the goodness-of-fit assessment can be simply performed

using the following procedure, adapted from Haslinger et al. (2010):

1. Use the loglinear model (20), based on (11) or (12), to fit a model to the observed

spike train and obtain an estimate of the sampled CIF, λ̂i;

2. Given the set of bins containing a spike {ik |∆Nik = 1}, for each ISI find the

integrated CIF as:

ξk =

ik+1−1∑
i=ik+1

λ̂i∆ + λ̂ik+1
τk (21)

where τk represents the random time of the event relative to the start of the bin,

and can be obtained by first drawing a random variable rk uniformly distributed
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in [0, 1] and then calculating

τk = −
ln[1− rk (1− exp(−λ̂ik+1

∆))]

λ̂ik+1

. (22)

In most cases this expression can be approximated as τk = rk∆.

3. Finally, after a further variable transform, zk = 1− e−ξk , the goodness-of-fit can

be assessed by plotting the empirical CDF of the transformed ISIs, zk, against the

CDF of the uniform distribution.

3.3 Simulations

In this section we present the results of the comparison between the conventional GLM

approach and our novel log-linear model (19), in the estimation of the regression terms

of lnλ(t). We assumed a simple, yet plausible, form for lnλ(t) allowing for simulation

in continuous time and then assessed the estimation accuracy as a function of bin size

using either method.

Generation of simulated spike trains: We modeled lnλ(t) as the convolution of an

autoregressive kernel ψ(z) with the comb of previously observed events:

lnλ(t) = ln(`0) +

t∫
0

ψ(t− τ) dN(τ) (23)
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where `0 is a constant term. We used the kernel function

ψ(z) =


ln

(
c1

(
z

c3

)3

+ c2

(
z

c3

)2
)

if 0 < z < c3,

0 otherwise,

(24)

and set the vector c = [−8, 9, 0.1] and `0 = 100, see Figure 3. We chose this specific

kernel function because it allows for the simulation of spike trains in continuous time

without resorting to discretization and because it results in a physiologically-plausible

distribution of the ISIs, as confirmed by Figure 4. The CIF and its integral, Λ(t), are

piecewise polynomials in t and, from (23) and (24), we obtain

λ(t) = `0

N(t)∏
k=N(t−c3)+1

(
c1

(
t− uk
c3

)3

+ c2

(
t− uk
c3

)2
)

(25)

where {uk}N(T )
k=1 is the ordered set of event times. To simulate a spike train, the time

rescaling theorem (Brown et al., 2002) was used to calculate the next event uk+1 from

the set of previous events as the solution of Λ(uk+1) − Λ(uk) = − ln(qk+1) where

qk+1 is a random variable uniformly sampled in (0, 1). The exact solution was found

using a polynomial root finding algorithm as one of the eigenvalues of the companion

matrix (Edelman and Murakami, 1995). Note that the CIF of Figure 1 was generated in

this fashion.

[Figure 3 about here.]

Using this procedure, we generated 250 realizations of the continuous-time point

process, each one with an observation interval of 600 s and approximately 40 events

19



per second. The resulting distribution of ISIs is reported in Figure 4.

[Figure 4 about here.]

Model fitting: We considered the following model for the discrete-time CIF:

lnλi = β0 +

dc3/∆e∑
j=1

βj ∆Ni−j (26)

which is the discrete-time equivalent of (23). Then, we fitted the conventional GLM

and our log-linear model on each realization for 9 values of ∆, logarithmically spaced

between 10−3.5 and 10−1.5, that is, approximately between 0.3 ms and 30 ms.

Results: We assessed the difference between the original baseline firing rate `0=100

and the value ln β0 estimated by the two methods, as a function of ∆. The results are

presented in Figure 5. Compared to the conventional GLM, our method approaches the

ideal value of `0 with higher accuracy and less sensitivity to the bin size. In fact, the

bin size can be increased without much detriment up to the value (approximately 0.1 s)

where the probability of more spikes in a bin becomes significant, while the accuracy

of the traditional GLM progressively decreases for all bin sizes. We also compared the

accuracy of the two methods at the task of recovering the autoregressive kernel. Figures

6(a)–6(c) show the true kernel ψ(z) and the estimated kernel βj for three values of ∆,

while Figure 6(d) shows the error βj −ψ(z), with j = bz/∆ + 1/2c, for z = 0.02 s and

z = 0.07 s as a function of ∆. From these results, we notice that the traditional GLM,

which maximizes the likelihood given by (12), tends to underestimate the base firing

rate `0, overestimate the kernel for small values of z (i.e., briefly after each event) and
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underestimate it for bigger z. Our log-linear model, which maximizes (7), instead, is

able to estimate the kernel with much higher accuracy.

[Figure 5 about here.]

[Figure 6 about here.]

3.4 Real data

In this section, we demonstrate that the improvement that our method shows on simu-

lated data also holds for real neural spike trains. In particular, we tested our approach on

single unit recordings from individual thalamic barreloid neurons in the somatosensory

whisker/barrel system of an anaesthetized rat.

Experiment: Here, we provide a brief description of the experimental protocol that

was reported in detail by Temereanca et al. (2008). The principal whisker was deflected

in caudal direction by means of a piezoelectric stimulator using periodic waveforms of

different velocity delivered at a repetition rate of eight per second. Each deflection was

1 mm in amplitude and began and ended from the whiskers neutral position as the trough

(phase of 3π/2) of a single sine wave. The fast stimulus was generated by taking one

period of a 40 Hz sine wave and delivering it every 125 ms for 2 s. The other two stimuli

were generated similarly, by taking one cycle of a 25 Hz sine wave and one cycle of

an 8 Hz sine wave. The whisker was deflected pseudorandomly using the three stimuli,

and pseudorandomized blocks were delivered 50 times, with interstimulus intervals of

1.5 s. Spike waveforms were analyzed off-line, clustered based on waveform shape and

inter-spike interval, and the spike stamps saved at 100 µs resolution.
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Log-linear model of the CIF: In our analysis, we assumed a log-linear CIF given by:

lnλi = β0 + γ1 s(i∆) + γ2 s(i∆− q1) +

q2/∆∑
j=1

βj ∆Ni−j (27)

where s(t) is the stimulus, i.e., the whisker deflection at time t, while q1 = 1 ms and

q2 = 6 ms. These parameter values were chosen based on prior extensive analyses of the

neurons considered here using state-of-the-art methods (Paninski, 2004; Truccolo et al.,

2005). We used the conventional GLM and our log-linear model to estimate the vector

β = [β0, . . . , βq2/∆, γ1, γ2] that best explains the observed spike train given the stimulus

and the process history. We repeated the analysis for bin sizes ∆ ∈ {0.1, 0.2, 0.5, 1}

milliseconds.

Results: The top three panels of Figure 7 show the results of the estimation of β0,

γ1, and γ2 as a function of the bin size when using conventional GLM and our log-

linear model. Although in the case of real data the ground truth is unknown, it is fair

to assume that the true values are more likely to be somewhere around those obtained

with a finer sampling. It is clear from the figure that, when using the traditional GLM

based on (12), there is a strong effect of the bin size on the estimated values, leading to

a significant bias when a coarser sampling is used. This effect is much less pronounced

when using the log-linear model coming from our new likelihood formulation (11). In

fact, the values obtained with our model at 1 ms (1 kHz sampling rate) are similar to

those obtained by the GLM for 0.1 ms (10 kHz).

Using the time-rescaling procedure described in Section 3.2, we performed a goodness-

of-fit analysis and assessed the Kolmogorov-Smirnov (KS)-distance achieved by the
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fitted models for different bin sizes. The results are reported in the bottom panel of

Figure 7, which confirms the increasing inaccuracy of the GLM model for increasing

bin sizes. Our log-linear model, instead, achieves approximately the same fit for all

the sampling rates tested. For even larger bin sizes (not shown in the figure), the fit

degrades rapidly for both methods as soon as the assumption of one spike per bin is

violated, similarly to what is shown in Figure 2 for the likelihood.

[Figure 7 about here.]

4 Discussion

The traditional discretized version of the Poisson process PDF (12), as reported by Truc-

colo et al. (2005), serves as a building block for many advanced statistical analysis and

signal processing techniques (Paninski et al., 2007; Friedman et al., 2010; Zhao et al.,

2011; Zhao and Iyengar, 2010; Pillow et al., 2011; Paninski et al., 2010; Czanner et al.,

2008; Lawhern et al., 2010) applied to neural signals. These techniques have been used

for basic neuroscience research (Kass et al., 2011; Okatan et al., 2005; Eldawlatly et al.,

2009; Berger et al., 2011; Jenison et al., 2011; So et al., 2012), to improve biophysical

neural models (Ahrens et al., 2008; Meng et al., 2011; Mensi et al., 2012), or to design

better BMIs (Shoham et al., 2005; Srinivasan et al., 2006, 2007; Truccolo et al., 2008;

Wang and Principe, 2010; Saleh et al., 2012).

In this paper we presented a new formulation for the probability mass function of

observing discrete-time realizations of continuous time point processes arising from

neural spike trains. This new theory holds under assumptions about the continuous
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time point process that are reasonable for neural spike trains: the presence of a refrac-

tory period, the predictability of the conditional intensity function, and its integrability

within a time bin. These properties are not exclusive to neural point processes, but also

apply to a much wider spectrum of point processes, including models of geysers, heart

beats, and repeated failures of components in engineering systems. Our new definition

represents a remarkable theoretical improvement over the traditional discretized version

of the continuous time point-process PDF, in presence of refractoriness. As a result, the

estimated value approaches the solution of the continuous problem, as the bin size goes

to zero, at significantly higher speed of convergence.

Based on this new definition, we also introduced a log-linear model which shows

an improvement over a traditional GLM fit. Both in simulations and with real data, our

novel algorithm converges to the asymptotic value for bin sizes one order of magnitude

larger than the traditional GLM. This can be advantageous when analyzing neurons

with high firing rate. For example, we showed that our method achieves, on neural

data resampled at 1 KHz, more refined outcomes (e.g., in terms of goodness of fit) than

those of a Poisson GLM on the original recordings sampled at 10 kHz. This notewor-

thy improvement might help reduce computational and storage costs, as well as reduce

the strain on the hardware acquisition and processing chain of BMIs. The improve-

ment shown by our log-linear model over the traditional GLM is likely to extend to

most models and algorithms based on the point process GLM framework, and comes at

virtually no cost because, as we have shown with our log-linear model, the number of

floating point operations is practically the same. In most cases, instead, the computa-

tional cost can decrease drastically because our new definition allows for the use of a
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coarser sampling rate while still providing a comparable accuracy.

In conclusion, our novel likelihood formulation for point processes with refractori-

ness improves over conventional approaches that ignore the refractoriness of neural

point process. As it only requires a minor modification to the likelihood term, it can re-

place the legacy point process likelihood (Truccolo et al., 2005) in virtually all instances

where such a probabilistic framework is used. By allowing a substantive increase in the

required bin size, our algorithm has the potential of lowering the barrier to the use of

point-process methods in an increasing number of neural engineering applications.
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A Asymptotic probability of more than one event in a

bin

A function f(t) is piecewise Lipschitz continuous in an interval (a, b] if there is a posi-

tive constant C and a partition
J⋃
j=1

Ij = (a, b] such that

|f(t1)− f(t2)| ≤ C |t1 − t2| ∀t1, t2 ∈ Ij, 1 ≤ j ≤ J . (28)
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In our specific case, using the Lipschitz condition and the fact that the only jumps

allowed are decreasing (the jumps to zero after each event), we obtain that the following

condition holds for the CIF:

0 ≤ λ(t2 |Ht2) ≤ λ(t1 |Ht1) + C (t2 − t1) ∀ t1, t2 ∈ (0, T ] : t1 ≤ t2 . (29)

Let us consider the i-th bin and attempt to find the asymptotic behaviour of the

probability that the number of events contained, n = N(i∆)−N(ῑ∆), is at least one.

Using the condition (29), we have that for t ∈ (ῑ∆, i∆]:

λ(t |Ht) ≤ λ(ῑ∆ |Hῑ∆) + C (t− ῑ∆) ≤ λ(ῑ∆ |Hῑ∆) + C ∆ , (30)

leading to:

Pr(n ≥ 1) = 1− exp

−
i∆∫
ῑ∆

λ(t |Ht) dt


≤ 1− exp {− [λ(ῑ∆ |Hῑ∆) + C ∆] ∆} = O(∆) .

(31)

Let us now find the probability of more than one event conditioned to the presence of

at least one event in the bin, i.e., Pr(n > 1 |n ≥ 1). Calling t1 ∈ (ῑ∆, i∆] the time when

the first event occurs and using the property (P1), we have that lim
ε→0+

λ(t1+ε |Ht1+ε) = 0

and therefore λ(t |Ht) ≤ C (i∆ − t1) ≤ C∆ for t ∈ (t1, i∆]. Observing that n > 1

implies at least one event in (t1, i∆], we can follow a reasoning similar to (31) and

obtain:

Pr(n > 1 |n ≥ 1) ≤
[
1− exp

(
−C ∆2

)]
= O(∆2) . (32)
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Finally:

Pr(n > 1) = Pr(n > 1 |n ≥ 1) Pr(n ≥ 1) = O(∆3) (33)

which is what we wanted to prove.

B Convergence for infinitesimal bin size

We can define the logarithm of the normalized PMF (log-nPMF) as

ln
(
Pn(∆N1:I) /∆N(T )

)
= −N(T ) ln ∆

+
I∑
i=1

∆Ni ln
(
1− e−λi∆

)
− (1−∆Ni)λi∆

(34)

and show that, in the limit ∆ → 0, it converges to the logarithm of the continuous

time probability density function (log-PDF) of observing exactly those N(T ) events in

(0, T ], given in (8). We start by noting that, as ∆→ 0:

ln
(
1− e−λi∆

)
= ln

(
λi ∆

1− e−λi∆

λi∆

)
= lnλi + ln ∆ + o(1) . (35)

Then we take the limit of (34), replace (35), expand the terms, and finally obtain:

lim
∆→0

ln
(
Pn(∆N1:I) /∆N(T )

)
= −N(T ) ln ∆

+ lim
∆→0

dT/∆e∑
i=1

∆Ni lnλi +

dT/∆e∑
i=1

∆Ni ln ∆−
dT/∆e∑
i=1

λi∆ +

dT/∆e∑
i=1

∆Ni λi∆


= −N(T ) ln ∆ +

T∫
0

lnλ(t |Ht) dN(t) +N(T ) ln ∆−
T∫

0

λ(t |Ht) dt+ 0

(36)
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which simplifies to the continuous time log-PDF in (8).

C Log-linear model

Differentiating (20) with respect to β, we obtain its gradient and its Hessian:

g(β) =
I∑
i=1

(∆Ni − ρiλi(β))xi =
I∑
i=1

(
∆Ni − ρi exp{βTxi}

)
xi

= XT(∆N − λρ(β)),

(37)

H(β) = −
I∑
i=1

ρiλi(β) · xixT
i = −

I∑
i=1

ρi exp{βTxi} · xixT
i = XTWρ(β)X, (38)

where X is the I-by-d matrix with xT
i in the rows, ∆N and λρ(β) are I-length vectors

satisfying with entries ∆Ni and ρiλi(β) respectively, and Wρ(β) is the I-by-I diagonal

matrix with diagonal elements ρiλi(β).

One can maximize (20) by taking Newton steps as follows:

β(k+1) = β(k) −H−1(β(k))g(β(k)). (39)

Substituting (37) and (38) in (39) and re-arranging, we find that β(k+1) is the solution

of a quadratic approximation to the objective function, which we refer to as weighted

least-squares (WLS):

β(k+1) = argmax
β

− 1

2
(b− Aβ)TC(b− Aβ), (40)

where b = Xβ(k) + W−1
ρ (β(k))(∆N − λρ(β(k))), C = Wρ(β(k)) and A = X . One

28



maximizes (20) by iteratively solving (40), hence the name iteratively re-weighted least-

squares (IRWLS). Assuming X is full rank, (20) is a concave function of β. Therefore,

there exists a unique solution to which the Newton algorithm, implemented by IRWLS,

converges.

The general formulation (20) shows that the maximizing (19) and fitting conven-

tional GLMs of neural data (using (12)) are equivalent up to the choice of ρi.
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Figure 1: Representative example of a realization of a neural point process. The top plot

shows the counting process, N(t), which is a function counting the number of events

observed up to, and including, time t. The central plot shows its differential, dN(t),

which is an indicator function that assumes value one if there is an event at time t and

zero otherwise. The bottom plot shows the the conditional intensity function, λ(t |Hs),

which jumps to zero after every event because, as a result of the refractory period, an

additional event cannot take place arbitrarily close to the previous one.
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Figure 2: The plots on the left show the CIF of the point process and the PDF of the as-

sociated ISI distribution for the three examples: 1) homogeneous Poisson process with

exponentially distributed ISIs (top); 2) Rayleigh-distributed ISIs (centre); 3) inverse-

Gaussian-distributed ISIs (bottom). On the right, for each case, the plots show the

corresponding log-PDF of the whole spike train evaluated from the simulated data (see

Section 2.5) using: “ct”, the continuous time version (18); “n”, our discrete time defi-

nition (7); “n’”, its approximation (11); “d”, the conventional discrete time formulation

(12); and “dm”, a variant of (12) allowing for more events per bin.
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Figure 3: The plot represents the exp of the kernel function in (24), i.e., a continuous

function in (0,+∞) that assumes value c1(z/c3)3 + c2(z/c3)2 if 0 < z < c3 and one

otherwise.
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Figure 4: Empirical PDF (histogram) of the ISIs of the simulated neural spike train

generated using the procedure described in Section 3.3.

39



20

40

60

80

100

120

10-3 10-2

`
0

ideal
d
n'

finer
sampling

coarser
sampling

¢ [s]

Figure 5: Value of `0 estimated using the conventional GLM (red dotted line) and using

our log-linear model (green dashed line) as a function of the bin size, ∆.
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Figure 6: The figure compares the accuracies of the conventional GLM and of our log-

linear model in the estimation of the autoregressive kernel ψ(z) (see equation (24)). The

subfigures (a)–(c) show the reconstructed kernel functions (represented by red dotted

lines for the traditional GLM and green dashed lines for our log-linear model) and

the target function ψ(z) (black solid lines) for three values of bin sizes: ∆ ' 0.3 ms,

∆ ' 1 ms, and ∆ ' 3 ms, respectively. Subfigure (d) shows the estimation error

(difference between the estimated value and the ideal one) for z = 0.02 s and z = 0.07 s

(i.e., the centres of the zoom insets 1 and 3 in subfigures (a)–(c)) as a function of the

bin size, ∆.
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Figure 7: The top three subfigures show the results of the estimation of the parameters

β0, γ1, and γ2 of (27) as a function of the bin size when using conventional GLM

(circles connected by red dotted segments) and our log-linear model (squares connected

by green dashed segments). The bottom subfigure shows the KS-distance achieved by

the fitted models for different bin sizes.

42


	Introduction
	A model of continuous-time point process with refractoriness
	Key assumptions
	Implications of key assumptions on discrete-time approximation
	Comparison with conventional discrete-time approximation
	Point-processes with refractoriness are pervasive
	Simulations

	Log-linear models of discrete-time point-process data
	IRWLS algorithm for log-linear model fitting
	Goodness-of-fit assessment
	Simulations
	Real data

	Discussion
	Asymptotic probability of more than one event in a bin
	Convergence for infinitesimal bin size
	Log-linear model

