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Abstract—The presence of recurring arrhythmic events (also
known as cardiac dysrhythmia or irregular heartbeats), as well
as erroneous beat detection due to low signal quality, significantly
affect estimation of both time and frequency domain indices
of heart rate variability (HRV). A reliable, real-time classifica-
tion and correction of ECG-derived heartbeats is a necessary
prerequisite for an accurate on-line monitoring of HRV and
cardiovascular control. We have developed a novel point process
based method for real-time R-R interval error detection and
correction. Given an R-wave event, we assume that the length of
the next R-R interval follows a physiologically motivated, time-
varying inverse Gaussian probability distribution. We then devise
an instantaneous automated detection and correction procedure
for erroneous and arrhythmic beats by using the information
on the probability of occurrence of the observed beat provided
by the model. We test our algorithm over two datasets from
the Physionet archive. The Fantasia normal rhythm database is
artificially corrupted with known erroneous beats to test both
the detection and correction procedure. The benchmark MIT-
BIH Arrhythmia database is further considered to test the de-
tection procedure of real arrhythmic events and compare it with
results from previously published algorithms. Our automated
algorithm represents an improvement over previous procedures,
with best specificity for detection of correct beats, as well as
highest sensitivity to missed and extra beats, artificially misplaced
beats, and for real arrhythmic events. A near-optimal heartbeat
classification and correction, together with the ability to adapt to
time-varying changes of heartbeat dynamics in an on-line fashion,
may provide a solid base for building a more reliable real-time
HRV monitoring device.

Index Terms—Point-processes, heart rate variability, arrhyth-
mias, ectopic beats, erroneous R-R intervals.

I. INTRODUCTION

Heart rate variability (HRV) techniques [1]–[3] provide a
window into the many physiological factors that modulate
the normal heart rhythm. In particular, they have been found
useful for non-invasive autonomic tone assessment in a wide
range of clinical and non-clinical scenarios. In order to provide
reliable results, these techniques require uninterrupted series
of normal R-R intervals. Peak detection errors – when the
algorithm misses a beat and/or detects one when there is none
– and ectopic beats often determine abrupt changes in the R-
R interval series that can lead to substantial deviations of the
HRV indices.
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The increasing quality of electrocardiogram (ECG) record-
ing systems together with better R-peak detection algorithms
has reduced the problem of noisy R-R series in controlled
clinical and research environment. Nevertheless, this issue
is still of primary importance in new applications of HRV
studies, such as ambulatory monitoring in very unstructured
environments and extreme conditions, and when the ECG is
acquired using single-channel miniature devices, smartphones,
or wearable technology.

The simple approach of discarding all sections contaminated
by irregular R-R intervals might pose some problems. For
example, if the rate of occurrence of mis-detections or ectopic
events is not uniform but it is dependent on specific parts of the
protocol (e.g., those with frequent motion artifacts) or on the
physiological state of the subject (e.g., states that may result
in abnormal morphology of the QRS or in higher incidence
of ectopic events), then the exclusion of these periods might
skew the resulting HRV indices [4]–[6]. When the goal of the
research is to study HRV in extreme conditions (e.g., during
rescue operations, military missions, or hiking expeditions)
removing all sections contaminated by R-peak misdetections
caused by motion artifacts is simply not an option.

A better approach is to attempt to correct the corrupted
R-R series in order to obtain a new artifact-free R-R series
reflecting the underlying HRV dynamics. This new R-R series
can then be used for further processing using the HRV analysis
techniques of choice. To date, the detection and correction
of irregular beats has been mainly achieved by direct human
expert evaluation and, more recently, by automatic techniques
[4]–[16].

We have developed a novel point process based method
for real-time R-R interval error detection and correction.
Given an R-wave event, we assume that the length of the
next R-R interval follows a time-varying history-dependent
inverse Gaussian (IG) probability distribution [17]. We then
use this model for the detection and correction of erroneous
and arrhythmic beats. A preliminary version of the detection
step of this novel approach has been briefly sketched in
our previous publication [18]. In Section II-C we present
the detection algorithm in detail and later in the paper we
show its performance in comparison with three established
methods for the detection of erroneous (Section III-A) and
ectopic (Section III-C) beats. Whenever a beat is classified as
erroneous, the correction step attempts to fix it according to the
point-process model. In Section II-D we present the correction
algorithm and in Section III-B we assess its performance in
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comparison with four reference methods.
A software tool that implements the algorithm described

in this manuscript can be tested from our website [19]. It
can be used as a preprocessing stage to detect and correct
erroneous and ectopic beats in R-R series before analysing
it with the chosen HRV technique [1]–[3], such as time-
frequency analysis (LF/HF, . . . ), standard time-domain meth-
ods (SDNN, SDANN, RMSSD, . . . ), and non-linear indices
(DFA, SampEn, MSE, . . . ). Some methods, such as the Lomb
spectrogram [20] do not require the correction step but might
still benefit from the accurate detection capabilities of our
algorithm.

II. ALGORITHMIC FRAMEWORK

A. Physiologically-based probability model of heartbeat inter-
vals

Each cardiac contraction is initiated by the synchronous
depolarization of the heart’s pacemaker cells beginning in the
sino-atrial (SA) node of the right atrium and then propagating
through its specialized conduction system to the left atrium
and to the two ventricles. Following every depolarization,
the transmembrane potentials of these cells return to their
resting potentials and begin anew their spontaneous rise toward
threshold [21]. Deterministic models of this integrate (rise
of transmembrane potential)-and-fire (depolarization) mecha-
nism, such as the integral pulse frequency modulation (IPFM)
model, are used regularly to simulate heart beats [22]–[24] and
for the analysis of HRV [25].

An elementary, stochastic integrate-and-fire model is the
Gaussian random walk model with drift. We assume that the
afferences to the SA node can be represented by random walk
excitatory inputs responsible for the basal cardiac rhythm (B),
and random walk excitatory (E) and inhibitory (I) inputs,
reflecting the influence of the autonomic nervous system
through the sympathetic and para-sympathetic branches. In this
case, the membrane voltage equation is governed by:

dV (t) = αB dNB(t) + αE dNE(t)− αI dNI(t)

where NB(t)∼P (λB), NE(t)∼P (λE) and NI(t)∼P (λI)
are independent Poisson processes that govern the respective
times of the basal, excitatory and inhibitory inputs, while αB,
αE and αI are the magnitude of steps up or down [26],
[27]. Assuming V (0) = 0, m0 =αBλB, m1 =αEλE−αIλI,
and σ2 =α2

BλB +α2
EλE +α2

IλI, and using the properties of
Poisson processes, the mean of V (t) is E [V (t)] = (m0+m1) t
[22], [23] and its variance Var[V (t)] =σ2 t. A diffusion ap-
proximation of dV (t) before hitting the threshold θ is given
by the Wiener process with drift:

dV (t) = (m0 +m1) dt+ σ dW (t)

where W (t) is a standard Wiener process (Brownian Motion).
The probability density of the first passage time for this
process, i.e., the times between threshold crossings, is given
by the inverse Gaussian probability density [28], [29] defined
as:

f(t) =
θ√

2πσ2t3
e−

(θ−(m0+m1) t)2

2σ2t

which can be written in the usual form after performing the
change of variables µ = θ/(m0 + m1) and λ = θ2/σ2. The
inverse Gaussian probability density has been used to study
both neural processes [30] and heart beats [17], [31].

B. Point-process model of the heartbeat series

An ordered set {uj}Jj=1 of consecutive heartbeat times
(for example, but not limited to, R-waves detected from
an ECG) recorded in an observation interval (0, T ] can be
interpreted as a realization of a point process [32], a type of
stochastic process for which any one realization consists of
a set of isolated points. For t ∈ (0, T ], the cádlág function
N(t) = max{k : uk ≤ t} is the associated counting process.
Its differential, dN(t), denotes a continuous-time indicator
function, where dN(t) = 1, when there is an event (such
as the ventricular contraction) or dN(t) = 0, otherwise.

In this paper we assume a history dependent, time-varying,
model of the the probability distribution of the waiting time
until the next R-wave according to a physiologically motivated
(see Section II-A) inverse Gaussian distribution. Specifically,
given any beat event uk, the probability density function (PDF)
of the length of the next R-R interval, τ − uk, is

f (τ − uk |µ (Hk,θ(t)) , λ (θ(t))) =

√
λ (θ(t))

2π(τ − uk)3

exp

{
−1

2

λ (θ(t)) (τ − uk − µ (Hk,θ(t)))2

(τ − uk)µ2

}
where the shape parameter, λ, and the mean of the distri-
bution, µ, depend on a vector of time-varying parameters
θ(t) = {θ1(t), . . . , θP+1(t)} and a history vector Hk =
{wk, wk−1, . . . , wk−(P−1)} containing information about P
previous R-R intervals wi = ui − ui−1. While λ is simply
λ (θ(t)) = θP+1(t), the history-dependent mean is a regression
of the past P R-R intervals with time-varying weights:

µ (Hk,θ(t)) =

P∑
i=1

θi(t)wk−i . (1)

A local maximum likelihood method [17] is used to estimate
the unknown time-varying parameter set θ(t). Given a local
observation interval (t−W, t] of duration W , we consider the
subset of R-wave events within the interval, Um:n = {uk :
m ≤ k ≤ n} with m = N(t−W )+1 and n = N(t). At each
time t, we find the parameter vector θ̃(t) that maximizes the
local log-likelihood, given the R-wave events recorded in the
local observation interval:

L(θ(t) |Um:n) =

n−1∑
k=m+P

ω(t− uk+1)

log [f (uk+1 − uk |µ(Hk,θ(t)), λ(θ(t)))] (2)

where ω(τ) = e−α τ is an exponential weighting function for
the local likelihood [17], [33].
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C. Detection of erroneous heartbeats

After observing the (k+1)-th R-wave, at time uk+1, it is
possible to assess whether this observation is in agreement
with the model resulting from the most recent parameter
vector θ̃(uk). For conciseness, in the following, let µ1 =
µ(Hk, θ̃(uk)) denote the mean for the distribution of the first
R-R interval following uk, given the history and the model at
time uk, and let λ1 = λ(θ̃(uk)) denote the shape parameter,
given the model at time uk.

Normal beat: A straightforward way to test the hypothesis
that the beat at time uk+1 is in agreement with the model
is to evaluate the log probability density of observing the
event uk+1 given the previous event uk, the history Hk and
the model θ̃(uk): p = log f(uk+1 − uk |µ1, λ1). In [14],
this probability p was compared with a fixed threshold and,
if lower, a beat was either inserted or deleted. While this
approach works reasonably well, it has some glitches. In fact,
a very low value of p might indicate an erroneous R-wave
detection, an ectopic heartbeat, but also a sudden physiologic
change in autonomic control. Ideally, we would like to be
able to detect and possibly correct the former two cases while
preserving the latter. For this reason, in this work, we take
a different approach: instead of setting a threshold for the
score p, we compare its value with the values obtained from
alternative hypotheses, assuming that the event at time uk+1

is erroneous or arrhythmic. Below, we analyze these cases in
detail while in Fig. 1 we give a schematic representation.

1) Extra beat: One hypothesis that we consider is that the
beat at time uk+1 is an extra event that was erroneously placed
between two consecutive heartbeats. This can happen, for
example, when the detection algorithm mistakenly identifies
a T wave as a ventricular contraction. The score of this event
is pe = log f(uk+2−uk |µ1, λ1) where uk+2 is the time of the
event following uk+1. If pe > p+ηe, where ηe is a pre-defined
threshold, the event at time uk+1 is labelled as an extra (“e”)
beat.

2) Missed beat: Another hypothesis is that between the
events uk and uk+1 there was an additional event that has
been missed. This can happen, for example, when the detection
algorithm misses an R-wave because a superimposed artifact
has drastically changed its morphology. In this case, the time
elapsed between uk and uk+1 should be compatible with the
prediction of the model for the sum of two R-R intervals given
the history at time uk. We assume that there are two stochastic
events following uk, the first at time τ ′ and the second at
time τ , of which only the latter was observed and mistakenly
labeled as uk+1. According to our model, the distribution of
the first R-R interval, τ ′−uk, is simply f(τ ′−uk |µ1, λ1). The
distribution of the second R-R interval, τ−τ ′, also depends on
the first R-R interval. In fact, the unknown term τ ′−uk enters
the history vectorH ′(τ ′−uk) = {τ ′−uk, wk, wk−1, . . . } and,
through the regression in (1), affects the first moment of the
next R-R interval, µ2 = µ(H ′(τ ′−uk), θ̃(uk)), that we write
as µ2(τ ′−uk) to stress this dependency. The PDF of the sec-
ond R-R interval can be written as f(τ − τ ′ |µ2(τ ′−uk), λ2)
where λ2 = λ1. The total probability density function can be
obtained marginalizing the unknown τ ′ in the joint probability
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Fig. 1. Schematic representation of the different hypotheses that we make
for the beats following uk . The plot at the top shows the IG distribution of the
time of occurrence of the first beat after uk (black solid line), the second one
(blue dashed line) and the third one (red dotted line). All three probabilities
are estimated at time uk and this explains why predictions that are further in
the future present a wider variance. In the lower part of the figure, sample
configurations of the beat times representing the different hypotheses (“N”, ...,
“r”) are reported. The black full circles indicate the beats for which the PDF
on the right presents a high value; the crosses mark the beats that are going
to be removed while the dashed circles are beats that need to be inserted. For
example in the “e” case the beat uk+2 has high probability of being the first
beat after uk (black bell) and for this reason the beat uk+1 will be removed
(red cross). In the “m” case, instead, uk+1 has low probability of being the
first beat after uk (black bell) while uk+2 has high probability of being the
second beat after uk (blue bell) and, therefore, the beat uk+1 is removed
from its current position (red cross) and shifted to its most likely position
(green dashed circle).

density:

τ∫
uk

f(τ − τ ′ |µ2(τ ′ − uk), λ2) f(τ ′ − uk |µ1, λ1) dτ ′ . (3)

Rather than attempting to solve (3), here we make the
simplifying assumption that the resulting probability density
function can be approximated by an IG distribution with mean
µ1+2 = µ1 + µ2(µ1) and shape parameter

λ1+2 = λ1
(µ1 + µ2(µ1))3

(1 + θ̃1(uk))2 µ3
1 + µ3

2(µ1)
(4)

whose mathematical derivation is shown in the Appendix.
Using these results, we can now evaluate the log probability
density of observing a beat at uk+1 after a missed beat at
an unknown time τ ′ ∈ (uk, uk+1): ps = log f(uk+1 −
uk |µ1+2, λ1+2). If ps > p + ηs, where ηs is a pre-defined
threshold, we assume that there might be a missed (skipped,
“s”) beat.
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3) Misplaced beat: A further hypothesis is that the beat
at time uk+1 is misplaced, i.e., a beat at a different time in
the interval (uk, uk+2) has been mistakenly assigned to time
uk+1. This can happen, for example, when an artifact deforms
the QRS complex and makes the detector misinterpret some
random deflection for an R wave and miss the true R wave. For
simplifying purposes, we will consider in this category also
some types of ectopic beats, such as premature ventricular
contractions that are followed by a complete compensatory
pause. Even if, strictly speaking, ectopic beats are not mis-
detections, it is often desirable to treat them this way. In fact,
ectopic beats may significantly impair the results of many
heart rate analysis techniques (including most time-domain
and spectral estimation methods) while, on the other hand,
acceptance of only ectopic-free, short-term recordings may
introduce significant selection bias [4]–[6]. For this reason,
it is desirable to detect irregular beats and, possibly, replace
them with fictitious regular beats in order to carry on the
desired analysis. A beat uk+1 is likely to be a misplaced
one whenever the corresponding R-R interval does not fit the
model while the sum of the two R-R intervals, uk+2 − uk,
does. Therefore, the score for the case of a misplaced beat is:
pm = log f(uk+2 − uk |µ1+2, λ1+2), and if pm > p + ηm,
where ηm is a pre-defined threshold, we assume that there
might be a misplaced (“m”) beat.

4) Two misplaced beats: This hypothesis accounts for the
case that two beats in a row, uk+1 and uk+2, are misplaced.
This can happen, for example, in some types of arrhythmias
where two shorter beats are followed by a long compensatory
pause. This case is handled similarly to the case of one
misplaced beat. The beats uk+1 and uk+2 are likely to be
misplaced whenever the corresponding R-R intervals do not fit
the model while the sum of the three R-R intervals, uk+3−uk,
does. Making the approximation that uk+3 − uk follows an
IG distribution of parameters µ1+2+3 and λ1+2+3 (defined in
the Appendix), the score for the case of two misplaced beats
is pt = log f(uk+3 − uk |µ1+2+3, λ1+2+3). If the condition
for “m” holds and, additionally, pt > pm + ηt, where ηt is
a pre-defined threshold, we assume that there might be two
misplaced (“t”) beats. In other words, we require the first beat
to be detected as misplaced (because this case is a special case
of “m”), and, additionally, that the second beat is misplaced
with respect to the prediction of the model for the first beat.

5) Resetting beat: The last hypothesis accounts for re-
setting ectopic beats, i.e., ectopic beats not followed by a
compensatory pause. As a result of the absence of the com-
pensatory pause, not only the R-R interval uk+1−uk does not
fit the model but neither do the sum of the two R-R intervals,
uk+2 − uk, or the sum of three, uk+3 − uk. As a matter of a
fact, the R-R interval after the ectopic beat, uk+2 − uk+1, is
more likely to fit the model than any of previous hypotheses.
For this reason, defining pr = log f(uk+2 − uk+1 |µ1, λ1),
the beat uk+1 is likely to be a resetting (“r”) ectopic beat if
pr > max{p, pe, ps, pm, pt} + ηr, where ηr is a pre-defined
threshold.

Bootstrap detection: As the algorithm uses a sliding win-
dow of duration W to fit the model (see end of Section II-B),
no model is available before time W from the beginning

of the recording. A simpler bootstrap detection algorithm is
used during this period to provide some results even for beats
uk ∈ (0,W ) and also to avoid training the algorithm on non-
normal R-R intervals. This bootstrap algorithm is based on
outlier rejection where beats whose distance from the median
R-R is more than 7 times the median absolute deviation of the
R-R intervals are marked as erroneous.

D. Correction of erroneous heartbeats
After an outlying beat is detected, our algorithm attempts

to correct it. The correction strategy depends on the type of
erroneous beat detected, as reported in detail below. Finally,
the attempted solution is accepted only if it is an improvement
according to the improvement check that we describe in the
following section.

1) Extra beat: The case of an extra beat is simply addressed
by removing the beat.

2) Missed beat: In case a missed beat is detected, a new
beat is inserted between the event uk and the event uk+1. The
time of the inserted event τ ′ is:

τ ′= arg max
τ ′∈(uk,uk+1)

f(τ ′−uk |µ1, λ1) f(uk+1− τ ′|µ2(τ ′−uk), λ2)

(5)
where µ1, λ1, µ2(τ ′ − uk) and λ2 are defined as before.
Inserting an event τ ′ in (uk, uk+1) splits this interval into
two R-R intervals; therefore, equation (5) attempts to find
the optimal τ ′ accounting for the probability distribution of
the first interval given the P R-R intervals preceding it (first
factor of the product) but also for the probability distribution
of the second R-R interval given its P previous R-R intervals
(second factor), including τ ′ − uk. This is an improvement
over the approach in [14] where the beat was inserted at the
time maximizing only the first of the two factors in (5).

3) Misplaced beat: The case of a misplaced beat is similar
to the previous case. The event at time uk+1 is moved at time
τ ′ given by:

τ ′= arg max
τ ′∈(uk,uk+2)

f(τ ′−uk |µ1, λ1) f(uk+2−τ ′|µ2(τ ′−uk), λ2) .

(6)
Equations (5) and (6) are solved numerically using a Newton-
Raphson algorythm.

4) Two misplaced beats: To correct the case of two mis-
placed beats and find the optimal times of the two unknown
beats we use a greedy algorithm. Each one of the beat times
is optimized in turn, using (6) for the first beat and a similar
equation for the second beat, while keeping the other fixed.
This process is iterated until convergence.

5) Resetting ectopic beat: The case of a resetting beat can-
not be corrected like the other cases because it would require
shifting all the following beats. Therefore our algorithm defers
the decision about the action to take to the user, who can
choose the best strategy for the type of HRV analysis that
follows (for example omit the beat or suspend adaptive causal
estimation).

E. Improvement check
In the cases above, the correction step changes the series

of events U = {uj} into an alternative series Û = {ûj} by
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removing, inserting, or moving one or two events. For the case
of a resetting beat, “r”, we consider the virtual correction (that
we do not take) of shifting back by uk+1 − uk all the beats
starting from uk+1.

Before the new series is accepted, we evaluate the proba-
bility of observing Q events following uk for both series:

P(Ûk−P :k+Q) =

k+Q−1∑
j=k

log
[
f
(
ûj+1 − ûj | Ĥj , θ̃(uk)

)]
,

P(Uk−P :k+Q) =

k+Q−1∑
j=k

log
[
f
(
uj+1 − uj |Hj , θ̃(uk)

)]
.

The corrected series is accepted only if P(Ûk−P :k+Q) >
P(Uk−P :k+Q)+η̂a, where a is one of {e, s,m, t, r} depending
on the action was taken to correct the beats. This ensures not
only that the correction fits the past values (through Hk) but
also that it is a good regressor for the future R-R intervals
(through Ĥj , j > k). If the corrected series passes the
test, then Û = {ûj} replaces U = {uj}, a new updated
parameter vector θ̃(uk+1) is estimated using (2), and the
detection procedure starts again for the next event, uk+2 (uk+3

in the case “t”).

F. Values of the parameters
Empirical sensitivity analysis conducted on in-house record-

ings showed that the model provides robust results for param-
eters within meaningful ranges of values.

Without conducting an exhaustive research on the whole
parameter space, we found that the following settings provide
excellent results in most conditions: P = 5, W = 60 s, α =
0.02 s−1, ηe = 3, η̂e = 8, ηs = 0, η̂s = 4, ηm = 2, η̂m = 7,
ηt = 8, η̂t = 28, ηr = 6, η̂r = 14, and Q = 3. These values of
the parameters were also used during the analysis described
in the following of this manuscript.

III. VALIDATION AND PERFORMANCE ASSESSMENT

A. Detection on artificially-corrupted R-R series
We tested the performance of our detection algorithm on

a set of real R-R timeseries with artificially deleted, shifted,

and inserted beats and compared our results with three well-
established approaches.

Methods: The first method that we implemented for com-
parison is the well-established algorithm by Berntson et al.
[9] which uses two criteria to assess whether a heartbeat is an
artifact: Maximum Expected Difference (MED) and Minimal
Artifact Difference (MAD). In order to allow the algorithm to
adapt to non-stationary data, for each R-event uk, MED and
MAD were estimated using events in a 60 s sliding window
preceding uk. The second algorithm that we used is based
on the important contribution by Mateo and Laguna [13]. For
each R-event uk we evaluated equation (1) from the original
work (where tk corresponds to our uk) using a time-varying
threshold Uk = 4.3σk where σk is the standard deviation of
the wj values obtained for events in a 60 s sliding window
preceding uk. Then we classified the beat using the set of rules
described in Section II.A of the referenced paper. Finally, we
implemented the more recent method proposed by Rand et al.
[15]. We followed the algorithm described in the original paper
and used the values of parameters that they found optimal.

For this comparison, we used a subset of the Fantasia
database [34] from the Physionet archive [35]. We selected
all the records that, according to the annotation database,
contained no more than two non-“N” heartbeats.1 We tested
all four algorithms on each pristine record and recorded the
number of “N” heartbeats correctly classified as such and
the number of beats which triggered a false alarm. Then we
tested the four algorithms’ performance in the detection of
the three main types of erroneous beats: extra, missed, and
misplaced beats. To test the detection of “e” (extra) beats,
after inserting a beat before every beat of index k = 100n
(n ∈ {1, 2, 3, . . . }) of each record, we recorded how many
of these beats were correctly identified as erroneous beats.
Similarly, we measured the performance in the detection of
“s” (missed) beats by removing from the original record every
beat of index k = 100n.

Finally, we assessed each algorithm’s efficacy in the detec-

1The records used were: f1o01, f1o05, f1o10, f1y01, f1y03, f1y08, f2o04,
f2y03, f2y06.
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Fig. 2. The figure shows examples from three subjects of the original R-R series (continuous line with markers) with one artificially misplaced beat (dashed
line) obtained as described in Section III-A. The R-R series on the left has a very low beat-to-beat variability, the one in the centre presents a marked
respiratory sinus arrhythmia (RSA), while the series on the right has an even higher variability but the RSA is less predictable. In all three cases, the same
value q = 2 was used to determine the record-dependent displacement ∆tr = q · RMSSDr . This allowed us to average the algorithms performance across
subjects on a task of comparable difficulty. If we had moved the beats by a fixed displacement, e.g., 50 ms, the detection would have been trivial for the R-R
series on the left and very hard for the series on the right.
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TABLE I

RESULTS OF THE DETECTION OF IRREGULAR BEATS ON ARTIFICIALLY-CORRUPTED R-R SERIES. OUR METHOD (PP) IS COMPARED WITH THREE
REFERENCE METHODS (RAND2007, MATEO2003, AND BERNTSON1990) AND THE PERCENTAGE OF CORRECT DETECTION (CORR) OF NORMAL (“N”)

BEATS AND ARTIFICIALLY CORRUPTED BEATS (“s”, “e”, “m”, SEE TEXT) IS REPORTED.

Series ∆tr [ms] Tot # PP Rand2007 Mateo2003 Berntson1990
Corr [%] CT [%] Corr [%] CT [%] Corr [%] CT [%] Corr [%] CT [%]

N 60017 99.985 - 99.880 - 99.923 - 99.938 -
s 602 100.000 99.502 100.000 94.518 95.681 94.186 100.000 -
e 602 100.000 99.834 100.000 96.379 99.668 99.668 100.000 -

m q = 2 68 602 40.864 36.877 11.628 1.661 40.199 33.223 5.316 -
m q = 4 137 602 96.013 93.189 54.153 17.110 96.844 83.887 18.106 -
m q = 8 322 602 100.000 98.173 94.352 68.771 100.000 90.033 74.917 -

m q = 16 466 602 100.000 99.336 100.000 93.355 99.834 84.385 95.515 -

tion of “m” (misplaced) beats, by shifting each beat of index
k = 100n by a temporal displacement ∆t. In order to account
for the fact that the detectability of misplaced beats depends on
the heart rate variability of the R-R series, we used a record-
dependent displacement ∆tr = q ·RMSSDr where RMSSDr

is the RMSSD measure [1] for the record r (see Fig. 2). If
we think of the RMSSDr of a normal sinus series as the
noise amplitude and ∆tr as the amplitude of the signal we
are trying to detect, q2 represents a form of signal-to-noise
ratio (SNR). For obvious reasons, we capped ∆tr at 0.75 NNr

where NNr is the average N-N interval of the record r. The
test was repeated for the values of q ∈ {2, 4, 8, 16}.

Results: Table I reports, for the normal series and for
each artificially-corrupted series, the number of beats tested
(columns “Tot #”) and the percentage of these that were
correctly detected (columns labelled “Corr”) by the four
algorithms. For the “m” beats, the average displacement
∆t = meanr ∆tr among all records is also reported.

As one further goal of our algorithm is to try to correct
erroneous beats, it is important that the algorithm is also able
to classify the type of error (“e”, “s”, and “m”) and, as a result,
the type of action needed to attempt to fix it. All algorithms
considered, except the one by Berntson et al., provide this type
of information. Table I reports, in the columns labelled “CT”,
the percentage of beats for which each algorithm correctly
classified the type of error.

These results show that our method represents an improve-
ment over the previous algorithms. In fact it presents the
best false detection rate (row “N”) with only 9 normal beats
out of 60017 reported as erroneous (which correspond to
99.985% correct classification), while the second best method,
by Berntson, triggered a false detection in 37 cases. Our
method also shows perfect detection of missed (row “s”) and
extra beats (row “e”), and better detection of misplaced beats
at all levels of SNR (rows “m” of Table I and Fig. 3). In terms
of sensitivity, only the method by Mateo and Laguna provides
similar results to our approach but at the cost of a much lower
specificity.

We also performed a Monte Carlo analysis of performance
by randomly sampling the test beats with probability 1%,
obtainining results very similar to those reported here. We
decided to report the results of the deterministic sampling of
the test beats (every hundredth beat), rather than those from
random sampling, to support reproducibility of results and
allow other scientists to test and compare their algorithms on
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%

q

Corr CT

PP

Rand2007

Mateo2003

Berntson1990

Fig. 3. The left side of the plot (Corr) reports the percentage of the beats
shifted by ∆tr = q · RMSSDr (as detailed in Section III-A) that were
correctly detected as erroneous. The right side of the plot (CT) shows the
percentage of the same beats that were correctly classified as type “m” beats.
For example, a shifted beat detected as extra beat would count as a hit for
“Corr” but as a fail for “CT”.

exactly the same recordings and beats.

B. Correction on artificially-corrupted R-R series

In this section we report the results of evaluating the
performance of the correction phase of our algorithm and
compare it with existing methods.

Methods: We wanted to find out how accurately our model
is able to estimate the unknown time of occurrence of a
beat (either a missed or a misplaced beat). This was simply
evaluated by using (6) to estimate the beat location ûPP

k of
every beat of index k = 100n from each original record
described in Section III-A and then measuring the difference,
ûPP
k −uk, between the predicted time of the beat and the actual

time of the original beat.
We compared our algorithm with four existing methods of

estimating the position of a missing beat. As first method we
used the “nguess” function available from the WFDB library of
the PhysioToolkit [35] and called its estimate ûNk . The second
method consisted in splitting the interval around the missing
beat in two identical R-R intervals by inserting a beat at time
ûHk such that uk+1 − ûHk = ûHk − uk−1. Then we tested the
family of δ̂N estimators given by equation (45) of [36] and
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Fig. 4. Probability density function of the difference between the estimated
beat time ûk and the actual time of the original beat uk for our point-process
algorithm (PP) and for the four reference methods (N, H, S, S’). The PDF
was estimated using kernel density estimation with Gaussian kernels and a
bandwidth of 5 ms.

found, in agreement with their findings, that the first order
estimator (δ̂1) is the one giving best results. Therefore, as third
method we used the δ̂1 estimator which returns a beat time
ûSk such that the new R-R interval repeats the previous R-R
interval, i.e., ûSk − uk−1 = uk−1 − uk−2. Finally, the fourth
method that we used for comparison is a non-causal version
of δ̂1 which is simply the average of the beat time estimated
using the previous R-R interval and that estimated using the
next R-R interval, i.e., ûS

′

k = uk+1+uk−1−(uk−2+uk+2)/2.

Results: Table II reports a comparison between the different
methods in terms of root-mean-square (RMS) error between
the estimated time and the original beat time. The first row
shows the result of pooling all 602 beats from all subjects and
then evaluating the pooled RMS. The second row reports the
result of finding the RMS error for each subject separately and
then averaging the results. Similarly, the last row shows the
median value of the RMS error for the individual subjects.

Our algorithm (first column) clearly outperforms all four
reference methods in all measures and provides accurate
estimates with an RMS error of under 15 ms. This is also
confirmed by the probability density function of the difference
between the estimated beat time ûk and the actual time of the
original beat uk (Fig. 4).

TABLE II
RESULTS OF THE ESTIMATION OF UNKNOWN BEAT TIMES. THE ROOT

MEAN SQUARE (RMS) OF THE ERROR BETWEEN THE BEAT TIME
ESTIMATED BY OUR METHOD ûPP

k AND THE TRUE BEAT TIME uk IS
COMPARED WITH THAT OF THE OTHER METHODS REPORTED IN THE TEXT.

RMS ûPP
k − uk ûN

k − uk ûH
k − uk ûS

k − uk ûS′
k − uk

pooled 14.98 ms 21.78 ms 18.79 ms 34.59 ms 19.69 ms
average 14.21 ms 19.98 ms 17.66 ms 33.08 ms 18.59 ms
median 12.10 ms 17.81 ms 17.68 ms 32.92 ms 15.71 ms

C. Detection on arrhythmia database

As mentioned before, the algorithm presented here can also
be used to detect ectopic events based on the R-R intervals
alone, not for the purpose of classifying the different types of
arrhythmias but simply to try to replace them with fictitious
normal beats and carry on with the desired type of HRV
analysis.

Methods: The performance of our algorithm in the detection
of ectopic beats was evaluated on the MIT-BIH Arrhyth-
mia database [35], [37]. For this analysis we selected the
recordings having less than 10 non-normal beats in any 20-
second window.2 The main reason is that we are interested
in R-R series that are mildly affected by erroneous or ectopic
events, and that can be recovered and further processed with
HRV techniques. In a recording with an excessive number
of irregular beats, the information about the underlying sinus
rhythm cannot be reliably recovered and therefore the HRV
indices cannot be assessed.

For each record of the MIT-BIH Arrhythmia Database
considered, we ran the four algorithms described in Sec-
tion III-A. As some of the algorithms use a 60 s sliding
window to adaptively estimate their thresholds, we did not test
the detection in the first minute of the record. We also ignored
types of ectopic beats that merely affect the morphology of
the contraction potential but not its timing because all the
algorithm that we tested do not have access to the raw ECG
data but only to the series of R-R intervals.

Results: Table III reports the confusion matrices obtained
for the four algorithms, whereas Table IV shows their per-
formance measures. Our method outperforms the previous
algorithms, especially in terms of a lower number of false
detections, resulting in higher specificity and positive predicted
value. Figure 5 shows a few examples of real arrhythmic events
from this database and how our algorithm detects and corrects
them.

2The records used were: 100, 101, 103, 105, 108, 112, 113, 114, 115, 116,
117, 121, 122, 123, 215, 230.

TABLE III
CONFUSION MATRICES FOR THE POINT-PROCESS METHOD PRESENTED

HERE (PP) AND FOR THE THREE STATE-OF-THE-ART METHODS
CONSIDERED AGAINST THE EXPERTS’ ANNOTATIONS IN THE DATABASE
(ANNOT). THE LABEL “N” REPRESENT NORMAL BEATS WHILE “ 6= N”

CONTAINS ALL OTHER TYPES OF BEATS.

PP Rand2007 Mateo2003 Berntson1990
6= N N 6= N N 6= N N 6= N N

Annot 6= N 389 24 355 58 351 62 387 26
N 5 32596 99 32502 16 32585 20 32581

TABLE IV
PERFORMANCE MEASURES OF THE FOUR METHODS.

PP Rand2007 Mateo2003 Berntson1990
Accuracy 99.91% 99.52% 99.76% 99.86%
Sensitivity 94.19% 85.96% 84.99% 93.70%
Specificity 99.98% 99.70% 99.95% 99.94%

Pos.Pred.Val 98.73% 78.19% 95.64% 95.09%
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IV. DISCUSSION AND CONCLUSIONS

We present a novel paradigm for detection and correction
of ectopic and erroneous heartbeats. At the core of the method
is the ability of the underlying probabilistic model to indicate
with accurate precision the degree of probability of having
a heartbeat at each moment in time. This feature allows to
create a tree-like decisional structure based on quantitative
comparisons between the observed events and the probability
of having the event at that time. More specifically, we test
the alternative hypotheses that: a) a beat has been correctly
identified, b) a beat has been missed, c) the observed beat is
spurious, d) one or two beats need to be moved to a most
probable time according to the probability distribution, or e)
a beat is a resetting ectopic beat. Since the model is defined
in continuous time and is updated recursively in an on-line
fashion, the devised algorithm is able to process the decisional
tree in real-time using only short-time past information, and
then finalizing the correction within at maximum three beats
in the future.

Our method, similarly to the IPFM-based method, is based
on a physiologically motivated model, with the further advan-
tage that the point process framework allows for dynamically
updating the model by tracking the time-varying heartbeat
variations, including an objective goodness-of-fit framework
which can validate the decisional outcome based on optimal
model selection. Importantly, the parameter vector is here
computed only to estimate the likelihood, but this is the same
vector that defines the instantaneous time and frequency do-
main point-process HRV as in [17], [38]–[40], thus providing
a simultaneous assessment of cardiovascular control that is
unbiased by artifactual or arrhythmic events.

Our results provide evidence of the efficacy of the detec-
tion method in recognizing missing, spurious, mis-detected,
and irregular heartbeats with remarkable accuracy even in
scenarios that require discerning very small time resolution
errors at millisecond scales. They further point at our method

as more accurate than three previously published detection
methods and four correction methods. In particular, our au-
tomated method achieves 99.985% specificity for detection
of correct beats, 100% sensitivity to missed and extra beats,
96.01% sensitivity for beats artificially misplaced by 137 ms
on average, and 98.73% positive prediction value for real
arrhythmic events. Our algorithm represents an improvement
over previous procedures: only one other method provides
similar results but at the cost of a much lower specificity.
Our correction procedure provides accurate estimates of the
replacement time of an unobserved beat, with and error below
15 ms, outperforming other existing methods of estimating the
time of missing beats.

One important feature of the technique is that it works
with predetermined decisional thresholds that have been fixed
once for all during our analyses, and have been demonstrated
to work on a wide range of experimental recordings, with
high robustness to noise and ability to cope with inter-
subject variability. In particular, the algorithm can be used for
exclusive pre-processing purposes of any R-R interval series
and consequent application of any kind of HRV analysis. The
routine is very fast, easy to run, and available online at no
cost for research purposes [19]. We hope dissemination will
further corroborate the robustness and efficacy of the proposed
method in an even wider range of physiological and clinical
settings.

APPENDIX

In this Appendix we find the probability distribution of
τ − uk which is the sum of two unknown intervals τ ′ − uk
and τ − τ ′ distributed according to f(τ ′ − uk |µ1, λ1) and
f(τ − τ ′ |µ2(τ ′ − uk), λ2). Rather than finding the exact
solution given by (3), we approximate it as an inverse Gaussian
distribution of mean µ1+2 and shape parameter λ1+2, that we
are about to introduce. Let us define ŵk+1 = τ ′−uk = µ1+ε1
and ŵk+2 = τ − τ ′ = µ2(ŵk+1) + ε2 where ε1 and ε2 are
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Fig. 5. The figure shows examples of beats from the MIT-BIH Arrhythmia database and how they were detected and corrected by our algorithm. The
markers (little star, triangle, and square) and the associated labels (“N”, “V”, “a”) correspond to the database annotations and they mean, respectively: normal
beat, premature ventricular contraction, and aberrated atrial premature beat. The “m”, “t”, and “r” letters next to some beats are the output of our detection
algorithm (all other beats were detected as normal). The dashed blue line corresponds to the input series of R-R intervals while the black line is the output
series produced by our correction algorithm (when the two coincide, only the black line is visible). On the left, subplot A shows examples of “m” and
“t” beats and the remarkable ability of our algorithm to correct the R-R series and recover the underlying rhythmic structure. Two ectopic beats were not
detected by any of the algorithms because they do not cause a sufficient deviation from the normal rhythm. Very likely they were labelled as ectopic based
on their morphology (unavailable to our algorithm). The letter “t” marks the case of two ectopic beats in a row followed by a compensatory pause. This is a
particularly challenging case, as it requires predicting the time of occurrence of two beats at once. Subplot B shows a rapid sequence of three ectopic beats
and how they were detected and corrected by the algorithm. Subplot C shows a resetting ectopic beat that our algorithm correctly detects as such and flags for
further correcting action. Finally, in subplot D, there is an example of a sudden physiologic change in autonomic control that might trigger a false detection.
In fact, our previous algorithm presented in [14] as well as all three reference algorithm presented here detect one or more of the beats around t = 1470 s
as arrhythmic, while the new algorithm presented here does not.
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both zero-mean noise terms. The variance of ε1 is the same
as that of ŵk+1, i.e., the variance of an inverse Gaussian
distribution of parameters µ1 and λ1: µ3

1/λ1. The variance of
ε2 is µ3

2(ŵk+1)/λ2. We make the assumption that it can be ap-
proximated as µ3

2(µ1)/λ2 and that ε1 and ε2 are uncorrelated.
Using (1) we have ŵk+2 = µ2(µ1)+ θ̃1(uk) (ŵk+1−µ1)+ ε2.
Therefore,

τ−uk = ŵk+1+ŵk+2 = µ1+ε1+µ2(µ1)+θ̃1(uk) ε1+ε2 (7)

which leads to µ1+2 = E[τ − uk] = µ1 + µ2(µ1) and
Var[τ − uk] = (1 + θ̃1(uk))2 Var[ε1] + Var[ε2]. This means
µ3
1+2/λ1+2 = (1 + θ̃1 (uk))2 µ3

1/λ1 + µ3
2(µ1)/λ2. Using

λ1 = λ2 and solving for λ1+2, we obtain (4).
Following a similar reasoning, we obtain that the probability

distribution of the sum of three unknown intervals can be
modelled as an IG distribution with parameters µ1+2+3 =
µ1 + µ2(µ1) + µ3(µ1, µ2) and

λ1+2+3 =
λ1 µ

3
1+2+3

(1 + θ̃1 + θ̃2)2µ3
1 + (1 + θ̃1)2µ3

2(µ1) + µ3
3(µ1, µ2)

.

ACKNOWLEDGEMENTS

The authors would like to thank Prof. Roger Mark for his
valuable comments and suggestions that were of great help
during the first stages of this work.

This work was supported by National Institutes of Health
(NIH) through grants R01-HL084502 (R.B.) and DP1-
OD003646 (E.N.B.).

REFERENCES

[1] A. Camm, M. Malik, J. Bigger, G. Breithardt, S. Cerutti, R. Cohen,
and P. Coumel, “Heart rate variability: standards of measurement,
physiological interpretation and clinical use. task force of the european
society of cardiology and the north american society of pacing and
electrophysiology.” Circulation, vol. 93, no. 5, p. 1043, 1996.

[2] U. Acharya, P. Joseph, N. Kannathal, C. Lim, and J. Suri, “Heart rate
variability: a review,” Med. Biol. Eng. Comput., vol. 44, pp. 1031–1051,
2006.

[3] U. Acharya, J. Suri, J. Spaan, and S. Krishnan, Advances in cardiac
signal processing. Springer Verlag, 2007.

[4] N. Lippman, K. M. Stein, and B. B. Lerman, “Comparison of methods
for removal of ectopy in measurement of heart rate variability,” Am.
J. Physiol. — Heart and Circulatory Physiology, vol. 267, no. 1, pp.
H411–H418, Jul. 1994.

[5] M. V. Kamath and E. L. Fallen, “Correction of the heart rate variability
signal for ectopics and missing beats,” in Heart rate variability, M. Ma-
lik and A. J. Camm, Eds., 1995, pp. 75–85.

[6] G. Clifford, P. McSharry, and L. Tarassenko, “Characterizing artefact
in the normal human 24-hour RR time series to aid identification
and artificial replication of circadian variations in human beat to beat
heart rate using a simple threshold,” in Proceedings of Computers in
Cardiology, Memphis, Sep. 2002, pp. 129–132.

[7] M. N. Cheung, “Detection of and recovery from errors in cardiac
interbeat intervals,” Psychophysiology, vol. 18, no. 3, pp. 341–346, May
1981.

[8] M. Malik, T. Cripps, T. Farrell, and A. Camm, “Prognostic value of heart
rate variability after myocardial infarction. a comparison of different
data-processing methods,” Med. Biol. Eng. Comput., vol. 27, no. 6, pp.
603–611, 1989.

[9] G. G. Berntson, K. S. Quigley, J. F. Jang, and S. T. Boysen, “An
approach to artifact identification: Application to heart period data,”
Psychophysiology, vol. 27, no. 5, pp. 586–598, Sep. 1990.

[10] E. J. M. Weber, P. C. M. Molenaar, and M. W. Molen, “A nonstationarity
test for the spectral analysis of physiological time series with an
application to respiratory sinus arrhythmia,” Psychophysiology, vol. 29,
no. 1, pp. 55–62, Jan. 1992.

[11] D. Sapoznikov, M. Luria, Y. Mahler, and M. Gotsman, “Computer
processing of artifact and arrhythmias in heart rate variability analysis,”
Computer methods and programs in biomedicine, vol. 39, no. 1-2, pp.
75–84, 1992.

[12] M. Brennan, M. Palaniswami, and P. Kamen, “A new model-based ec-
topic beat correction algorithm for heart rate variability,” in Proceedings
of the 23rd Annual International Conference of the IEEE EMBS, vol. 1,
2001, pp. 567– 570.

[13] J. Mateo and P. Laguna, “Analysis of heart rate variability in the presence
of ectopic beats using the heart timing signal,” IEEE Trans. Biomed.
Eng., vol. 50, no. 3, pp. 334–343, Mar. 2003.

[14] R. Barbieri and E. N. Brown, “Correction of erroneous and ectopic beats
using a point process adaptive algorithm,” in Proceedings of the 28th
Annual International Conference of the IEEE EMBS, Sep. 2006, pp.
3373–3376.

[15] J. Rand, A. Hoover, S. Fishel, J. Moss, J. Pappas, and E. Muth, “Real-
Time correction of heart interbeat intervals,” IEEE Trans. Biomed. Eng.,
vol. 54, no. 5, pp. 946–950, May 2007.

[16] D. Widjaja, S. Vandeput, J. Taelman, M. Braeken, R. Otte, B. Van den
Bergh, and S. Van Huffel, “Accurate R peak detection and advanced
preprocessing of normal ECG for heart rate variability analysis,” in
Proceedings of Computing in Cardiology, Belfast, Sep. 2010, pp. 533–
536.

[17] R. Barbieri, E. C. Matten, A. R. Alabi, and E. N. Brown, “A point-
process model of human heartbeat intervals: new definitions of heart
rate and heart rate variability,” Am. J. Physiol. — Heart and Circulatory
Physiology, vol. 288, pp. H424–435, 2005.

[18] L. Citi, E. N. Brown, and R. Barbieri, “A point process local likelihood
algorithm for robust and automated heart beat detection and correction,”
in Proceedings of Computing in Cardiology, Hangzhou, Sep. 2011.

[19] L. Citi and R. Barbieri, “Point process detection and correction
of erroneous and ectopic heart beats,” 2012. [Online]. Available:
http://users.neurostat.mit.edu/barbieri/ncspu

[20] G. Moody, “Spectral analysis of heart rate without resampling,” in
Proceedings of Computers in Cardiology. IEEE, 1993, pp. 715–718.

[21] A. Guyton and J. Hall, Textbook of medical physiology. Saunders
Philadelphia, PA, 1991, vol. 9.

[22] B. Hyndman and R. Mohn, “A model of the cardiac pacemaker and its
use in decoding the information content of cardiac intervals,” Automed-
ica, vol. 1, pp. 239–252, 1975.

[23] R. DeBoer, J. Karemaker, and J. Strackee, “Description of heart-rate
variability data in accordance with a physiological model for the genesis
of heartbeats,” Psychophysiology, vol. 22, no. 2, pp. 147–155, 1985.

[24] R. Berger, S. Akselrod, D. Gordon, and R. Cohen, “An efficient
algorithm for spectral analysis of heart rate variability,” IEEE Trans.
Biomed. Eng., no. 9, pp. 900–904, 1986.

[25] J. Mateo and P. Laguna, “Improved heart rate variability signal analysis
from the beat occurrence times according to the ipfm model,” IEEE
Trans. Biomed. Eng., vol. 47, no. 8, pp. 985–996, 2000.

[26] E. Brown, Theory of point processes for neural systems, ser. Methods
and Models in Neurophysics. Elsevier, 2005, ch. 14, pp. 691–726.

[27] J. Feng, Computational neuroscience: a comprehensive approach. CRC
press, 2004.

[28] R. Chhikara and L. Folks, The inverse Gaussian distribution: theory,
methodology, and applications. CRC, 1989, vol. 95.

[29] G. Gerstein and B. Mandelbrot, “Random walk models for the spike
activity of a single neuron,” Biophysical Journal, vol. 4, no. 1, pp. 41–
68, 1964.

[30] H. Tuckwell, Introduction to theoretical neurobiology: Nonlinear and
stochastic theories. Cambridge Univ Pr, 2005, vol. 2.

[31] G. Stanley, K. Poolla, and R. Siegel, “Threshold modeling of autonomic
control of heart rate variability,” IEEE Trans. Biomed. Eng., vol. 47,
no. 9, pp. 1147–1153, 2000.

[32] P. Andersen, Statistical models based on counting processes. Springer
Verlag, 1993.

[33] C. Loader, Local regression and likelihood. Springer Verlag, 1999.
[34] N. Iyengar, C. Peng, R. Morin, A. Goldberger, and L. Lipsitz, “Age-

related alterations in the fractal scaling of cardiac interbeat interval
dynamics,” Am. J. Physiol. — Regulatory, Integrative and Comparative
Physiology, vol. 271, no. 4, pp. R1078–R1084, 1996.

[35] A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P. Ivanov, R. Mark,
J. Mietus, G. Moody, C. Peng, and H. Stanley, “Physiobank, phys-
iotoolkit, and physionet: Components of a new research resource for
complex physiologic signals,” Circulation, vol. 101, no. 23, pp. e215–
e220, 2000.

http://users.neurostat.mit.edu/barbieri/ncspu


10

[36] K. Solem, P. Laguna, and L. Sörnmo, “An efficient method for handling
ectopic beats using the heart timing signal,” IEEE Trans. Biomed. Eng.,
vol. 53, no. 1, pp. 13–20, 2006.

[37] G. B. Moody and R. G. Mark, “The impact of the MIT-BIH arrhythmia
database,” IEEE Eng. Med. Biol. Mag., vol. 20, no. 3, pp. 45–50, Jun.
2001.

[38] R. Barbieri and E. Brown, “Analysis of heartbeat dynamics by point
process adaptive filtering,” IEEE Trans. Biomed. Eng., vol. 53, no. 1,
pp. 4–12, 2006.

[39] Z. Chen, E. Brown, and R. Barbieri, “Assessment of autonomic control
and respiratory sinus arrhythmia using point process models of human
heart beat dynamics,” IEEE Trans. Biomed. Eng., vol. 56, no. 7, pp.
1791–1802, 2009.

[40] ——, “Characterizing nonlinear heartbeat dynamics within a point
process framework,” IEEE Trans. Biomed. Eng., vol. 57, no. 6, pp. 1335–
1347, 2010.

Luca Citi (S’06–M’09) was born in Pistoia, Italy, in
1979. He received a laurea (MS) degree in Electronic
Engineering with major in Biomedical Engineering,
in 2004 from Università degli Studi di Firenze
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