
Documenting, modelling and exploiting P300
amplitude changes due to variable target delays in
Donchin’s speller

Luca Citi ∗, Riccardo Poli, and Caterina Cinel

Brain-Computer Interfaces Lab, School of Computer Science and Electronic
Engineering, University of Essex, Colchester CO4 3SQ, UK

E-mail: lciti@neurostat.mit.edu, rpoli@essex.ac.uk, ccinel@essex.ac.uk

Abstract. The P300 is an endogenous Event-Related Potential (ERP) which
is naturally elicited by rare and significant external stimuli. P300s are used
increasingly frequently in Brain Computer Interfaces (BCI) because users of
ERP-based BCIs need no special training. However, P300 waves are hard to
detect and, therefore, multiple target stimulus presentations are needed before
an interface can make a reliable decision. While significant improvements have
been made in the detection of P300s, no particular attention has been paid to
the variability in shape and timing of P300 waves in BCIs. In this paper we
start filling this gap by documenting, modelling and exploiting a modulation in
the amplitude of P300s related to the number of non-targets preceding a target
in a Donchin speller. The basic idea in our approach is to use an appropriately
weighted average of the responses produced by a classifier during multiple stimulus
presentations, instead of the traditional plain average. This makes it possible
to weigh more heavily events that are likely to be more informative, thereby
increasing the accuracy of classification. The optimal weights are determined
through a mathematical model that precisely estimates the accuracy of our
speller as well as the expected performance improvement w.r.t. the traditional
approach. Tests with two independent datasets show that our approach provides a
marked statistically significant improvement in accuracy over the top performing
algorithm presented in the literature to date. The method and the theoretical
models we propose are general and can easily be used in other P300-based BCIs
with minimal changes.

Submitted to: J. Neural Eng.

∗ Luca Citi is now with the department of Anesthesia, Massachusetts General Hospital / Harvard
Medical School, Boston, MA 02114 USA, and with the Brain and Cognitive Sciences department,
Massachusetts Institute of Technology, Cambridge, MA 02139 USA.

Documenting, modelling and exploiting P300 amplitude changes in a BCI 2

1. Introduction

Brain-Computer Interfaces (BCIs) measure specific (intentionally and unintentionally
induced) brain activity signals and translate them into device control signals [1, 2].

Many factors limit the performance of BCIs. These include: the natural
variability and noise in the brain signals measured; the limitations of recording devices,
of the processing methods that extract signal features and of the algorithms that
translate these features into device commands; the quality of the feedback provided
to the user; the lack of motivation, the tiredness, the limited degree of understanding,
the age variations, the handedness, etc. of users; the combination of mental tasks used;
and the natural limitations of the human perceptual system [3].

While amplitude and shape variations in brain waves are often a hindrance
for BCIs, in some cases they carry information which can be exploited to improve
performance, irrespective of whether a physiological explanation for such variations
is available [3, 4]. Some of these variations are hard to document because standard
averages may severely misrepresent what really goes on in the brain on a trial by
trial basis [5–8], although more sensitive averaging techniques have recently become
available [9, 10].

In this paper, we will document, theoretically model and exploit a source of
waveform variations in P300 waves, namely, their modulation caused by variations in
the interval between target-stimulus presentations. We illustrate our ideas using the
Donchin speller, although the benefits of the approach can be accrued also in other
P300-based systems.

The paper is organised as follows. In section 2 we provide some background on
P300 waves and on the factors that may affect their characteristics, with particular
attention paid to effects associated with the timing of stimulus presentation. In
the same section we also introduce the Donchin speller paradigm. In section 3, we
document the effects of the number of non-targets preceding a target on the amplitude
and shape of P300s. In section 4, we consider a typical two-stage implementation of
Donchin’s speller, where one stage processes the responses to single stimuli while
the other integrates such responses and decides which character to enter. We then
derive mathematical models of the two stages, which, together, express the speller’s
accuracy, and generalise such models to make them applicable to a variety of ERP-
based BCIs. Section 5 extends the model of the first stage of Donchin speller so as
to consider the modulations of P300s associated with stimulus history documented in
section 3. In section 6, we propose and model a new algorithm for the second stage of
the speller that exploits such effect making it possible to compare its performance to
that of the standard speller. The analysis (corroborated by Monte Carlo simulations)
indicates that our algorithm is superior to the top performing Donchin speller from
the literature. In section 7 we verify the predictions of our mathematical models by
using two independent datasets: one from BCI Competition III and 12 subjects tested
in our labs. Results show that the new system is statistically significantly superior
to the original. We discuss and position our results in section 8. Finally, we present
some conclusions and indicate promising avenues for future work in section 9.

Documenting, modelling and exploiting P300 amplitude changes in a BCI 3

2. Background

2.1. P300 waves and factors affecting their characteristics

Among the different approaches used in BCI studies, those based on event related
potentials (ERPs) [11–13] are rather appealing since, at least in principle, they offer a
relatively high bit-rate and require no user training. ERPs are relatively well defined
shape-wise variations of the ongoing EEG which are elicited by a stimulus and are
temporally linked to it. ERPs include an exogenous response, due to the primary
processing of the stimulus, as well as an endogenous response, which is a reflection of
higher cognitive processing induced by the stimulus [14].

The P300 wave is an endogenous ERP with a latency range of approximately 300
to 600 ms and which is elicited by rare and/or significant stimuli (visual, auditory, or
somatosensory). Effectively, the presence of P300 ERPs depends on whether or not
a user attends a rare, deviant or target stimulus. This is what makes it possible to
use them, in BCI systems, to determine user intent. For an overview of the cognitive
theory and the neurophysiological origin of the P300 see [15].

The characteristics of the P300, particularly its amplitude and latency, depend
on several factors [16]. Some factors, such as food intake, fatigue or use of drugs,
are related to the psychophysical state of the subject [17]. Other factors, such as
the number of stimuli, their size and their relative position, are related to the spacial
layout of the stimuli [18–20]. Finally, there are several important factors related to
the timing and sequence of stimuli. Since these are the focus of this paper, we will
devote the rest of this section to summarise what is known about such factors.

Several studies have reported that P300 amplitude increases as target probability
decreases (see [14] for a review). The P300 amplitude seems to also be positively
correlated with the inter-stimulus interval (ISI) or the stimulus onset asynchrony
(SOA) (e.g., see [21–23]). Other studies [24, 25] note that, despite the P300 being
clearly affected by target-stimulus probability and ISI, each of these factors also
varies the average target-to-target interval (TTI) and hypothesise that TTI is the true
factor underlying the P300 amplitude effects attributed to target probability, sequence
length, and ISI. The P300 is also sensitive to the order of non-target and target stimuli,
most likely because this temporarily modifies target-stimulus probabilities and TTIs.
Indeed, there is a positive correlation between P300 amplitude and the number of
non-target stimuli preceding a target (e.g., [26, 27]).

In order to avoid the overlap between two consecutive epochs, in psychophysiology
the effects discussed above have always been studied with SOAs of approximately one
second or more. However, such long SOAs would drastically limit the information
transfer rate in BCIs, where SOAs of less than 300 ms are much more common. Also
in these cases there is a reduction of the P300 amplitude when two targets are close
in a sequence of stimuli. However, this is more likely the result of phenomena like
repetition blindness or attentional blink [3] than the TTI effect documented with
slower protocols.

The influence of the timing and sequence of stimuli preceding a target on the
P300 could be partially explained as the result of “recovery cycle” limitations in the
mechanisms responsible for the generation of this ERP [24]. The smaller potentials
produced when a target is presented shortly after another target might simply be the
result of the brain not having yet reacquired the necessary resources to produce large
ERPs.

Documenting, modelling and exploiting P300 amplitude changes in a BCI 4

Figure 1. The matrix of characters used in the Donchin speller.

Some ascribe such effects to an inability to consistently generate P300s in the
presence of short TTIs [28], suggesting that a smaller average amplitude might be the
result of an increase in the fraction of responses to target stimuli that do not present
a P300 rather than a modulation of the P300 amplitude in all responses.

In summary, the literature indicates that the order and timing of stimuli have
measurable effects of P300s. In an effort to capture and exploit some such effects to
improve BCI performance, in this paper we will focus on the number of non-targets
preceding a target stimulus. Note that we make no claims regarding whether or not
such a number is the most primitive factor affecting P300 amplitudes. All we need for
our method to improve performance is that P300’s amplitude be correlated with this
number, which is the case for Donchin’s speller, as we will show in Section 3.

2.2. Donchin ERP-based speller

Donchin and Farwell [11] designed a speller based on the P300 ERP, which is now in
widespread use. In this speller, users are presented with a 6 by 6 matrix of characters
(see figure 1), the rows and columns of which are highlighted for a short period and
one at a time. The sequence of flashes is generated randomly without replacement,
i.e., a row or column is not allowed to flash again until all other rows and columns have
flashed. The users’ task is to focus their attention on the character they want to input.
Thus, the flashes of the row and column containing the desired character represent
target stimuli. As they are relatively rare, they elicit a P300 wave. In principle, a BCI
could then identify the row and column of the target character, thereby inferring it, by
looking for the largest P300-like responses in the EEG signals acquired immediately
after the flashing of all the rows and columns, respectively. Unfortunately, noise makes
reliably recognising P300s in single trials very difficult. However, by asking users to
focus their attention on the character of interest for multiple blocks of 12 flashes, and
averaging either the signal epochs related to each row and column or the corresponding
outputs of a P300 classifier, it is possible to infer the target character with acceptable
accuracy [29].

3. Stimulus history effects in the Donchin speller

Evidence of the shape of P300s being modulated by the temporal distance between
consecutive targets in the Donchin speller has recently been reported [30–32]. In this
work, we will take this one step further by modelling and exploiting this phenomenon
in order to improve the performance of the speller. Before we do so, however, in this
section we want to present experimental evidence further corroborating the results

Documenting, modelling and exploiting P300 amplitude changes in a BCI 5

of [30–32]. Related experimental data will be used in Section 5.1 to corroborate our
model.

We studied the training set of the two subjects of dataset II from the BCI
competition III [33] (results with 12 further subjects will be presented in Section 7.2).
Data were collected with the Donchin speller protocol described above, using a SOA
of 175 ms. For each subject, the training set consisted of 85 blocks. Each block
corresponds to a subject focusing on one character for 15 repetitions of the sequence
of the flashes of the 6 rows and 6 columns in the display. Further details on the data
can be found in [33].

We bandpass-filtered the signals in the band 0.15 - 5 Hz (HPF: 1600-tap FIR;
LPF: 960-tap FIR) to reduce exogenous components at the stimulus presentation
frequency (5.7 Hz) and higher. One-second epochs following each flash were extracted.
Therefore, for each subject, a total of 15300 (85×15×12) epochs were available, of
which 2550 (85×15×2) corresponded to targets.

The set of epochs was partitioned according to the number, h (for “history”), of
non-targets presented between the previous target and the stimulus corresponding to
the current epoch. For example, for the sequence ...TNNNT..., the second target (T)
is assigned to partition t3 because it is preceded by three non-targets (N).

Outlier, e.g., epochs with unusually large deflections due to movements or eye-
blinks, were removed using the following procedure. For each set of epochs, the first
quartile, q1(i), and third quartile, q3(i), at each sample, i, were found. Then an
acceptance “strip” was defined as the time-varying interval [q1(i)− 1.5∆q(i), q3(i) +
1.5∆q(i)] where ∆(i) = q3(i) − q1(i) is the interquartile range. Responses falling
outside the acceptance strip for more than one tenth of the epoch were rejected. For
each partition, the mean, m(i), and the standard error, ste(i), of the responses for
each class were finally evaluated using the remaining epochs.

Figure 2 shows the average responses obtained from the epoch-partitioning
and artefact-rejection procedures described above. The results suggest that despite
Donchin’s speller being characterised by a fast SOA, significant modulations of the
P300 amplitude related to the number, h, of non-targets preceding a stimulus are
present. The most significant effect is visible around the peak of the “t” line, that
represents the average P300. Indeed, if we focus on around 450 ms for subject A and
350 ms for B, we see that the P300 is hardly visible in the average associated with the
“t0” partition which represents two targets in a row. The same is true for the average
of partition “t1”. The averages for other partitions show a progressive increase in the
P300 amplitude as the number of non-targets separating a target from the previous
target grows.

The effect is particularly clear in figure 3 where we plotted P300 amplitudes vs. h
for subjects A and B at 450 ms and 350 ms, respectively. Note that, because of the
randomisation within each block of 12 stimulus presentations, it is possible, albeit
infrequent, for a target stimulus in a block to be followed by up to 20 non-target
stimuli before a target stimulus in the following block is presented.

4. Modelling the accuracy of a Donchin speller

An objective of this paper is to model and exploit the P300 modulations documented
in the previous section to improve the accuracy of Donchin’s speller. As we will see
in Section 6, simple modifications to the internal structure of the speller can achieve

Documenting, modelling and exploiting P300 amplitude changes in a BCI 6

Subject A

Subject B

Figure 2. Modulation of the amplitude and shape of P300s as the number of
non-targets preceding the current stimulus, h, varies for the two subjects in the
BCI competition III Donchin’s speller dataset. The thin lines are averages of
ERPs recorded in channel Cz for the epochs partitioned according to h (lines
“t0” to “t9+”). The thick line labelled “t” is the average of all targets; a vertical
dashed line marks the time where this reaches its peak in each plot. The line “nt”
is the average of an equally-sized random sample of non-targets. In all cases the
number of epochs averaged (after artefact rejection) is shown in brackets.

this. However, before we can proceed with this, we need to describe and model the
internal operations of typical Donchin spellers. We do this in this section.

4.1. Algorithm of a Donchin speller

In a Donchin speller, inferring the character the user wants to input is a two-stage
process (figure 4). The ERPs produced in the 1-second epochs following the flashing
of the rows and columns of characters in the display are acquired across all EEG
channels and time steps, resulting in a sequence of 2–D arrays (far left of the figure).

Documenting, modelling and exploiting P300 amplitude changes in a BCI 7

Figure 3. A cross section of the data in figure 2 taken at the time when the
average target ERP (line “t” in figure 2) peaks. Whiskers represent standard
errors. Note that the groups of partitions “t2-t4”, “t5-t8” and “t9+” from figure 2
have been split more finely for a more detailed analysis.

time

c
h
a
n
n
e
l

Feature

Extraction

ERP
Feature

vector

Classifier

(scorer)

Flash

score

time

time

fl
a
s
h
e
s

Character

scorer

A

_

B

C

Character

score

FIRST STAGE SECOND STAGE

MAX X

Inferred

character

c
h
a
n
n
e
l

c
h
a
n
n
e
l

Figure 4. Block diagram of typical implementations of Donchin’s speller (see
text for details).

In the first stage, each such array is processed by a feature extractor/classifier whose
output is expected to contain useful information as to whether the corresponding flash
represented a target or a non-target (flash score). In the second stage, an algorithm
combines the flash scores for different epochs, assigns a score to each character
(character score) and chooses the character with the highest score as its classification
for the data. Below we provide details on how the two stages are implemented in
current ERP-based BCIs.

As shown in figure 4(left), the first stage often includes a feature extractor/selector
that creates a low-pass filtered and sub-sampled version of the epoch following a flash
and selects a subset of informative samples and channels. Let us call xi the resulting
vector of features characterising the i-th epoch. Feature vectors are typically processed
by a classifier that performs a rotation and a projection of the feature space in the
direction that maximises some form of separability measure between the target and
non-target classes. Frequently the classifier is used in an unconventional way: it is
trained as if it were a binary classifier with a two-class output, but it is then used
without applying any thresholding as a continuous scoring function, f . Let yi = f(xi)

Documenting, modelling and exploiting P300 amplitude changes in a BCI 8

be the flash score produced by such a function in response to feature vector xi.
As shown in figure 4(right), in its simplest form the second stage can be performed

in two steps. The first involves averaging the scores associated with the flashing of
each row and column independently and then computing a score for each character by
adding up the averages of the corresponding row and column. The second step simply
requires choosing the character with the maximum character score [34].

In formulae, in the standard approach, the character at the intersection of row r
and column c is given a score

S̄r,c =
1

J

∑
ρ∈Rr

yρ +
1

J

∑
χ∈Cc

yχ , (1)

where J is the number of repetitions of the sequence of stimuli, yρ and yχ are the
outputs of the flash scoring function f in the presence of feature vectors xρ and xχ,
respectively, while Rr and Cc are sets of indices of the stimuli where row r and column
c flashed, respectively. The classifier then chooses the character at position

(r̂, ĉ) = argmax
(r,c)

S̄r,c , (2)

in the character grid.

4.2. Model of the accuracy of a Donchin speller

From the description provided in the previous section, it is clear that the accuracy of
Donchin’s speller depends the performance of the two main stages shown in figure 4.
In this section we will construct a probabilistic model that will allow us to compute
the overall performance of the speller. We will do so by modelling its second stage
in detail, while we will coarse-grain on the internal mechanisms of the first by only
modelling its output, i.e., the flash scores. We do this because later in the paper we
will modify the second stage so as to exploit target history effects and this will require
only knowing and adapting the details of the model of the second stage of the standard
speller.

Before we start, we need to model the sequence of stimuli, since the output of a
speller and its performance are necessarily functions of the visual stimuli as well as,
naturally, of the user’s intentions. We model the sequence of J×12 flashes presented to
the subject as stochastic vector L = (L1, L2, L3, ...). Each component Li of the vector
is itself a stochastic variable drawn from the set of outcomes {R1, . . . ,R6,C1, . . . ,C6}
where Rr represents the event “the r-th row flashed”, while Cc represents the event
“the c-th column flashed”. Let us denote with ℓ an instantiation of L and with ℓi the
instantiation of the element/variable Li.

The sequence of stimuli needs to be treated as a stochastic variable rather than
a constant because of the randomness in the sequence generation process described
in section 2.2. Thus, in different repetitions of the experiment different sequences of
stimuli will likely be presented to the user. This will happen, for example, if the user
needs to enter different letters or the same letter multiple times.

4.2.1. Modelling Stage 1 ERPs are modulated by the nature and type of the stimuli
eliciting them. However, even in the presence of identical external stimuli, ERPs are
typically affected by a great deal of noise and variability. As a result the feature
vectors, xi, and the flash scores, yi, produced in the first stage of Donchin’s speller

Documenting, modelling and exploiting P300 amplitude changes in a BCI 9

should be treated as variable, or, more specifically, as stochastic functions of the
variables Li introduced above.

In principle to fully model the first stage of the speller which corresponds to
the process of assigning a score to each flash, one would need to identify the joint
probability distribution of the variables y1, y2, as a function of L. However, this
is very hard to do. Therefore, here we will introduce some simplifying assumptions,
which, as we will show later, still produce accurate models. Firstly, we will assume that
all the scores yi that are associated with the flashing of a row or column containing
the target character are independent and identically distributed, and that the same is
true for the scores produced in response of non-target flashes. Secondly, if we denote
by Ynt any stochastic variable that represents the flash score in the presence of a non-
target and by Yt any variable representing the flash score in the presence of a target,
we further assume that such variables have different means, which we will denote with
αnt and αt, respectively. Thirdly, we assume that, other than for the mean, such
variables have the same distribution, i.e., they can be represented as

Ynt = αnt + Y̊ (3)

Yt = αt + Y̊ (4)

for some assignment of the parameters αt and αnt, where Y̊ is a zero-mean stochastic
variable. Finally, we assume that the variable Y̊ is normally distributed with zero
mean, i.e., Y̊ ∼ N(0, σ2) for some assignment of σ, and we will interpret such variable
as the noise in the flash scores.

Naturally, exactly which variables yi in a sequence are of type Yt and which are
of type Ynt depends on whether the i-th flash is that of a row/column containing the
target character or not, respectively.

4.2.2. Modelling Stage 2 Based on the observations above, it is clear that the
character scores, S̄r,c, computed in the second stage of the speller via (1), are averages
of stochastic variables (the flash scores, yi) and, thus, are stochastic themselves.
Randomness in the S̄r,c is not only due to the yi’s but also to the fact that the sets
of indices Rr and Cc in (1) are themselves stochastic. In fact, as one can immediately
see, if we formalise their definition, i.e., Rr = {k |Lk = Rr} and Cc = {k |Lk = Cc},
they are functions of the stimulus sequence L.

An important consequence of the 36 character scores S̄r,c being stochastic
variables is that one cannot say which character has the maximum value: in principle
in different instantiations of the 36 scores S̄r,c different characters could present the
maximum score. If the target character is at position (r̂, ĉ), the returned character
will be correct if and only if

S̄r̂,ĉ = max
r,c

S̄r,c , (5)

ignoring the zero-probability event of a tie. The objective of this section, computing
the accuracy of the speller, which we will denote with A, can, therefore, be recast as
determining the probability of (5) being the case. In formulae:

A = Pr

(
S̄r̂,ĉ = max

r,c
S̄r,c

)
. (6)

Let us start by rewriting (1) in terms of stochastic variables:

S̄r,c =
1

J

∑
ρ∈Rr

Yρ +
1

J

∑
χ∈Cc

Yχ , (7)

Documenting, modelling and exploiting P300 amplitude changes in a BCI 10

where Yρ and Yχ now are stochastic score variables. This, in turn, can be rewritten
as

S̄r,c = Ūr + V̄c (8)

where Ūr is the average of the J variables Yρ for ρ ∈ Rr, while V̄c is the average of
the J variables Yχ for χ ∈ Cc. Note that both term in (8) are stochastic variables.

The random variable Ūr has a distribution that depends on whether or not r = r̂.
Specifically, if r = r̂, the variables Yρ in (7) are all distributed like Yt. Therefore,
Ūr̂ is the average of J independent instances of Yt and, so, it is a normal variable
Ūr̂ ∼ N(µŪr̂

, σ2
Ūr̂
) with µŪr̂

= αt and σ2
Ūr̂

= σ2/J . Similarly, if r ̸= r̂, the variables

Yρ in (7) are all distributed like Ynt. Thus, if we denote with ∗ any non target row,
Ū∗ is a normal variable Ū∗ ∼ N(µŪ∗ , σ

2
Ū∗

) with µŪ∗ = αnt and σ
2
Ū∗

= σ2/J .

Using similar arguments, it is easy to show that the variables V̄ĉ and V̄∗ are
distributed like Ūr̂ and Ū∗, respectively.

Because of the independence of the variables Yi and the geometry of the speller’s
grid, for any r1 ̸= r2 the set of Yi averaged in Ūr1 and the set of the Yi averaged in
Ūr2 are disjoint. The same is true of the V̄c variables. In other words, the 6 variables
Ūr and the 6 variables V̄c are all mutually independent. Therefore,

S̄r̂,ĉ = max
r,c

S̄r,c ⇐⇒ Ūr̂ > Ūmax = max
r ̸=r̂

Ūr ∧ V̄ĉ > V̄max = max
c̸=ĉ

V̄c(9)

and, from (6),

A = Pr

(
S̄r̂,ĉ = max

r,c
S̄r,c

)
= Pr

(
Ūr̂ > Ūmax

)
Pr
(
V̄ĉ > V̄max

)
. (10)

Hence, to make further progress in our modelling effort, we need to compute
Pr
(
Ūr̂ > Ūmax

)
and Pr

(
V̄ĉ > V̄max

)
.

Let us start with Pr
(
Ūr̂ > Ūmax

)
. Having already computed the distribution for

Ūr̂, first, we need to compute the distribution of Ūmax. To do so, we exploit the fact
that any number greater than the maximum of multiple variables is greater than any
individual variable. Therefore, for independent variables, the cumulative distribution
function of their maximum is the product of the cumulative distribution functions of
the original distributions. That is

FŪmax
(x) = Pr

(
Ūmax < x

)
=
∏
r ̸=r̂

Pr
(
Ūr < x

)
=
[
FŪ∗(x)

]5
,

where the symbol F.(x) represents cumulative distribution functions.
We are now in a position to compute Pr

(
Ūr̂ > Ūmax

)
. In general, given two

independent random variables X and Y , the probability of X > Y is

Pr (X > Y) =

∫
R

∫ x

−∞
fX(x) fY (y) dy dx

=

∫
R
fX(x) FY (x) dx .

Thus,

Pr
(
Ūr̂ > Ūmax

)
=∫

R

1

σŪr̂

normpdf

(
x− µŪr̂

σŪr̂

)[
normcdf

(
x− µŪ∗

σŪ∗

)]5
dx ,

(11)

Documenting, modelling and exploiting P300 amplitude changes in a BCI 11

where

normpdf (x) =
1√
2π

exp

(
−x

2

2

)
normcdf (x) =

1

2

(
1 + erf

(
x√
2

))
.

Using the same approach one can easily compute Pr
(
V̄ĉ > V̄max

)
. By substituting

that result and (11) into (10), we finally obtain the following expression for the
accuracy of Donchin’s speller :

A =

{∫
R

1

σŪr̂

normpdf

(
x− µŪr̂

σŪr̂

)[
normcdf

(
x− µŪ∗

σŪ∗

)]5
dx

}2

.(12)

This expresses the accuracy of the speller as a function of the characteristics of
the score distributions for targets and non-targets obtained from the first stage of
the speller. Therefore, in order to use this formula to measure the performance of
a particular realisation of Donchin’s speller, one needs to empirically identify the
means and standard deviation of the outputs of the flash scoring block for that
implementation and then feed them into (12). We will postpone this parameter-
identification phase until section 6, where we will develop a more accurate model of
the first stage which will take target history effects into account.

4.3. Generalising the model

While the system described and modelled above is the most typical incarnation of
Donchin’s speller, also other types of ERP-based speller have been considered in the
literature. By using procedures similar to the one we followed to obtain (12), we
analysed a variety of such systems and modelled their accuracy. The spellers we
considered are listed in the first column of table 1. These include Donchin spellers
with different matrix sizes and different features for the distributions of flash scores
for targets and non-targets, a sequential speller, and a generic multi-choice selection
BCI.

Interestingly, we found that the accuracy of all such systems is represented by the
following general equation:

A =

{∫
R
normpdf (ξ) [normcdf (β ξ + γ)]

η
dξ

}λ

. (13)

For example, it is easy to derive (12) from (13) by performing the substitution
x = σŪr̂

ξ + µŪr̂
and with an appropriate choice of the constants β, γ, η and λ

(indicated as case (a) in table 1). The values of the constants necessary to derive the
accuracy of other spellers are shown in the table. Other more complex BCI systems
could similarly be modelled.

5. Modelling h-related effects

In section 4.2.1 we introduced a simple model of the first stage of Donchin’s speller,
which, in conjunction with a model of the second stage, was then used to derive an
expression for the accuracy of the speller. The focus of this paper is really the second
stage of the speller. However, the accuracy of the second stage, and, hence, of the
speller, can only be evaluated if the statistical properties of the scores produced by the

Documenting, modelling and exploiting P300 amplitude changes in a BCI 12

Table 1. Parameters to be used in (13) to model the accuracy of different ERP-
based brain-computer interfaces

Type of BCI β γ η λ notes

a

Donchin speller choosing the
character at the intersection
between the row and column
with the maximum average
output (e.g., [34]);

1
αt−αnt

σ

√
J 5 2

αt and αnt are the average
flash scores for target and
non-target epochs, respec-
tively; σ2 is the variance of
flash scores for both target
and non-target epochs

b
Same as in (a) in the hy-
pothesis of heteroscedastic-
ity

σt
σnt

αt−αnt
σnt

√
J 5 2

αt and αnt are as in (a);
σ2
t and σ2

nt are the variances
of the flash scores for tar-
get and non-target epochs,
respectively

c
Same as in (a), but with a
generic M × M matrix of
characters

1
αt−αnt

σ

√
J M − 1 2 αt, αnt, σ

2 is as in (a)

d

Single character (sequential)
Donchin speller; selecting
the character with the high-
est average score (e.g., [35])

1
αt−αnt

σ

√
J 35 1 αt, αnt, σ

2 is as in (a)

e Selection of one item out of a
set of NC choices (e.g., [36])

1
αt−αnt

σ

√
J NC − 1 1 αt, αnt, σ

2 is as in (a)

f
Donchin speller with h-
related effects; using (16) as
a scoring function

σ
Ū′′
r̂

σ
Ū′′
∗

µ
Ū′′
r̂

−µ
Ū′′
∗

σ
Ū′′
∗

5 2
µŪ′′

r̂
, σŪ′′

r̂
, µŪ′′

∗
and σŪ′′

∗
are derived in Appendix A

g

Donchin speller with h-
related effects; using (1) as a
scoring function (equivalent
to the approach in [34])

σ
Ū′′
r̂

σ
Ū′′
∗

µ
Ū′′
r̂

−µ
Ū′′
∗

σ
Ū′′
∗

5 2

µŪ′′
r̂
, σŪ′′

r̂
, µŪ′′

∗
, σŪ′′

∗
are as

in (f), after setting w(h) =
1 ∀h

first stage are fully specified. In this section we want to extend the model of the first
stage developed above so as take the modulations of P300s associated with stimulus
history documented in section 3 into account. In section 6 we will propose and model
a new algorithm for the second stage of the speller which will exploit such effects.

5.1. Model of the first stage in presence of h-related effects

So far we have modelled the flash scores produced by the first stage of the speller as a
normally distributed stochastic variable whose mean depends exclusively on whether
or not the flash is a target or a non-target. As discussed above, however, h strongly
affects the shape and amplitude of P300s and, so, it is reasonable to expect that this
will also affect flash scores for target stimuli.

To take this into account, we propose to modify (4) by creating a separate version
of it for each value of h to which significant P300-amplitude changes can be ascribed.
In other words we replace it with the following:

Yth = αth + Y̊ (14)

where h = 0, 1, ..., hmax and the means αth account for the dependence of target flash
scores on h. Based on the evidence gathered in section 3, we chose hmax = 9. All
epochs with h ≥ 9 were artificially assigned to class h = 9, which we will term “9+”
in the following to make it easier to remember its contents. We, therefore, obtained
ten versions of (14).

Documenting, modelling and exploiting P300 amplitude changes in a BCI 13

While we have no evidence that h significantly affects also the shape and
amplitude of the ERPs produced in the presence of non-targets in Donchin speller,
in principle, this might happen with particular choices for the shape and timing of
the stimuli or in other types of BCI. These situations could easily be modelled by
generalising (3) as we did for the targets, e.g., by considering a model of the form

Ynth = αnth + Y̊ (15)

In appendix Appendix D we will look at possible causes of TTI-related
modulations of flash scores in the presence of non-targets and we will explain how
the theory and methods developed in the paper would be affected by the use of (15).
However, as we will show at the end of section 5.3, this level of sophistication is
unnecessary for Donchin speller. So, we will continue to use the simpler (3) to model
non-target scores.

5.2. Model identification

Based on the choices we made in the previous section, in order to model the first stage
of the speller in the presence of h related effects we need to identify 12 parameters:
the variance, σ2, of the noise variable, Y̊ , in (3) and (14); the αnt parameter in (3);
and the ten αth parameters in (14). Before we can proceed with this task, however,
we need to choose a particular implementation of the first stage of the speller.

For the purpose of demonstrating the ideas, we decided to use an existing high-
performance approach. More specifically, we borrowed the first stage from the work of
Rakotomamonjy and Guigue [29] which won the BCI Competition III for the Donchin
speller. Namely, we used an approach they called “Ensemble SVM without channel
selection” which is easy to implement and outperforms other alternatives when using
only 5 repetitions of the 12 stimuli to classify a character. In this approach, an
ensemble of classifiers is used. The datasets are split into several subsets and a
linear support vector machine (SVM) classifier is trained on each of them. When
classifying unseen test data, the outputs of all classifiers are averaged to give a flash
score representing the “targetness” of the flash.

We analysed the distribution of the flash scores produced by this approach on
the BCI Competition data used also in section 3. As in [29], we divided the 85
data blocks of each subject into 17 subsets of 5 blocks each. To obtain realistic
generalisation statistics and avoid overfitting problems, we applied a leave-one-out
approach estimating the output of the ensemble classifier on a subset of data by
averaging the output of 16 classifiers which were not trained using that subset. By
repeating this estimation process for each of the 17 subsets we obtained a reliable
estimate of the output of the ensemble on the full dataset of each subject.

We partitioned the data into two classes based on whether the corresponding
input epochs represented targets (t) or non-targets (nt). We represented the class of
a flash as θ ∈ {t,nt}. Then, we divided each class into subclasses according to h, for
h ∈ {0, . . . , hmax}. We, therefore, obtained a total of 2 × (hmax + 1) = 20 partitions,
each represented by a tuple (θ, h).

We computed the 12 parameters of the model of the first stage described in
section 5.1 as follows. First, we evaluated the mean and variance of the flash scores
associated with each partition (θ, h) using the 5%-truncated mean, aθh, and 5%-
truncated variance, s2θh. These are robust measures of central tendency and spread

Documenting, modelling and exploiting P300 amplitude changes in a BCI 14

Table 2. Parameters for the model in (3) and (14) estimated from the datasets
of the two subjects in the BCI Competition III dataset.

Subject αt0 αt1 αt2 αt3 αt4 αt5 αt6 αt7 αt8 αt9+ αnt σ

A -1.183 -1.188 -0.936 -0.867 -0.730 -0.566 -0.669 -0.588 -0.494 -0.534 -1.846 0.982
B -0.824 -0.783 -0.428 -0.490 -0.313 -0.417 -0.165 -0.212 -0.139 -0.198 -1.719 0.876

which are less sensitive to outliers than their non-truncated counterparts. We then
computed the average of the variances of the partitions

s2 =
1

2 (hmax + 1)

∑
θ

∑
h

s2θh

and the average of the means of the partitions representing non-targets

ant =
1

hmax + 1

∑
h

anth .

Finally, we estimated the model’s parameters as follows: σ2 = s2, αnt = ant and
αth = ath for h = 0, ..., hmax.

We performed this model identification process independently for the two subjects
in the dataset II of the BCI Competition III. The resulting parameters are reported in
table 2. Note how in both cases αth markedly increases as h increases, as also confirmed
by linear regression. For example, the difference in flash score between non-targets and
targets for h = 8 is twice as much as for h = 0. As the classification’s accuracy strongly
depends on the distance between the two classes, it is clear that epochs with small h
(i.e., one target presented shortly after the previous one) represent an unfavourable
condition for the speller.

5.3. Model validation

Having defined the model for the first stage and determined its parameters, we need
to assess whether this model fits the actual flash scores resulting from the datasets.

We used a Kolmogorov-Smirnov test to check whether we could reject the
hypothesis that the flash scores in each partition could be the result of sampling
from the corresponding distributions in (3) and (14) with the parameters in table 2.
Results indicated that we cannot reject this hypothesis for 19 out of 20 partitions (we
discuss the possible reasons for the exception, partition nt1, later in this section). This
confirms the substantial correctness of our assumption that the variables in (3) and
(14) are normally distributed and all have the same variance.

To visually evaluate the goodness of the fit between our models and the actual
flash scores produced by the ensemble SVM, we show the QQ-plots [37] associated to
each (θ, h) partition of each subject in figure 5. They confirm that model fits very
well the data in the key part of the distributions, i.e., between the 5th and the 95th
percentiles.

It is natural to ask why the Kolmogorov-Smirnov test indicated that the data
in partition nt1 are unlikely to be the result of sampling from the stochastic variable
Ynt = αnt+ Y̊ (i.e., (3)). Obviously, with the standard confidence level of 5% which we
adopted we should expect a statistical test to give incorrect answers on average once
in 20 applications simply because of stochastic effects. However, this does not appear
to be the main reason for this effect. The most likely cause is that the mean score for

Documenting, modelling and exploiting P300 amplitude changes in a BCI 15

Subject A

Subject B

Figure 5. QQ-plots for the flash scores in the (θ, h) partitions for subjects A
and B in the BCI Competition dataset. For each partition and type of flash the
quantiles corresponding to the samples in the partition are plotted against the
corresponding quantiles of a standardized normal distribution. The dark thin
lines represent the QQ-plots we would expect to see if the scores exactly followed
a normal distributions with the parameters listed in table 2. The dots represent
actual data points. The horizontal dashed lines represent the 5th, 10th, 25th,
50th, 75th, 90th, 95th percentiles for the standardized normal distribution. So,
data points below the bottom dashed line or above the topmost dashed line are
in the tails of the distribution.

the epochs in partition nt1 is slightly smaller than for other non-target partitions, as
shown in figure 6 which plots the average score for targets and non-targets for different
h values. In Appendix D we provide a possible explanation for this anomaly of nt1.

Irrespective of the causes of the minor anomaly of partition nt1, it is clear
from the plots in figure 6 that the assumption that non-target score averages are
not substantially influenced by h is essentially correct for Donchin’s speller. Thus,
the adoption of a more sophisticated model (such as (15)), over the simpler (3), is
unnecessary.

Documenting, modelling and exploiting P300 amplitude changes in a BCI 16

0 2 4 6 8
h

�2.0

�1.5

�1.0

�0.5

0.0
Subject A

0 2 4 6 8
h

�2.0

�1.5

�1.0

�0.5

0.0
Subject B

Figure 6. Average flash scores for targets (circles) and non-targets (squares) as
a function of h. The target data correspond to the values in table 2.

6. Exploiting h-related effects

In this section we will propose a new classification algorithm for Donchin’s speller
that exploits the flash-score modulations modelled and documented in section 5. This
uses a modified second processing stage (where the system combines the flash scores
into character scores and makes a final decision) which, in turn, will require some
modification to the model of the accuracy of the speller presented in section 4.2.2.

6.1. A new character-scoring algorithm

Let us start by introducing some useful notation. Let B be a set of integers
representing the indices of some events in L and let h(i, B) be a function that returns
the number of flashes between the i-th flash and the last event in B preceding such a
flash, i.e., h(i, B) = i−max[B ∩ {1, 2, . . . , i− 1}]− 1. We want to apply this function
to B = Rr ∪ Cc, which represents the set of indices of events where either the row or
the column of the character at position (r, c) in the character-grid of Donchin’s speller
flashed.

Let us denote by r̂ and ĉ the row and column containing the target character,
respectively. Then, if the i-th flash is a target, h(i,Rr̂∪Cĉ) gives the value of h for the
i-th flash, i.e., the number of non-targets preceding the target flash i. Note, however,
that in general the coordinates of the target character are unknown to the speller. So,
the function h(i,Rr ∪ Cc) should not be interpreted as representing the true h of the
i-th flash, but as its h value on the hypothesis that the target character is at position
(r, c). To reiterate, only when scoring the target character (r̂, ĉ), the function h gives
the true h value of the i-th flash.

To account for the effects of h, we propose to modify the scoring formula in (1)
by weighing flash scores based on the values returned by the function h(i,Rr ∪ Cc).
The scoring function we used is as follows:

S̄r,c =
1

J

∑
ρ∈Rr

w(h(ρ,Rr ∪ Cc)) (yρ − b)

+
1

J

∑
χ∈Cc

w(h(χ,Rr ∪ Cc)) (yχ − b)

(16)

Documenting, modelling and exploiting P300 amplitude changes in a BCI 17

where w is a function that determines the weight to be used when combining flash
scores. Note that we also added a parameter, b, which allows us to change the bias of
the first stage effectively determining the balance between sensitivity and specificity
of the classifier. It is easy to see that (1) is a special case of (16) obtained with the
substitutions w ≡ 1 and b = 0.

In the version of Donchin’s speller considered in this paper, the codomain of the
function h(i,Rr ∪ Cc) is the set of integers {0, 1, · · · , 20} (see discussion at the end of
section 3). So, the algorithm only evaluates the function w on points in that set. Thus,
to fully specify the behaviour of the algorithm in (16) we need to know the value of the
parameter b and the (codomain) values taken by the function w for domain values in
the set {0, 1, · · · , 20}. In other words, our scoring technique has a total of 22 degrees
of freedom which need to be fixed before the algorithm can be used. We will do this
in section 6.3 by using the theoretical model of (16) developed in the next section.

6.2. Modelling the accuracy of the new algorithm

In section 4.2 we modelled the accuracy of the standard Donchin speller disregarding
the fact that flash scores are affected by h. We now need to modify that model to
consider both the influence of h on target-flash scores (which we studied in section 5)
and also the use of the weighted scoring function in (16).

The procedure we used to derive the new model follows approximately the same
strategy as in section 4.2: we need to define and study two stochastic variables
representing the weighted sum of row and column flash scores, respectively, and then
work out with which probability the row and column containing the target will have
a higher score than any other row and column.

Since the calculations involved are quite laborious, we provide the detailed
treatment in Appendix A. Here it is sufficient to note that the final model of the
accuracy of the speller in the presence of h related effects and using a weighted
character-scoring function (16) is also a member of the family defined in (13), as
was the case for the ordinary speller, although, naturally, the parameters β and γ are
quite different in the two cases (see table 1, rows (a) and (f)).

6.3. Model identification/Algorithm optimisation

In principle, the probabilistic model of the accuracy of a Donchin speller controlled by
the scoring function (16) developed in the previous section and in Appendix A gives us
the opportunity of optimising the algorithm’s parameters in such a way as to maximise
performance. However, in practice, optimally identifying the 22 parameters of the
algorithm (and of the corresponding model) from empirical data without incurring in
overfitting problems would require very extensive datasets, which are rarely available
in BCI. Below we describe two workarounds for this problem and the reasons for our
particular choices.

In all the data available to us, it is clear that the effect of h on the P300 saturates
for large enough values of h (e.g., see figures 2 and 3). So, our first step to reduce the
number of degrees of freedom of the algorithm was to clip the values returned by the
function h(i,Rr ∪ Cc) to an upper value of hmax = 9, thereby reducing the domain
values of the function w in (16), and, thus, its degrees of freedom, to 10 from the
original 21, without significantly affecting performance. Our second step was to adopt
a particularly simple form for w which has only three degrees of freedom, thereby

Documenting, modelling and exploiting P300 amplitude changes in a BCI 18

making a reliable model identification possible even from relatively small datasets.
More specifically, we chose w to be a linear splinedefined by the knots (abscissas)
[0, 3, 6, hmax] and the corresponding ordinate values [1, 1 + c1, 1 + c2, 1 + c3]. With
these choices, optimising (16) requires finding appropriate values for a parameter
vector q = [c1, c2, c3, b] ∈ R4.

We chose this particular form for w for two further reasons. Firstly, our
representation of w ensures that the standard Donchin speller is part of our search
space. It is easy to see this by using the assignment q = 0, which corresponds to
setting b = 0 and all the weights in (16) to 1. In this case, (16) collapses down to (1)
and the model of the accuracy of the speller developed in the previous section gives us
the accuracy of an ordinary Donchin speller in the presence of h related effects, which,
however, are not exploited when scoring characters (a situation depicted in row (g) of
table 1). So, if for whatever reason using a weighted scoring function is not a good
choice for a particular BCI, an optimisation algorithm can easily discover this and fall
back on the standard scoring method. The second reason for considering w functions
in the neighbourhood of the constant function w ≡ 1 is a technical one. As discussed
in Appendix A.3, with this choice the estimation errors produced by our model due to
simplifying assumptions are minimum. So, the optimal parameters for the algorithm
obtained by via our analytic approach are more likely to be close to the real global
optimum for the speller.

6.4. Performance differences between the standard speller and our speller

Having constructed theoretical models of the accuracy of the standard speller and
our speller, it is easy to see whether, with an appropriate choice of the parameter
vector q, the use of (16) can improve performance w.r.t. using (1). All one has to
do to study the relative performance of the two spellers is to evaluate the difference
between the values taken by (13) when using the parameters in rows (f) and (g) of
table 1, respectively.

For space limitations, here we cannot provide full details on such a comparison:
even with the constraints imposed on the new algorithm in section 6.3, we still have
a 5–dimensional parameter space: the 4 components of q plus the repetition number,
J . However, below we will look at performance differences in a representative subset
of the parameter space.

The contour plots on the left of figure 7 show the difference between the accuracy
(percentage of correctly spelled characters) obtained when using a weighted scoring
function and the accuracy of the standard Donchin’s speller for the two subjects in
dataset II of the BCI Competition III. The figure represents the subset of parameter

space where J = 5, c3 = c2 and b = b0
def
= 1

2 (αnt +
1

hmax+1

∑
h αth), which corresponds

to ensuring that the average output for a balanced data set containing the same
number of targets and non-targets is zero. With these simplifications we are left with
only two degrees of freedom, c1 and c2, and we can, therefore, visualise accuracy
differences using a plot. Specifically, in figure 7(left, top and bottom) we studied
how the performance of the two spellers differed as the parameters c1 and c2 took all
possible values in the set {−0.3,−0.2, . . . , 2.0}.

Interestingly, we see that there are choices for c1 and c2, where the use of a
weighted scoring function worsens performance. However, an appropriate choice of c1
and c2 can produce significant performance improvements: up to approximately 4%
for subject A and up to approximately 1% for subject B. Even bigger improvements

Documenting, modelling and exploiting P300 amplitude changes in a BCI 19

can be obtained if one allows (as we will in section 7) the independent optimisation
of the 4 components of q and the repetition number, J .

6.5. Monte Carlo validation

In section 7 we will indirectly corroborate the veracity of the performance predictions
made in the previous section by our model by testing the weighted scoring method
experimentally on two independent test sets. However, before we do that, we would
like to more directly and independently validate the model of our second stage and
confirm its predictions. In this section we will do this via Monte Carlo simulations.

To keep the effort of this expensive form of validation under control and for
an easier visualisation of results, we again considered a subset of the 5–dimensional
parameter space of the system. Namely, we set J = 5, c3 = c2 and b = b0 (as we
did in the previous section) and ran a Monte Carlo simulation for each possible pair
(c1, c2) ∈ {−0.3,−0.2, . . . , 2.0}2.

The simulation was performed as follows. For each (c1, c2) we generated 100
million simulated sequences of stimuli using the following algorithm:

(i) Select a target character out of the possible 36 (e.g., “A”, at position (1, 1), in
the top left corner of the display);

(ii) Generate a vector ℓ containing J × 12 components. The vector is constructed by
concatenating J random permutations of {R1, . . . ,R6,C1, . . . ,C6} (e.g., ℓ = C1,
R3, R5, R2, C2, R1, C6, C4, R6, C3, R4, C5, R1, . . .);

(iii) Scan ℓ, element by element, and label each element, ℓi, with the corresponding
(θ, h) partition, i.e., according to whether ℓi is the target row or column and to
the number of non-targets preceding it in ℓ (e.g., the labelling of the example
sequence shown above when the target is “A” is: thmax, nt0, nt1, nt2, nt3, t4, nt0,
nt1, nt2, nt3, nt4, nt5, t6, . . .);

(iv) Create a vector y of size J × 12. The i-th element of y is obtained by randomly
sampling from the set of flash scores associated with the partition assigned to
element ℓi in the previous step;

(v) Apply the scoring function in (16) to y and ℓ (the latter is used to find r and c)
and check whether the character with highest S̄r,c is the target character.

(vi) Perform the same as in (v) with the non-weighted scoring function in (1).

By counting how many times the procedures in (v) and (vi) correctly classify a
character over a large number of repetitions and across all characters, one can precisely
estimate the accuracy of the speller with the weighted and non-weighted scoring
functions, respectively. Comparing the results one can see the performance difference
associated with each particular choice of (c1, c2).

Figure 7(right, top and bottom) shows the results of these Monte Carlo
simulations as contour plots, side by side with the results estimated through our
analytical model, for our two subjects. Let us analyse these results.

Firstly, we should note the striking similarity between the contour plots obtained
from the model and those resulting from Monte Carlo simulations. Apart from minor
numerical differences, for each subject the shape and number of the contour lines
match very closely across plots. Secondly, for both subjects, Monte Carlo simulations
confirm that by appropriately weighting the flash scores, i.e., using (16) instead of (1),
we can improve the accuracy of the speller considerably. Thirdly, the peaks of the

Documenting, modelling and exploiting P300 amplitude changes in a BCI 20

Model Monte Carlo
S
u
b
je
ct

A
S
u
b
je
ct

B

Figure 7. Contour plots of the difference between the accuracy (expressed
as percentage of correctly spelled characters) obtained with a weighted scoring
function in (16) and the accuracy of the original method. The improvement is
plotted as a function of c1 and c2, the parameters that modulate the weighting
function w(h). On the left we show the improvement estimated using the
mathematical model as described in section 6.4. On the right we show the result
obtained through the Monte Carlo simulation described in section 6.5. A square
represents the point (c2, c1) of maximum improvement according to the model,
while a star is the maximum according to the Monte Carlo simulation. The
similarity between the left and right plots is striking, as well as the closeness of
the maxima found by the two approaches, suggesting the substantial correctness
of our mathematical model.

performance improvement in the (c1, c2) plane predicted with the two methods are
also extremely close. All of this strongly corroborates the validity of our models.†

† In principle, the Monte Carlo technique we have used to validate our model would itself need to be
validated. We have not done a direct validation of this because of the technical difficulties and need for
large datasets associated with such a validation. However, one should not infer from this that nothing
has been proved in this section. The chances of two radically distinct and independent approaches
to modelling a system as complex as Donchin’s speller giving almost identical results and, yet, being
both incorrect, are very low. Also, as we will see in section 7.1, optimising q based on the predictions
of our model and then testing the system on independent data gives accuracy improvements almost
identical to those predicted by the model. So, in reality, Monte Carlo simulations, our theoretical
model and the testing of our scoring algorithm on unseen data corroborate one another.

Documenting, modelling and exploiting P300 amplitude changes in a BCI 21

Table 3. Comparison of the accuracy (%) of the speller when using the optimised
weighted scoring (“opt q”) w.r.t. the non-weighted version (“q = 0”).

Subject Algorithm
J

1–3 4–6 7–9 10–12 13–15

A
opt q 35.3 71.7 84.7 93.3 98.0
q = 0 36.3 67.3 82.7 89.7 96.7

B
opt q 58.0 80.7 92.0 96.0 96.7
q = 0 57.0 78.7 90.0 95.7 96.7

7. Testing the generalisation of weighted scoring functions

Having corroborated the model presented in section 6.2, in this section we will use it
to optimise weighted scoring functions so as to improve the accuracy of the speller in
two sets of experiments. Tests will be carried out with independent datasets which
will not be used in the setting of any of the parameters of the algorithm.

In sections 6.4 and 6.5, for analysis and visualisation purposes, we restricted the
exploration of the parameter space to only two degrees of freedom. However, since
the model computes estimates of the accuracy of the speller very efficiently, we can
evaluate many tentative parameter settings. Therefore, in this section, for each subject
we will allow the exploration of the full 5-dimensional parameter space defined by the
parameter J and the four components of q.

7.1. Tests with an independent test set from the BCI Competition III

For each subject in dataset II from BCI Competition III and for each value of J ,
we determined the vector q = [c1, c2, c3, b] which resulted, according to the model,
in the best accuracy for the speller. The parameters of the algorithm/model were
determined only using the training data from dataset II. Then the optimal weighting
function was tested on the test set of the BCI competition. To reiterate, this set was
never used during any phase of the design of the system, nor for the training of the
classifier or the weighting function. So, results with this test give a true indication of
the generalisation capabilities of the approach.

Table 3 and figure 8 show the results of our tests, reporting the accuracy of the
speller on the test set for the two subjects when using the optimised weighted scoring
function. We also report the results for the case q = 0, i.e., when using the standard
character scoring method, which corresponds to the original method in [29]. Let us
analyse the results.

For very small or very large values of J the improvement provided by a weighted
scoring function is small or even slightly negative. For short sequences (J < 3), this is
probably ascribable to the fact that some of the approximations in the model become
less accurate when J is very small (see Appendix A.2). Note that this does not imply
that a weighted scoring function would not help with small values of J : it simply
means that, for this particular case, the parameters the model suggest for the scoring
algorithm are sub-optimal. The weighting has also a small effect for long sequences,
where the performance of both scoring techniques reaches 95% (J ≥ 13 for A and
J ≥ 11 for B) and, so, there is little room for improvement.

However, for intermediate values of J , the new method performs markedly better
than the method in [29], i.e., the best performing Donchin speller published to date.
More specifically, in the range of J values where the accuracy of the speller is between

Documenting, modelling and exploiting P300 amplitude changes in a BCI 22

Figure 8. Accuracy (percentage of correctly identified characters) of the speller
on a test set for the two subjects in the BCI Competition III dataset when using
the optimised weighting function (“opt q = 0”) and with the original non-weighted
algorithm (“q = 0”) by Rakotomamonjy and Guigue [29].

70% and 95%, there is an improvement of around 3% on average. This is particularly
important because 70–95% is the accuracy range for which the usability of a speller is
highest. A speller with an accuracy below 70% can be frustrating for the user [38] and
can prevent recipients from understanding messages. Instead, an accuracy exceeding
95% only marginally improves the understandability of messages while markedly
increasing the time needed to communicate, which can be equally frustrating.

7.2. Test with a further twelve independently acquired subjects

In order to confirm the applicability and benefits of the new approach on a larger
and independent group of subjects, we tested the algorithm within our BCI lab on
12 further subjects. In this section we report the details and the results of these
experiments.

Each participant was asked to spell a total of 20 characters. Target characters
were randomly chosen before the beginning of the session. Each row and column of
the standard 6×6 matrix of characters was randomly intensified without replacement
for 100 ms with a gap of 50 ms, leading to a SOA of 150 ms. During the spelling of
a character, each row and column flashed 10 times, for a total of 120 flashes, between
targets and non-targets. During that period, subjects were asked to focus on the
target character and to mentally count the number of times it was highlighted.

Subjects were seated comfortably with their neck supported by a C-shaped
inflatable travel pillow to reduce muscular artefacts. The eyes were at approximately
80 cm from a 22” LCD screen with 60 Hz refresh rate. Data were collected from
64 electrode sites using a BioSemi ActiveTwo EEG system. The EEG channels were
referenced to the mean of the electrodes placed on either earlobe. Data were sampled
at 2048 Hz, filtered and then downsampled by a factor of 8.

Cross validation was used to assess the accuracy of the new algorithm as well as

Documenting, modelling and exploiting P300 amplitude changes in a BCI 23

Table 4. Comparison of the accuracy (%) of the speller when using the optimized
weighted scoring (“opt q”) w.r.t. the non-weighted version (“q = 0”) with the 12
subjects tested within our lab.

Subject Algorithm
J

1 2 3 4 5 6 7 8 9 10

1
opt q 45 85 100 95 100 100 100 100 100 100
q = 0 50 85 90 95 100 100 100 100 100 100

2
opt q 80 100 95 100 100 100 100 100 100 100
q = 0 70 100 95 100 100 100 100 100 100 100

3
opt q 40 70 90 95 95 95 100 95 95 95
q = 0 45 65 85 95 90 95 95 95 95 95

4
opt q 55 95 95 100 95 100 100 100 100 100
q = 0 60 85 95 100 95 100 100 100 100 100

5
opt q 65 60 85 80 90 90 100 100 100 95
q = 0 55 60 85 85 95 90 100 100 100 95

6
opt q 70 90 100 100 100 100 100 100 100 100
q = 0 70 80 95 100 100 100 100 100 100 100

7
opt q 10 20 40 65 85 85 80 85 90 95
q = 0 15 15 40 60 75 70 80 90 85 85

8
opt q 55 90 95 95 100 95 100 100 95 100
q = 0 55 90 95 95 100 95 100 100 95 100

9
opt q 65 90 95 100 100 100 100 100 100 100
q = 0 70 80 95 100 100 100 100 100 100 100

10
opt q 35 65 90 90 95 95 95 95 100 100
q = 0 35 60 90 90 95 95 95 95 100 100

11
opt q 45 65 80 90 95 95 100 100 100 100
q = 0 45 65 75 90 95 95 100 100 100 100

12
opt q 35 75 90 95 95 95 100 100 100 100
q = 0 45 80 85 95 95 95 95 100 100 100

of the standard, non-weighted version of the speller. More specifically, the dataset of
each subject was split into 10 subsets, each including the data related to two target
characters. One dataset was then used as a test set while the remaining nine formed
the training set. Using the software in [39], one ensemble classifier was built by training
one SVM on each of the 9 subsets of the training set. Then, using the same leave-one
out approach as in section 5.1, we found the parameters αth, αnt, and σ for the model
in (3) and (14). Given these parameters, we used the analytical model in section 6.2,
to find the optimal vector of parameters q. We then used the ensemble classifier and
the weighted scoring function associated to q to classify the test subset. For reference,
we did the same with the non-weighted scoring function. This procedure was repeated
using, in turn, each one of the 10 subsets as test set and the remaining nine as training
set. The results were then combined so as to obtain an average accuracy measure
across the 20 characters acquired with each subject.

Table 4 reports the results of this procedure for the 12 subjects and for 10 different
values of the number of repetitions, J . In total there are 120 accuracy figures in the
table. These are multiples of 5% because each subject was tested on 20 characters
which tends to make small performance differences difficult to resolve. Nonetheless,
our new algorithm performs better than the standard speller in 21 cases and when it
does so the accuracy improvement is approximately 7.4%, i.e., between one and two
characters more out of 20. Conversely, only in 10 cases the standard speller beats
our algorithm and when it does so the performance difference is 5.5%, corresponding
to approximately one character. Additionally, 6 out of these 10 cases are for J = 1,
where we already know from the previous section that our model becomes less reliable
and so our algorithm is likely to be sub-optimally parametrised. So, overall results
are quite encouraging.

Documenting, modelling and exploiting P300 amplitude changes in a BCI 24

Table 5. Accuracy of the speller for the two algorithms choosing the minimum
number of repetitions for which either one reaches an accuracy of 80%.

Subject
1 2 3 4 5 6 7 8 9 10 11 12

J such that acc ≥80% 2 1 3 2 3 2 5 2 2 3 3 3

algorithm
opt q 85 80 90 95 85 90 85 90 90 90 80 90
q = 0 85 70 85 85 85 80 75 90 80 90 75 85

As the accuracy figures for different values of J are strongly correlated, we could
not run tests to verify the statistical significance of the data in table 4 using more than
one value of J per subject. However, it seemed inappropriate to choose a particular
value of J , since different algorithms may work best for different J ’s and also the
optimal value of J (in terms of usability — more on this below) appears to be subject
dependent. Therefore, for statistical testing we decided to take, for each subject,
the value of J for which either method reached at least an accuracy of 80% which
provides a reasonable trade-off between accuracy and speed (see discussion at the
end of section 7.1). Table 5 reports the value J chosen with this method and the
corresponding accuracy of the two algorithms, for each subject. Note that the data in
this table are a subset of the data in table 4.

We ran a paired t-test on the data from table 5. The test confirmed that the
accuracy improvement of the weighted scoring algorithm w.r.t. the non-weighted one
is statistically significant (p=0.014, t=2.93) with a 95%-confidence interval for the
improvement of 1.14–8.03%. In other words, we obtained significant improvements in
accuracy with our own subjects as well. They are compatible with the values estimated
by our probabilistic model, the Monte Carlo simulations and with the values obtained
on the BCI competition test set.

All this evidence points clearly in one direction: significant benefits can be accrued
by considering and exploiting the modulations in P300s induced by stimulus history.

8. Discussion

Amplitude and shape variations in brain waves are often considered harmful for BCIs.
However, as we suggested in [3,4], in some cases they carry information which can be
exploited to improve performance.

Our system embraces this philosophy, by considering, modelling and exploiting
TTI-related P300 modulations. This is done at two levels. In system’s second stage
(the character scorer), we use different weighting factors for the responses of the first
stage to flashes. The weights are based on flash latencies with respect to some earlier
reference event, thereby making it possible for the system to adapt to or exploit
history effects on brain waves. We also use a model which takes TTI-related P300
modulations into account to optimally set the weights and biases of such a system from
a training set of data. The model explicitly represents the modulations in the flash
scores produced by the first stage in the presence of TTI variations, translates them
into corresponding character scores and integrates the results into a formula which
gives the probability of correct classification as a function of the system’s parameters.

The good results obtained with this approach suggest that the modulations in
P300 related to differences in TTI are not necessarily a problem within the Donchin
speller paradigm, provided one takes such variations into account when designing the

Documenting, modelling and exploiting P300 amplitude changes in a BCI 25

system, as we did, instead of averaging over them.
Naturally, this is not the only way of improving performance in a Donchin speller.

Another alternative is, for example, to modify the protocol in such a way to reduce
TTI-related modulations in ERPs. For instance, [40] suggested that performance
improvements could be obtained by using stimuli where the letters being flashed were
not all in the same row or column. Groups of flashing letters were chosen in such a way
as to maximise the distance between the representation of the outputs of the first stage
(over multiple repetitions of a complete sequence of flashes) for different characters
on the assumption that the first-stage classifier was 100% correct. This particular
choice provides the system with error correction capabilities which may help in the
recognition of characters. The benefits of this idea were particularly clear when using
a new type of stimuli where each letter of the matrix was placed in a grey rectangle
with either horizontal or vertical orientation and letters were activated by switching
the orientation of the rectangle between these two states. It was suggested that these
stimuli may generate psycho-physiological responses which are less susceptible to TTI
modulations than the original flashes. It would be interesting to combine such stimuli
with our method to see if the two techniques can work synergistically to further
improve performance.

An important question regarding performance is whether this is assessed with
online or offline data and analyses. It is clear that the ultimate goal should be to
evaluate performance by testing a system online, i.e., in exactly the same conditions
experienced by the intended users of the system. However, after weighing the benefits
and the obstacles associated with testing our system online we decided to postpone an
online comparison to a follow-up paper and perform an offline analysis at this stage.
The main reason is that with an offline analysis we can perform a comparison of the
two algorithms on the exact same datasets, which in turn allows the use of a paired
t-test to establish the statistical significance or otherwise of performance differences.
This test has a greater statistical power than an unpaired test, thereby making it
possible to make statistically sound inferences with much fewer subjects. Testing the
two algorithms with online systems would have added a noise factor due to the two
algorithms classifying different EEG signals and would have prevented us from using
of a paired test.

Recent work [41, 42] has shown that the performance of P300-based spellers is
significantly affected by whether users gaze at target letters in addition to focusing
their attention on them (overt attention) or gaze at a fixation element of the screen
and use covert attention to focus on target letters. Performance is significantly higher
in the overt attention case. This is most likely because, in addition to the P300
and other endogenous components being modulated, also visual exogenous ERPs are
modulated by overt attention (contrarily to what happens with covert attention). As
a result, in the case of overt attention classifiers can exploit extra information when
making decisions. As suggested in [42], this implies that resulting BCIs are not truly
independent and, thus, future work should attempt to create systems which decouple
attention from gaze. In such systems it will be even more important to use strategies
such as the methods suggested in this paper to make the best use of the information
available in endogenous ERPs, including their modulations due to stimulus history.

Finally, we would like to mention, that in recent work BCIs that rely on P300s
evoked through different sensory modalities such as spacial auditory [43] or tactile [44]
have been proposed. There is no reason to believe the techniques presented in the
paper to best exploit visual ERPs could not be applied also to ERPs generated using

Documenting, modelling and exploiting P300 amplitude changes in a BCI 26

stimuli presented in a different modality.

9. Conclusions

In this paper we first documented, modelled and then exploited, within the context of
the Donchin speller, a modulation in the amplitude of P300s associated with variations
in the number of non-targets preceding a target. In particular, we specialised the
system through the use of a new character-scoring function which, with minimal effort,
allows it take such modulations of the P300 account.

We mathematically assessed the potential of the approach by means of a statistical
model based on few reasonable assumptions, which we later verified. Validation by
Monte Carlo simulations showed that the model is accurate.

Testing the new approach on unseen data revealed an average improvement in
accuracy of between 2 and 4% over the best classification algorithm for Donchin speller
in the literature [29] at the range of sequence lengths which is most suited for practical
use of a speller.

The model and method we developed are quite general and can be applied to a
wide spectrum of ERP-based BCIs, including the Donchin speller with different matrix
sizes, a sequential speller, a generic multi-choice selection BCI, and many others. In
future research we intend to explore the possibility of obtaining similar improvements
within other BCI paradigms based on P300s, including our own BCI Mouse [4].

Acknowledgments

The authors would like to thank Mathew Salvaris for his valuable comments and help.
We would also like to thank Franciso Sepulveda for his help in revising the manuscript.

This work was supported by the Engineering and Physical Sciences Research
Council (UK) under grant EP/F033818/1 “Analogue Evolutionary Brain Computer
Interfaces”.

Appendix A. Modelling the accuracy of the speller based on weighted
scoring

In our model of the first stage of Donchin speller in the presence of history effects,
we assumed that the distribution of flash scores follows (3) for not targets (see
section 4.2.1) and follows (14) for targets (see section 5.1), respectively. In this
appendix we will formally derive a model of the second stage so as to assess the
accuracy of the speller when making decisions after a sequence of J stimulus repetitions
using the scoring function in (16).

Appendix A.1. Scoring characters

Let us start by considering a single repetition of 12 flashes — one for each row and
column — within a longer sequence of repetitions (we will extend the treatment to
the multi-repetition case later). Then (16) can be rewritten in statistical terms as

Sr,c = w(h(ρ,Rr ∪ Cc)) (Yρ − b)

+ w(h(χ,Rr ∪ Cc)) (Yχ − b)
(A.1)

Documenting, modelling and exploiting P300 amplitude changes in a BCI 27

where ρ and χ satisfy Lρ = Rr and Lχ = Cc, respectively. In (A.1) the randomness is
due to L (through ρ, χ, Rr and Cc) and to the random variables Yi, for i ∈ {ρ, χ}.

If the target character is at position (r̂, ĉ), according to (3) and (14) the variables
Yi can be expressed as:

Yi =

{
αnt + Y̊ if i /∈ Rr̂ ∪ Cĉ ,

αt h(i,Rr̂∪Cĉ) + Y̊ otherwise ,
(A.2)

where the function h was defined at the beginning of section 6.1. Note that the variable
Y̊ is independently instantiated for each i.

To avoid confusion, in the following, every time two independently instantiated
variables appear in the same expression, we will use different Roman superscripts to
highlight the fact that they are variables with the same distribution, but not the same
random variable.

Using (A.2), (A.1) becomes

Sr,c = w(h(ρ,Rr ∪ Cc))
{
[r = r̂]αb

t h(ρ,Rr̂∪Cĉ)
+ [r ̸= r̂]αb

nt + Y̊ I
}

+ w(h(χ,Rr ∪ Cc))
{
[c = ĉ]αb

t h(χ,Rr̂∪Cĉ)
+ [c ̸= ĉ]αb

nt + Y̊ II
}
,
(A.3)

where [. . .] are Iverson brackets (i.e., they return 1 if the condition in brackets is

satisfied, and 0 otherwise), and we used the definitions αb
t h(.)

def
= αt h(.) − b and

αb
nt

def
= αnt − b for conciseness.
Because of the variability of ρ, χ, Rr, Cc, Rr̂ and Cĉ, the functions h(ρ,Rr ∪ Cc))

and h(χ,Rr ∪ Cc)) are stochastic. For notional convenience we represent them with a
new stochastic variable, H, which we need to characterise. To simplify our treatment,
we make use of the assumption that the number of flashes occurring between the
flashing of two particular rows or columns of interest is independently and identically
distributed across epochs. This is a first order approximation because it ignores the
constraint that each row and column flash exactly once within each group of 12 flashes.
Under this assumption, however, the H variables associated with different ρ, χ, r, c
become i.i.d.

Using H, (A.3) simplifies. However it takes different forms depending on whether
we are scoring a target character, a “half-target” (i.e., a character belonging to either
the same row or the same column of the target, but not both) or a non-target. Namely:

Sr̂,ĉ = w(HI)
[
αb
t HI + Y̊ I

]
+w(HII)

[
αb
t HII + Y̊ II

]
(target) (A.4)

Sr̂,∗ = w(HIII,∗)
[
αb
t HI + Y̊ I

]
+w(HIV,∗)

[
αb
nt + Y̊ III,∗

]
(row half-target)(A.5)

S∗,ĉ = w(HV,∗)
[
αb
nt + Y̊ IV,∗

]
+w(HV I,∗)

[
αb
t HII + Y̊ II

]
(col. half-target)(A.6)

S∗,∗ = w(HV II,∗)
[
αb
nt + Y̊ V,∗

]
+w(HV III,∗)

[
αb
nt + Y̊ V I,∗

]
(non-target) (A.7)

where the star symbol stands for any non target line, i.e., any r ̸= r̂ if used as a row
index, or any c ̸= ĉ if used as a column index.‡

‡ Note that the variables resulting from the replacement of a star with a row or column index are
different variables with the same distribution. Also, note that during online use of a classifier the true
target is unknown. In our approach, when scoring a generic character (r, c), h is computed under the
assumption that r and c were targets. However, only if (r, c) is the true target character (r̂, ĉ), the
variables controlling the weight, HI and HII , match the ones determining the average amplitude; in
all other cases the flash score is weighted with a “wrong” h.

Documenting, modelling and exploiting P300 amplitude changes in a BCI 28

The target character (r̂, ĉ) will be correctly identified if and only if the stochastic
variable Sr̂,ĉ takes a value that is greater than the maximum taken by the variables in
the set {Sr̂,∗}∪{S∗,ĉ}∪{S∗,∗}. We want to compute the probability of this happening.

This task is quite difficult. In order to simplify the treatment we will make
an approximation which leads to slightly over-estimating the accuracy of the speller.
Namely, we will assume that misclassifications can only occur because the score of
one of the 10 most likely competitors, the “half-targets”, is higher than the value
taken by Sr̂,ĉ. In other words, we neglect the possibility of one of the 25 non-targets
(corresponding to (A.7)) causing a misclassification.§ We will therefore drop (A.7)
hereafter.

Equations (A.4)–(A.6) can be rewritten as

Sr̂,ĉ = U ′
r̂ + V ′

ĉ , (A.8)

Sr̂,∗ =
w(HIII,∗)

w(HI)
U ′
r̂ + V ′

∗ , (A.9)

S∗,ĉ = U ′
∗ +

w(HV I,∗)

w(HII)
V ′
ĉ , (A.10)

where

U ′
r̂ = w(HI)

[
αb
t HI + Y̊ I

]
, (A.11)

U ′
∗ = w(HV,∗)

[
αb
nt + Y̊ IV,∗

]
, (A.12)

V ′
ĉ = w(HII)

[
αb
t HII + Y̊ II

]
, (A.13)

V ′
∗ = w(HIV,∗)

[
αb
nt + Y̊ III,∗

]
(A.14)

are stochastic variables.
When a sequence of J repetitions is used to score characters and make decisions,

the average, S̄r̂,ĉ, of J instantiations of Sr̂,ĉ has to be compared with the corresponding
half-target averages S̄r̂,∗ and S̄∗,ĉ. These can be expressed by trivially generalising
(A.8)–(A.10) as follows:

S̄r̂,ĉ = Ū ′
r̂ + V̄ ′

ĉ , (A.15)

S̄r̂,∗ =
w(HIII,∗)

w(HI)
U ′
r̂ + V̄ ′

∗ , (A.16)

S̄∗,ĉ = Ū ′
∗ +

w(HV I,∗)

w(HII)
V ′
ĉ , (A.17)

where a horizontal bar over a variable or an expression represents a new stochastic
variable which is the average of J independent instances of that variable or expression.

The purpose of w(h) in our scoring equation is to slightly modulate the effect
different values of Y have on the average, according to their h. So we will choose
weights that are distributed around 1. Under this restriction, it is safe to assume that

§ This simplified model would be mistaken only if there is a non-target whose score is higher than the
target’s, which in turn is higher than all the “half-targets”. However, this is impossible if w(h) = 1 ∀h.
So, considering only the half-targets introduces no approximation in the calculations of the speller’s
accuracy when applied to the traditional non-weighted scoring scheme in (1). Also, the likelihood of
non-targets having scores larger than Sr̂,ĉ is very low for values of w(h) reasonably close to 1 (we
will show later that this is indeed the case for our experiment).

Documenting, modelling and exploiting P300 amplitude changes in a BCI 29

the value rmax such that Ū ′
rmax

= Ū ′
max = max{Ū ′

∗} also satisfies S̄rmax,ĉ = max{S̄∗,ĉ}.
In other words, in (A.17) we allow the second term to partly contribute to the value
of the score but we assume that its value is never so big to change which one of the
non-target rows has the maximum score.

Under this assumption

S̄r̂,ĉ > max{S̄∗,ĉ} ⇐⇒ Ū ′
r̂ +∆U > Ū ′

max (A.18)

where

∆U = V ′
ĉ

(
1− w(HV I, rmax)

w(HII)

)
=
[
w(HII)− w(HV I, rmax)

] [
αb
t HII + Y̊ II

]
.

Similar expressions can be obtained for the columns and the V variables.
Combining these results we obtain:

S̄r̂,ĉ > max
{
{S̄r̂,∗} ∪ {S̄∗,ĉ}

}
⇐⇒ Ū ′′

r̂ > Ū ′′
max ∧ V̄ ′′

ĉ > V̄ ′′
max (A.19)

where Ū ′′
r̂ = Ū ′

r̂ +∆U , while Ū ′′
max = Ū ′

max (and likewise for the V variables).

Appendix A.2. Probability distributions

We now need to find the distributions of Ū ′′
r̂ , Ū

′′
max, V̄

′′
r̂ , and V̄ ′′

max. In the following we
will concentrate on the U variables but results also apply to the V variables because
their distributions are the same.

The variables Ū ′′
r̂ and Ū ′′

max depend on Ū ′
r̂, Ū

′
∗, and ∆U . These, in turn, depend

on Ū ′
∗ and Ū ′

r̂, which are averages of U ′
∗ and U ′

r̂ variables. So, let us start by finding
the distributions of U ′

∗ and U ′
r̂.

Using the theorem in Appendix B, we can express the cumulative distribution
functions (cdf) of U ′

∗ and U ′
r̂ as:

FU ′
r̂
(x) =

∑
h

ph normcdf

(
x− w(h)αb

t h

w(h)σ

)
(A.20)

FU ′
∗
(x) =

∑
h

ph normcdf

(
x− w(h)αb

nt

w(h)σ

)
. (A.21)

The corresponding probability density functions (pdf) are:

fU ′
r̂
(x) =

∑
h

ph
1

w(h)σ
normpdf

(
x− w(h)αb

t h

w(h)σ

)
(A.22)

fU ′
∗
(x) =

∑
h

ph
1

w(h)σ
normpdf

(
x− w(h)αb

nt

w(h)σ

)
. (A.23)

Using the theorem in Appendix C, from (A.20) and (A.21) we obtain:

µU ′
r̂
=
∑
h

phw(h) α
b
t h

σ2
U ′

r̂
=
∑
h

ph(w(h)
2σ2 + (w(h)αb

t h − µU ′
r̂
)2)

µU ′
∗
=
∑
h

phw(h) α
b
nt

σ2
U ′

∗
=
∑
h

ph
(
w(h)2σ2 + (w(h)αb

nt − µU ′
∗
)2
)
.

Documenting, modelling and exploiting P300 amplitude changes in a BCI 30

We now want to find the distributions of the averages of J instances of U ′
∗ and

U ′
r̂, namely Ū ′

∗ and Ū ′
r̂, respectively. We will do so by using the central limit theorem.

According to the central limit theorem, the distribution of the average of a
sufficiently large number of i.i.d. random variables can be considered as normal and its
mean and variance can be estimated from the mean and variance of the distribution
of the original variables. In our case the number of terms averaged ranges from
a few to up to 15. These numbers may look too small for the application of the
central limit theorem. However, results on the rate of convergence of the central limit
theorem based on pseudo-moments (e.g., [45]) indicate that a faster convergence can
be obtained when the original distribution is close to a normal distribution, which is
the case in our model.

From (A.22) and (A.23), it follows that the probability density functions of U ′
r̂

and U ′
∗ are sums of scaled and shifted Gaussians. If the differences among the values

of w(h) as well as the differences among the values of αb
t h are small compared to σ and

the values of w(h) and αb
t h are of the same order of magnitude as σ, the Gaussians

in (A.22) and (A.23) are close and merge into a bell-like distribution which closely
resembles a Gaussian. Hence, the central limit theorem gives reasonably accurate
approximations even for J ≤ 15.

Using the central limit theorem, Ū ′
r̂ and Ū ′

∗ are normally distributed with
parameters: µŪ ′

r̂
= µU ′

r̂
, σ2

Ū ′
r̂
= σ2

U ′
r̂
/J , µŪ ′

∗
= µU ′

∗
, σ2

Ū ′
∗
= σ2

U ′
∗
/J .

Through a procedure similar to that in Appendix B, we find that the variable
∆U has the following cdf:

F∆U (x) =
∑
h1

∑
h2

ph1 ph2 normcdf

(
x− [w(h1)− w(h2)] α

b
t h1

[w(h1)− w(h2)] σ

)
.

Its mean and variance are

µ∆U =
∑
h1

∑
h2

ph1 ph2 [w(h1)− w(h2)] α
b
t h1

σ2
∆U =

∑
h1

∑
h2

ph1 ph2

{
[w(h1)− w(h2)]

2
σ2 +

{
[w(h1)− w(h2)] α

b
t h1

− µ∆U

}2}
.

The considerations made earlier about the central limit theorem apply also to
∆U . Thus, we find that ∆U is approximately Gaussian with parameters µ∆U = µ∆U

and σ2
∆U

= σ2
∆U/J .

As Ū ′
r̂ and ∆U are independent and normally distributed, then also Ū ′′

r̂ = Ū ′
r̂+∆U

is normally distributed. Its parameters are: µŪ ′′
r̂
= µŪ ′

r̂
+µ∆U and σ2

Ū ′′
r̂
= σ2

Ū ′
r̂
+σ2

∆U
.

For the non targets, the distribution of Ū ′′
max = Ū ′

max = max{Ū ′
∗} can be found

using the same procedure as in section 4.2 obtaining FŪ ′′
max

(x) =
[
FŪ ′

∗
(x)
]5
.

Appendix A.3. Model of Donchin speller accuracy in the presence of h-related effects

We can find the probability that Ū ′′
r̂ > Ū ′′

max using the same procedure as in section 4.2
obtaining the equivalent of (11).

The very last step is to derive the probability of the conjunction on the right
in (A.19): Pr

(
Ū ′′
r̂ > Ū ′′

max ∧ V̄ ′′
ĉ > V̄ ′′

max

)
. Even if the statement (A.19) is formally

identical to (9) with Ū ′′
r̂ replacing Ūr̂ and Ū ′′

r̂ replacing Ūr̂, we cannot directly write
the equivalent of (10) because Ū ′′

r̂ and V̄ ′′
ĉ are not independent. In fact, they both

depend on both Ū ′
r̂ and V̄ ′

ĉ . Their dependence is through ∆U and ∆V whose means

Documenting, modelling and exploiting P300 amplitude changes in a BCI 31

µ∆U and µ∆V (as shown in Appendix A.2) contain the factor [w(h1)− w(h2)] α
b
t h1

.

However, if we restrict the search space to values of w(h) and b (which affects αb
t h)

such that w(h) is never too different from 1 and αb
t h is not excessively large, we can

assume the independence of Ū ′′
r̂ and V̄ ′′

ĉ .
Under this assumption we can approximate Pr

(
Ū ′′
r̂ > Ū ′′

max ∧ V̄ ′′
ĉ > V̄ ′′

max

)
as

Pr
(
Ū ′′
r̂ > Ū ′′

max

)2
obtaining:

A = Pr
(
S̄r̂,ĉ > max

{
{S̄r̂,∗} ∪ {S̄∗,ĉ}

})
= Pr

(
Ū ′′
r̂ > Ū ′′

max ∧ V̄ ′′
ĉ > V̄ ′′

max

)
=

∫
R

1

σŪ ′′
r̂

normpdf

(
x− µŪ ′′

r̂

σŪ ′′
r̂

) [
normcdf

(
x− µŪ ′′

∗

σŪ ′′
∗

)]5
dx

2

.
(A.24)

This equation models the accuracy of the Donchin speller in the presence of h-related
effects, when (16) is used to score the characters. It is a special case of (13) with

β =
σŪ′′

r̂

σŪ′′
∗
, γ =

µŪ′′
r̂
−µŪ′′

∗
σŪ′′

∗
, η = 5 and λ = 2 (case (f) in table 1).

Appendix B. Probability distribution of a function of a discrete and a
continuous random variable

Theorem. Let us consider two independent random variables, H and Y , and the
function ϕ(h, y). Let H be a discrete variable with values in H = {h1, . . . , hN}
and probability masses pi = Pr (H = hi). Let Y be a continuous variable with
cumulative distribution function FY (y). If ϕi(y) = ϕ(hi, y) is strictly increasing in
y for all i ∈ {1, . . . , N}, then the cumulative distribution function of U = ϕ(H,Y) is
FU (u) =

∑
i pi FY (ϕ

−1
i (u)).

Proof. Given a generic proposition P which depends on the variables H and Y , the
probability of P being true is given by

Pr (P) =

∫∫
Γ

fH,Y (h, y) dh dy ,

where fH,Y (h, y) is the joint probability density function of H and Y and Γ is the
region where P holds.

Therefore, FU (u) = Pr (U ≤ u) can be expressed as

FU (u) = Pr (ϕ(H,Y) ≤ u) =

∫∫
Γ

fH,Y (h, y) dh dy , (B.1)

where Γ is the region of the h-y plane where ϕ(h, y) ≤ u.
The independence of H and Y , and the fact that H is discrete, imply that

fH,Y (h, y) = fY (y)
∑
i

pi δ(hi − h) ,

where δ(x) is the Dirac delta function and fY (y) is the probability density function
of Y .

Documenting, modelling and exploiting P300 amplitude changes in a BCI 32

Using Iverson brackets (see Appendix A.1) we can rewrite (B.1) as

FU (u) =

∫
R

∫
R
[ϕ(h, y) ≤ u]

∑
i

pi δ(hi − h) fY (y) dx dy

=
∑
i

pi

∫
R
δ(hi − h)

∫
R
[ϕ(h, y) ≤ u] fY (y) dy dh .

(B.2)

The outer integral performs the convolution between the Dirac function and the
inner integral. As∫

R
δ(t− τ)ψ(τ) dτ = ψ(t) ,

(B.2) is equivalent to

FU (u) =
∑
i

pi

∫
R
[ϕ(hi, y) ≤ u] fY (y) dy . (B.3)

Each hi corresponds to a function ϕi(y) = ϕ(hi, y). As ϕi(y) is strictly increasing,
its inverse exists and is increasing, too. Therefore,

ϕ(hi, y) ≤ u ⇐⇒ y ≤ ϕ−1
i (u) .

Then, (B.3) becomes

FU (u) =
∑
i

pi

∫
R
[y ≤ ϕ−1

i (u)] fY (y) dy =
∑
i

pi FY (ϕ
−1
i (u)),

which proves the theorem.

Appendix C. Mean and variance of a variable whose probability density
function (pdf) is the weighted sum of several pdfs

Theorem. Let us consider a random variable, X, with probability density function

f(x) =
∑
i

pi fi(x) .

Let µi be the mean and σ2
i the variance of a variable whose pdf is fi(x). Then, the

mean µ and the variance σ2 of X are:

µ =
∑
i

pi µi (C.1)

σ2 =
∑
i

pi [σ
2
i + (µi − µ)2] . (C.2)

Proof. From the definition of mean it follows that

µ =

∫
R
x f(x) dx =

∫
R
x
∑
i

pi fi(x) dx =
∑
i

pi

∫
R
xfi(x) dx =

∑
i

pi µi ,

which proves (C.1).

Documenting, modelling and exploiting P300 amplitude changes in a BCI 33

From the definition of variance, we have

σ2 =

∫
R
(x− µ)2 f(x) dx =

∫
R
(x− µ)2

∑
i

pi fi(x) dx

=
∑
i

pi

∫
R
(x− µ)2 fi(x) dx =

∑
i

pi

∫
R
(x− µi + µi − µ)2 fi(x) dx

=
∑
i

pi

[∫
R
(x− µi)

2 fi(x) dx + 2 (µi − µ)

∫
R
(x− µi) fi(x) dx + (µi − µ)2

∫
R
fi(x) dx

]
=
∑
i

pi
[
σ2
i + 0 + (µi − µ)2

]
,

which proves (C.2).

Appendix D. Explaining and modelling TTI-related modulations of flash
scores produced by non-target stimuli

In section 5.3 we found that the average flash score for ERPs in partition nt01 (which
gathers the responses to the second non-target following a target) was lower than
for other non-target partitions. In this appendix we look at possible causes of TTI-
related modulations of flash scores in the presence of non-targets and how the theory
and methods developed in the paper would be affected by the use of (15).

When stimuli are presented at a sufficiently fast pace, the P300 produced in
response to a target stimulus will appear within the epochs corresponding to the
presentation of one or more non-targets following that target thereby deforming ERPs.
Naturally, not all such deformations will influence a flash scorer. However, some may
do so.

The SVM classifier used in the first stage of our Donchin speller weighs the
contribution of the different EEG samples in order to maximise the distance between
targets and non-targets. For simplicity let us think of it as a kind of matched filter
looking for P300-like shapes, i.e., positive deflections of the EEG w.r.t. the baseline
in a time window of around 300–500 ms after stimulus presentation. With the
standard stimulus presentation rate of Donchin’s speller, for the epochs in the nt01
partition, the P300 induced by the preceding target (the target epoch that started
2 × SOA = 350ms before an nt01 epoch) shifts positively the baseline of the nt01
epochs thereby significantly deforming the ERP and making it less likely to produce
a high flash score. Figure D1 illustrates the idea using a simple synthetic signal and
an elementary classifier. We believe that this is the most likely reason for nt01 having
more negative scores than other non-target partitions in our tests.

Of course, when using a different timing for stimuli, one might find that other
non-target partitions are affected by this effect. The effect may also depend on the
particular choice of stimulus paradigm and flash scoring algorithm. So, we cannot
exclude that in different P300 based BCIs a more marked TTI modulation of non-
target ERPs might be observed. For these reasons it is interesting to consider how
the theory and algorithms presented in this paper would be modified if we wanted to
also model and exploit such modulations.

Building a model where the score distribution of the non-targets depends on h
would be conceptually straightforward and would pose no new challenges. The model
for non-targets could be expressed using (15). Apart from small formal changes in the

Documenting, modelling and exploiting P300 amplitude changes in a BCI 34

Figure D1. Possible explanation for nt01 being more negative than the other
non-targets. For simplicity, let us imagine no ERPs are produced by non-target
stimuli. When a target flash is presented to a subject, we observe a positive
deflection of the EEG signal. This positive deflection occurs approximately 300–
500 ms after the beginning of the epoch starting when the target event occurs.
For simplicity let us imagine that our flash scorer simply returns the difference
between the EEG at time 400 ms and the EEG at time 0 ms (relative to the
start of the epoch). With our stylised EEG signal, this algorithm tends to give a
positive score to target epochs and a zero score to non-target ones. In the case
of nt01, however, the EEG at time 0 ms in an epoch corresponds to the EEG at
time 2 × SOA = 350ms of the target epoch acquired two flashes earlier. This
causes the voltage at 0 ms to be significantly higher than that at 400 ms. In the
presence of such an unusual non-target ERP, our simple difference-based scorer
will give nt01 epochs an unusually low score.

formulae, the main substantial difference is that (A.5) and (A.6) should be rewritten
as

Sr̂,∗ = w(HIII,∗)
[
αb
t HI + Y̊ I

]
+w(HIV,∗)

[
αb
nt HIX + Y̊ III,∗

]
(D.1)

and

S∗,ĉ = w(HV,∗)
[
αb
nt HX + Y̊ IV,∗

]
+w(HV I,∗)

[
αb
t HII + Y̊ II

]
, (D.2)

where the variables HIX and HX determine which values of αnt h to use. Please note
that, unlike the target case where the same H selects both the value of αt h and w(h),
in this case the pair of variables HIV,∗ and HIX and the pair of variables HV,∗ and
HX are different i.i.d. variables.

The second term in (D.1) was called V ′
∗ in Appendix A. Earlier its mean, µV ′

∗
, was

found to be E[w(HIV,∗)] αb
nt. When using (D.1), µV ′

∗
= E[w(HIV,∗) αb

nt HIX]. But, as
HIV,∗ andHIX are independent, this reduces to the product E[w(HIV,∗)]×E[αb

nt HIX],
where the second factor is the average non-target score among the partitions, i.e.,
αb
nt. In other words, even with a more sophisticated model of non-target scores,
µV ′

∗
= E[w(HIV,∗)] αb

nt. The same applies to the first term in (D.2). This shows that
a model that assumes the dependence of the non-target score distribution on h would
make the mathematical formulation more complicated without giving any substantial
advantage.

Documenting, modelling and exploiting P300 amplitude changes in a BCI 35

References

[1] Dornhege G, del R Millán J, Hinterberger T, McFarland D J and Müller K R (eds) 2007 Toward
Brain-Computer Interfacing (The MIT Press)

[2] Allison B Z, Wolpaw E W and Wolpaw J R 2007 Brain-computer interface systems: progress
and prospects. Expert review of medical devices 4 463–474

[3] Cinel C, Poli R and Citi L 2004 Possible sources of perceptual errors in P300-based speller
paradigm Biomedizinische technik 49(1) 39–40 Proceedings of 2nd International BCI
workshop and Training Course

[4] Citi L, Poli R, Cinel C and Sepulveda F 2008 P300-based BCI mouse with genetically-optimized
analogue control IEEE transactions on neural systems and rehabilitation engineering 16 51–
61

[5] Hansen J C 1983 Separation of overlapping waveforms having known temporal distributions.
Journal of neuroscience methods 9 127–139

[6] Zhang J 1998 Decomposing stimulus and response component waveforms in ERP Journal of
neuroscience methods 80 49–63

[7] Spencer K M 2004 Averaging, detection and classification of single-trial ERPs Event-related
potentials. A method handbook ed Handy T C (MIT Press) chap 10

[8] Luck S J 2005 An introduction to the event-related potential technique (Cambridge,
Massachusetts: MIT Press)

[9] Poli R, Cinel C, Citi L and Sepulveda F 2010 Reaction-time binning: a simple method for
increasing the resolving power of ERP averages Psychophysiology 47(3) 467–485

[10] Citi L, Poli R and Cinel C 2009 High-significance averages of event-related potential via genetic
programming Genetic Programming Theory and Practice VII Genetic and Evolutionary
Computation ed Riolo R L, O’Reilly U M and McConaghy T (Ann Arbor: Springer) pp
135–157

[11] Farwell L A and Donchin E 1988 Talking off the top of your head: toward a mental prosthesis
utilizing event-related brain potentials. Electroencephalography and clinical neurophysiology
70 510–523

[12] Allison B Z, McFarland D J, Schalk G, Zheng S D, Jackson M M and Wolpaw J R 2008 Towards
an independent brain-computer interface using steady state visual evoked potentials. Clinical
neurophysiology 119 399–408

[13] Hong B, Guo F, Liu T, Gao X and Gao S 2009 N200-speller using motion-onset visual response.
Clinical neurophysiology 120 1658–1666

[14] Donchin E and Coles M G H 1988 Is the P300 a manifestation of context updating? Behavioral
and brain sciences 11 355–372

[15] Polich J 2004 Neuropsychology of P3a and P3b: A theoretical overview Brainwaves and mind:
recent developments ed Moore N C and Arikan K (Kjellberg Inc.) pp 15–29

[16] Polich J 2007 Updating P300: an integrative theory of P3a and P3b. Clinical neurophysiology
118 2128–2148

[17] Polich J and Kok A 1995 Cognitive and biological determinants of P300: an integrative review.
Biological psychology 41 103–146

[18] Hagen G F, Gatherwright J R, Lopez B A and Polich J 2006 P3a from visual stimuli: task
difficulty effects. International journal of psychophysiology 59 8–14

[19] Sellers E W, Krusienski D J, McFarland D J, Vaughan T M and Wolpaw J R 2006 A P300
event-related potential brain-computer interface (BCI): the effects of matrix size and inter
stimulus interval on performance. Biological psychology 73 242–252

[20] Allison B Z and Pineda J A 2003 ERPs evoked by different matrix sizes: implications for a brain
computer interface (BCI) system. IEEE transactions on neural systems and rehabilitation
engineering 11 110–113

[21] Polich J 1990 Probability and inter-stimulus interval effects on the P300 from auditory stimuli.
International journal of psychophysiology 10 163–170

[22] Fitzgerald P G and Picton T W 1981 Temporal and sequential probability in evoked potential
studies. Canadian journal of psychology 35 188–200

[23] Allison B Z and Pineda J A 2006 Effects of SOA and flash pattern manipulations on ERPs,
performance, and preference: implications for a BCI system. International journal of
psychophysiology 59 127–140

[24] Gonsalvez C L and Polich J 2002 P300 amplitude is determined by target-to-target interval.
Psychophysiology 39 388–396

[25] Croft R J, Gonsalvez C J, Gabriel C and Barry R J 2003 Target-to-target interval versus
probability effects on P300 in one- and two-tone tasks. Psychophysiology 40 322–328

Documenting, modelling and exploiting P300 amplitude changes in a BCI 36

[26] Squires K C, Wickens C, Squires N K and Donchin E 1976 The effect of stimulus sequence on the
waveform of the cortical event-related potential. Science (New York, N.Y.) 193 1142–1146

[27] Gonsalvez C J, Gordon E, Anderson J, Pettigrew G, Barry R J, Rennie C and Meares R 1995
Numbers of preceding nontargets differentially affect responses to targets in normal volunteers
and patients with schizophrenia: a study of event-related potentials. Psychiatry research 58
69–75

[28] Bonala B, Boutros N N and Jansen B H 2008 Target probability affects the likelihood that a P300
will be generated in response to a target stimulus, but not its amplitude. Psychophysiology
45 93–99

[29] Rakotomamonjy A and Guigue V 2008 BCI competition III: dataset II- ensemble of SVMs for
BCI P300 speller IEEE transactions on bio-medical engineering 55 1147–1154

[30] Martens S M M, Hill N J, Farquhar J and Schölkopf B 2009 Overlap and refractory effects in a
brain-computer interface speller based on the visual P300 event-related potential. Journal of
neural engineering 6 026003

[31] Citi L, Poli R and Cinel C 2009 Exploiting P300 amplitude variations can improve classification
accuracy in Donchin’s BCI speller 4th International IEEE EMBS Conference on Neural
Engineering (Antalya) pp 478–481

[32] Salvaris M and Sepulveda F 2009 Perceptual errors in the Farwell and Donchin matrix speller
4th International IEEE EMBS Conference on Neural Engineering (Antalya, Turkey) pp 275
– 278

[33] Blankertz B, Müller K R, Krusienski D J, Schalk G, Wolpaw J R, Schlögl A, Pfurtscheller G,
del R Millán J, Schröder M and Birbaumer N 2006 The BCI competition III: Validating
alternative approaches to actual BCI problems. IEEE transactions on neural systems and
rehabilitation engineering 14 153–159

[34] Kaper M, Meinicke P, Grossekathoefer U, Lingner T and Ritter H 2004 BCI competition 2003–
data set IIb: support vector machines for the P300 speller paradigm. IEEE transactions on
bio-medical engineering 51 1073–1076

[35] Guan C, Thulasidas M and Wu J 2004 High performance P300 speller for brain-computer
interface IEEE international workshop on biomedical circuits and systems pp S3/5/INV–
S3/13–16

[36] Bayliss J D 2003 Use of the evoked potential P3 component for control in a virtual apartment.
IEEE transactions on neural systems and rehabilitation engineering 11 113–116

[37] Wilk M B and Gnanadesikan R 1968 Probability plotting methods for the analysis of data.
Biometrika 55 1–17

[38] Kübler A, Mushahwar V K, Hochberg L R and Donoghue J P 2006 BCI meeting 2005–workshop
on clinical issues and applications. IEEE transactions on neural systems and rehabilitation
engineering 14 131–134

[39] Rakotomamonjy A and Guigue V online at http://asi.insa-rouen.fr/enseignants/

~arakotom/code/bciindex.html

[40] Hill J, Farquhar J, Martens S M, Biessmann F and Schölkopf B 2008 Effects of stimulus type and
of Error-Correcting code design on BCI speller performance The 22nd Annual Conference on
Neural Information Processing Systems (Vancouver)

[41] Brunner P, Joshi S, Briskin S, Wolpaw J, Bischof H and Schalk G 2010 Does the “P300” speller
depend on eye gaze? Tools for Brain-Computer Interaction (TOBI) Workshop on Integrating
brain-computer interfaces with conventional assistive technology (Graz) (poster)

[42] Treder M S and Blankertz B 2010 (C)overt attention and visual speller design in an ERP-based
Brain-Computer Interface Behavioral and brain functions 6 28

[43] Schreuder M, Blankertz B and Tangermann M 2010 A new auditory multi-class Brain-Computer
Interface paradigm: spatial hearing as an informative cue PLoS One 5 e9813

[44] Brouwer A M and van Erp J B F 2010 A tactile P300 Brain-Computer Interface. Frontiers in
neuroscience 4 19

[45] Ulyanov V V 1981 An estimate for the rate of convergence in the central limit theorem in a
real separable Hilbert space Mathematical notes 29 78–82 translated from Matematicheskie
Zametki, Vol. 29, No. 1, pp. 145–153, January, 1981.

