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ABSTRACT 

A brain-machine interface (BMI) is a particular class of human-machine interface (HMI).

BMIs have so far been studied mostly as a communication means for people who have little

or no voluntary control of muscle activity. For able-bodied users, such as astronauts, a BMI

would only be practical if conceived as an augmenting interface. A method is presented for

pointing out effective combinations of HMIs and applications of robotics and automation to

space.  Latency and throughput  are selected as  performance measures  for  a hybrid bionic

system (HBS), i.e. the combination of a user, a device and a HMI. We classify and briefly

describe  HMIs  and  space  applications  and  then  compare  the  performance  of  classes  of

interfaces  with the  requirements  of  classes  of  applications,  both in  terms  of  latency  and

throughput.  Regions  of  overlap  correspond  to  effective  combinations.  Devices  requiring

simpler control, such as a rover, a robotic camera, or environmental controls are suitable to be

driven  by  means  of  BMI  technology.  Free  flyers  and  other  devices  with  six  degrees  of

freedom can be controlled, but only at low interactivity levels. More demanding applications

require conventional  interfaces,  though they could be controlled by BMIs once the same

levels of performance as currently recorded in animal experiments are attained. Robotic arms

and  manipulators  could  be  the  next  frontier  for  non-invasive  BMIs.  Integrating  smart

controllers in HBSs could improve interactivity and boost the use of BMI technology in space

applications.

Keywords: Brain�computer interface; Brain�machine interface; Latency; Space; Throughput.
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I. Introduction

Advances in technology allowed mankind to build machines which are used to interact with

the  environment  in  our  stead,  when  direct  action  is  not  possible  or  not  desirable.  This

interaction is mediated by a Human-Machine Interface (HMI). 

From a control system viewpoint interacting with a HMI implies translating intention into

motor commands, dispatch them toward the target muscles and translate the results of the

action, collected through the sensing system, into feedback for the central nervous system

(CNS). A brain-machine interface (BMI) allows to break this loop by translating a person's

intentions  directly  into  commands  to  a  device.  Some  BMIs  bypass  the  musculo-skeletal

system completely,  allowing severely disabled  people,  who have no voluntary control  of

muscles, to communicate (Wolpaw et al., 2002; Donoghue, 2002; Mussa-Ivaldi and Miller,

2003). However, to date no technology can provide a viable feedback method by directly

stimulating the CNS and therefore the usual approach is to use the natural senses, such as

vision or touch, in order to dispatch relevant information to the brain. Information transfer

rates  of  BMIs  are  low,  if  compared  to  conventional  HMIs:  even  the  most  skilled  BMI

typewriters can write only few letters per minute.

Nevertheless,  able-bodied  people  can  still  benefit  from  BMIs,  if  they  are  designed  as

augmenting interfaces, i.e. interfaces allowing them to perform actions in addition to what

they already can do with their normal abilities. It is precisely in this scenario that BMIs can

be gainfully applied for space applications: astronauts are able-bodied and specially-trained

people, it would therefore make little sense for them to avoid using conventional interfaces,

such as keyboards and joysticks, in favour of BMIs, which currently require a high cognitive

load,  are  affected  by  artefact  signals  from other  activities,  and  offer  a  poor  information
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transfer rate.  Only if  astronauts or technical  people from Earth will  be able to use BMIs

together  with  conventional  interfaces,  or  to  achieve  some  goals  for  which  conventional

interfaces are not suitable, it will make sense to introduce BMIs into space applications. This

is why we believe that, for space applications, augmenting interfaces will have a dominant

role. 

In  this  chapter  we  hypothesize  that  performance  of  HMIs  can  be  roughly  compared

independently  from task,  method, and user.  After  describing HMIs and devices  for  space

applications in terms of latency and throughput, which are used as performance measures, we

match the requirements of devices with the performance of available interfaces in order to

point out effective combinations.

II. Methods: performance measures of HBSs

The ensemble user-interface-device, comprising both artificial and biological components, is

defined as Hybrid Bionic System (HBS). A number of parameters and of definitions of the

same have been used to characterize performance of HBSs (Kronegg et al., 2005). In this

chapter we will adopt throughput and latency as performance measures.

Throughput (also called bit rate, bandwidth, or information transfer rate) is the amount of

data that is transferred over a period of time and is measured in bit/s. Latency is a time delay

between the moment something is initiated, and the moment one of its effects begins (onset

latency) or reaches the azimuth/nadir (peak latency).

In the following, classes of interfaces and devices are characterized. For each class, a numeric

range for throughput and latency is defined. Throughput of devices (TPd) was calculated as

the product of the number of bits per unit command b (in bit/command) and the number of
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commands per second  (commands/s) that have to be sent to the device to be able to control�

it interactively:

TPd = b .�

The throughput of interfaces (TPi) has been calculated as the Shannon information rate in

(Shannon,  1948).  This definition of  throughput is  also popular  in  the literature on BCIs,

having been first suggested by Wolpaw et al. (1998). In a number of BMI papers TPi is not

reported;  however,  the  number  of  symbols,  the  error  probability  and  the  transfer  rate

(symbols/s) is stated or can be inferred. In calculating TPi, a symmetric N-symbol channel

with symbol rate R and error probability (1  P) has been hypothesized:�

TPi = R ( lg2 N + P lg2 P + (1  P) lg� 2 ((1  P)/(N  1)) ).� �

The value of latency is usually reported or deducible from the description of the experimental

protocol used to generate the physiological signal measured by the interface. The minimum

value of latency is  limited by physiological  characteristics of the neural  fibres and relays

forming the control loop, by response times of the musculo-skeletal and sensory systems, by

how interactive the system is designed to be, and by how much feedback is needed to close

the  control  loop.  Latency  is  also  bound by the  time resolution of  the  technique  used  to

measure the user's intent or action.

Throughput and latency were chosen as initial  measures for determining whether a given

interface and device are suitable to be integrated in a HBS. Among the numerous factors that

can  be  pinpointed,  they  are  probably  the  only  ones  easily  quantifiable  and  comparable.

Therefore they seem a reasonable choice in order to perform a first selection allowing to

individuate which combinations of interfaces and devices are in principle possible and which
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ones are surely not.

Other important factors, albeit beyond the scope of this chapter, need further to be considered

for the final design of the HBS, such as degree of invasiveness, user-friendliness, portability,

set-up time, need for training, cost/effectiveness balance, robustness to noise, instantaneous

and cumulative cognitive load required, temporal stability, etc. 

III. Materials

III.A. Brain-machine interfaces

The performance of BMIs presented in this chapter is based on data collected from a number

of studies. These studies include all the papers considered in (Tonet et al., 2008) plus a

number of additional and more recent articles1. BMIs have been grouped according to their

type, as shown in Fig.1, first into cortical interfaces, which exploit information collected from

the central nervous system, and non-cortical interfaces, in which the information is measured

at the peripheral level, and further as explained below.

[Figure 1 about here]

In cortical non-invasive interfaces (C-NI), brain signals are recorded from the scalp and are

attenuated by their transit through the extracerebral layers. This group comprises interfaces

based on different types of brain signals: event-related potentials (ERP) and event-related

(de)synchronisation (ERD/ERS) related to motor  imagery, to different  mental  states  or to

1  For the sake of brevity we refer to (Tonet et al 2008) for the list of papers already considered in that work.

In addition we also used data from recent papers by Acharya et al. (2008), Achtman et al. (2007), Bai et al.

(2008), Bell et al. (2008), Brychta et al. (2007), Farina et al. (2007), Hoffmann et al. (2008), Karim et al.

(2006), Krepki et al. (2007), Momen et al. (2007), Müller-Putz et al. (2008), Müller-Putz and Pfurtscheller

(2008), Nijboer et al. (2008), Pham et al. (2005), Shenoy et al. (2008), and Truccolo et al. (2008).
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imagined sensory stimulation; P300 evoked potentials, generated by mental selection of items

arranged  in  a  sequence  or  into  square  matrices;  slow  cortical  potentials  (SCP)  and

sensorimotor cortex rhythms, related to 1-D and 2-D movement tasks; steady-state visual

evoked potentials (SSVEP), related to 1-D  movement tasks and nominal selection of  targets.

Cortical invasive interfaces (C-I) are characterized by a higher sensitivity than non-invasive

ones because they are able to detect directly the voluntary firing of individual neurons in the

primary motor cortex. During experiments with primates, the signal recorded has been related

to  complex  3-D  movement  tasks.  So  far,  during  experiment  with  human  subjects,  only

signals related to 1-D or 2-D movement tasks and to nominal selection of up four mental

states have been recorded.

In non-cortical invasive interfaces (NC-I), signals are measured directly from the peripheral

nervous  system  by  means  of  implantable  electrodes.  Finally,  non-cortical  non-invasive

interfaces (NC-NI) comprise conventional interfaces (e.g. switch-based interfaces, pointing

devices, and speech recognition) and interfaces based on electromyographic (EMG) signals.

III.B. Robotics and automation for space applications

To  protect  human  beings  from  the  hazard  of  the  hostile  environment  outside  the  Earth

atmosphere, in manned space flights astronauts have been enclosed in vehicles (for intra-

vehicular activities) or special suits (for extra-vehicular activities, EVAs) (Hirzinger et al.,

2000). As a complement and alternative, robotics and automation (R&A) is now one of the

most attractive areas in space technology, allowing to develop machines that are capable of

surviving the rigours of the space environment, performing some activities like exploration

and  assembly,  reducing  EVAs  and  occasionally  improving  performance  over  humans

performing the same tasks. They can be sent into situations that are so risky that humans
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would not be allowed to go (Wilcox et al., 2006).

For  the  purpose  of  this  study,  robots  for  space  applications  have  been  grouped  into  the

following categories.

Rover robots are vehicles launched by a lander over a planet or a satellite for exploring them

and  for  characterizing  soils  and  rocks.  Though the  size  of  rovers  can  range  from larger

vehicles for EVA to smaller autonomous vehicles, they share 3 degrees of freedom (DOF), 2

translational and 1 rotational. EVA rovers are interactive, whereas remote rovers, depending

on  the  time  delay,  can  be  teleoperated  or  be  embedded  with  sensors  for  autonomous

movement control.

Manipulator  robots are  teleoperated  robot  arms  which  are  useful  to  deploy  or  retrieve

payloads or satellites on a space craft  or station, for assistance in EVA activities such as

assembling, maintenance, and repair, and, provided with cameras, as inspection aids. Typical

manipulator robots have a complexity comparable with the human arm, though their size can

range up to tens of meters, and are teleoperated at an interactive rate by a human operator

located on the same space craft or station.

An �astronaut-equivalent� robot is designed specifically to work with and around humans.

The robot's considerable mechanical dexterity allows it to use tools and manipulate flexible

materials  much like a  human astronaut  would.  Moreover,  space  suits  often do not  allow

astronauts  free dexterous movements,  a limitation which could be overcome by using an

astronaut-equivalent  robot.  The considerable  complexity  of  these robots,  which  can  have

more than 50 DOFs, regarding hardware and control systems makes them suitable only for

local teleoperation. To simplify the HMI, their parts (e.g. head, arm, hand, leg or trunk) may

be controlled individually.

Free flyers or free floating robots are robots launched in space and able to move in 6 DOFs, 3
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translational and 3 rotational. Their usage scenarios are similar to that of space rovers, i.e.

inspection  and  characterization  of  the  atmosphere  of  planets  or  satellites.  Their  higher

complexity requires accordingly more complex commands. The base unit may be additionally

provided with manipulators for performing dexterous operations.  

An additional application of R&A to space flight is environmental control, i.e. the application

of domotics to space, for monitoring of the environmental parameters inside a spaceship or

space station. 

Three  key  issues  have  been  considered  to  express  the  performance of  devices  for  space

applications  in  terms  of  throughput  and  latency:  first,  mobility,  i.e.  moving  quickly  and

accurately between two points without collisions and without risk to the robots, humans and

the work site; second, manipulation, i.e. using dexterous robots to manipulate objects safely,

accurately,  and  quickly,  without  accidentally  contacting  unintended  objects  or  imparting

excessive forces beyond those needed for the task; third,  time delay, i.e. allowing a human

operator to effectively command a robot to do useful work. The operator may control the

robot from a �local� console, e.g. an astronaut inside the pressurized cabin of a space craft, or

from a �remote� console, e.g. a human operator on Earth, with non-negligible speed-of-light

communication delay with the robot.

The requirements, in terms of throughput and latency, of the above space applications have

been estimated from data contained in the following studies: (Kim et al., 1992), (Sheridan,

1993), (Peñín et al., 2000), (Miller and Machulis, 2005), (Wilcox et al., 2006). 

Concerning throughput, we computed the throughput as the product of the number of bits per

unit command and the number of commands per second  that have to be sent to the device to

be  able  to  control  it  directly,  as  in  a  master-slave  system,  and  interactively.  This  is  a

conservative estimate, since shared control methods can reduce the need for bandwidth: this
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issue is discussed in Section V below. Also, we do not consider here the bandwidth necessary

for  operator  feedback,  typically  visual  feedback,  which,  though  being  a  considerable

consumer of bandwidth, does not affect the suitability of an interface for a given application.

Similarly, the value of latency for space applications was considered to be the acceptable time

interval  from the user's  intention to the moment the command is received by the device,

neglecting the return time needed for feedback. Therefore, only half of the round-trip time

reported in the above experiments was considered. For space applications where no literature

data  was  available,  requirements  have  been  estimated  taking  into  account  related

applications,  such  as  ultrasound-based  deep  ocean teleoperation  (Sheridan,  1993)  and

rehabilitation (Tonet et al., 2006). By slowing down the speed of devices and implementing

autonomous control schemes, there is theoretically no upper limit to latency. However, the

reported values take into account the maximum time allowed for a typical task, e.g. a payload

positioning task should be completed in minutes, not hours.

IV. Results: matching interfaces and devices

In this section the performance of the interfaces described in Section III.A are matched with

the needs of the applications presented in Section III.B. Identifying the regions of overlap

allows to define realistically which applications could in principle be driven by means of a

given BMI and also which types of BMI could be suitable for a given application. As said,

this matching represents a necessary, but not sufficient, condition and other factors must be

considered in the final design of a HBS.

Figure  2  shows  the  overlap  of  application  needs  (rectangles)  and  interface  performance

(convex  hulls).  Figure  3  is  similar,  but  the  different  HMIs  are  grouped  according  to

invasiveness  (invasive/non-invasive)  and  to  the  location  of  the  hybrid  link  (cortical/non-
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cortical).

[Figure 2 about here]

[Figure 3 about here]

At a first glance, it  can be pointed out that applications that require little throughput and

tolerate higher latency could be driven by any of the interfaces considered. These applications

comprise devices for environmental control, an astronaut-equivalent head, and rovers. In the

next  section  we  will  present  three  possible  demonstrators  of  BMI-controlled  space

applications.  Furthermore,  to  some  extent,  control  of  free  flyers  and  of  an  astronaut-

equivalent leg is also possible by means of several separate interfaces in all four groups, even

though for some interfaces the overlap is limited to the lower part of the required throughput

range.

The requirements of more demanding devices, namely the manipulator arm and the astronaut-

equivalent hand, are met only by conventional interfaces. Also an EMG-based interface could

allow some form of control of an astronaut-equivalent hand, probably a smart underactuated

one requiring less  throughput  than  conventional  robotic  hands.  The same could apply to

invasive cortical interfaces, once the performance of human subjects reaches the one obtained

by  monkeys.  In  fact,  performance  measured  in  monkeys  suggest  that  cortical  invasive

interfaces  could  be  used  successfully  for  controlling  prosthetic  hands  with  greater

interactivity. However, with cortical invasive interfaces, humans have not reached the same

performance as monkeys. In (Hochberg et al.,  2006), the quadriplegic human subject  that

received the 96-multi-electrode array was able to control a computer cursor to interact with

home  appliances,  operate  the  opening  and  closing  of  a  prosthetic  hand,  and  perform
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rudimentary actions with a multi-jointed robot arm. It is worth noting that he could perform

these actions even while conversing,  which suggests that  invasive interfaces  have greater

capabilities of discriminating shared output, i.e. simultaneous orders of different content, than

non-invasive ones.

Complex compound devices, namely the astronaut-equivalent arm and the whole astronaut-

equivalent robot, require performance that is currently not attained by any of the interfaces.

While the latency requirement  is  well  accomplished by a few interfaces  -  invasive ones,

conventional ones, and EMG - the limiting factor is the throughput. In fact, the control of a

robot with many independent degrees of freedom requires an overall throughput well above

the capabilities of the state-of-the-art interfaces.

V. Possible demonstrators

Based on the regions of overlap between the performance of interfaces and requirements of

applications in Fig. 2 and 3, a few demonstrators can be envisaged. Three of them are briefly

described  and  discussed  in  order  to  verify  their  feasibility  beyond  the  mere  numerical

comparison of throughput and latency shown in Fig. 2 and 3.

A first demonstrator migrates the concept of domotics to space applications. Several BMIs

are suitable for operating environmental controls. This result is not surprising: indeed, the

control panel of domotic applications is usually a simple interface composed of switches and

sliders, controls that are easily implemented by means of a BMI (Gao et al., 2003; Cincotti et

al.,  2006).  Nevertheless they should not be the first  choice.  It  is  obvious that mechanical

buttons and sliders, or their equivalent on a graphical user interface, are the most intuitive

way  to  toggle  switches  or  set  ranges.  Nevertheless,  EEG-based  BMIs  have  sufficient

throughput and acceptable latency to be used for demonstrating BMI-based environmental
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control.

A second demonstrator  is  a  hands-free  control  of  two DOFs.  Practical  scenarios  include

steering of a camera (e.g. a rover-mounted camera, the astronaut-equivalent head) while the

user's hands are controlling robotic manipulators, by means of joysticks or exoskeletons, for

ground exploration or  spaceship maintenance.  This  application  shares  many aspects  with

interfaces allowing an impaired user to scroll the screen and reach icons and widgets on a

computer desktop (Citi et al., 2008). A related application, namely 2-DOF cursor control and

map navigation on a computer display by means of a dependent BMI that requires change of

the gaze fixation point, has been recently investigated at NASA by Trejo et al. (2006). If,

while  using  the  BMI to  control  2  DOFs,  the  user  was  able  to  use  his  hands  to  control

additional interfaces, this would be an augmenting application, i.e. an application that could

not be performed in the same way by one person alone. However, further investigation is

required to rule out that  the use of  the BMI concurrently with traditional  HMIs is  made

impossible by an excessive cognitive load or by interferences between the mental activity

related to the BMI and the one related to the task at hand.

A third demonstrator is a direct porting of an existing rehabilitation device, namely a BMI-

driven wheelchair, to a space application, by substituting the wheelchair with a space rover.

BMIs may not be the best  choice for  driving a  rover:  conventional  interfaces,  such as  a

joystick,  yield better results with almost no training and user fatigue at  all.  Nevertheless,

brain activity recorded non-invasively is sufficient to control a robot moving on a surface,

especially if  the devices  embodies some smart  high-level  controller  (Tanaka et  al.,  2005;

Galán et al., 2008). 

In this regard, concerning complete HBSs in which the interface part has lower performance

than required by the application, it is possible to overcome limitations of the interface by
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improving the effectiveness of the commands sent to the device, i.e. by developing smart

high-level controllers, which are able to perform parts of the tasks autonomously (Sheridan,

1993). HBSs with low-level controllers and no autonomous behaviour will leave all decisions

to  the  users  and  will  require  many  simple  commands  to  be  driven  interactively.  The

commands will be simple (few bit/command) but frequent (many commands/s). On the other

hand, an embedded high-level controller with a high degree of autonomy will accept complex

commands from the user and then act  autonomously,  typically in a  closed feedback loop

based on data read from internal sensors. Such a controller will require complex commands

from the  user  (many bit/command)  but  less  often  (few commands/s).  Controllers  with  a

modular degree of autonomy allow the user to switch between lower and higher levels of

control, ensuring that the user is always in control of the device, but freeing them from the

burden of controlling it continuously. Modulating degrees of autonomy could also be a means

to overcome gaps between interface performance and application needs, by developing more

deeply integrated HBS.

VI. Conclusions

In this chapter a method to match interfaces and devices to form hybrid bionic systems has

been presented and possible space applications have been pointed out. Though the main focus

is on BMI applications, the method is applicable to all kinds of HMIs and can be used in

general to determine, for a given application, what interface is best suited to control it. It can

also be used conversely, to find the applications that are most suited for a newly developed

interface. Throughput and latency were selected as measures, since they are defined on all

kinds of devices and interfaces and can easily be computed or estimated. Besides them, other

variables affect performance of HBSs and need to be taken into account for the development
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of a complete system. Especially in the case of space applications, the different performance

of the human component of the HBS cannot be neglected.

Results show that devices requiring simpler control are suitable to be driven by means of

BMI technology. Devices with many degrees of freedom can be controlled at  the cost  of

suboptimal  interactivity.  More  demanding  applications  require  conventional  interfaces,

though they could be controlled by BMIs once the same levels of performance as currently

recorded in animal  experiments  are attained.  Integrating smart  controllers  in  HBSs could

boost the use of BMI technology in space applications.

In conclusion, it appears as the future of research in HBSs will have many facets: not only

there is room for improvement in all their individual components (user, device, interface), but

also for developing more efficient strategies to make those components interact (control).
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Figures:

Figure  1:  Classification  of  human-machine  interfaces.  Examples  of  signal  acquisition

techniques and of acquired signals are listed for each class.
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Figure 2: Graphical representation, in terms of  latency and throughput, of  the requirements

of space applications (grey boxes) and of the performance of separate subclasses of human-

machine interfaces (areas delimited by coloured convex hulls).
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Figure 3: Graphical representation, in terms of  latency and throughput, of  the requirements

of space applications (grey boxes) and of the performance of the four main classes of human-

machine interfaces (areas delimited by coloured convex hulls).
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