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Abstract

This paper analyzes the semiparametric estimation of multivariate long-range
dependent processes. The class of spectral densities considered includes multi-
variate fractionally integrated processes, which are not covered by the existing
literature. This paper also establishes the consistency of the multivariate Gaus-
sian semiparametric estimator, which has not been shown in the other works.
Asymptotic normality of the multivariate Gaussian semiparametric estimator is
also established, and the proposed estimator is shown to have a smaller limit-
ing variance than the two-step Gaussian semiparametric estimator studied by
Lobato (1999). Gaussianity is not assumed in the asymptotic theory.

JEL Classification: C22

1 Introduction

Consider a real-valued covariance stationary g-vector process X; that is generated by

(1-L)yh 0 Xy — EXy wyy ,
. . = E 5 —7<d17...,dq<
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where u¢ = (uyy, ... uq) is a covariance stationary process whose diagonal elements
are bounded and bounded away from zero at the origin. This is a multivariate exten-
sion of a scalar fractionally integrated process, or the so-called I(d) process, and X,
exhibits the long-range dependence when d, # 0. The long-range dependent processes
are used extensively in economics and finance, in particular in modeling certain finan-
cial data, such as volatility and trading volume. X; becomes a multivariate ARFIMA
process when w; is a vector ARMA process, but the specification (1) does not require
u; to be so.

*Currently at Department of Economics, Queen’s University. The author thanks the ESRC for
research support under Grant R000223986. Simulations were performed in MATLAB.



Fractionally integrated processes are the most widely used long-range dependent
time series in economics and econometrics. They have a time domain representation
that extends the conventional ARMA models in a natural way. The relationship
between the value of the memory parameter and the persistence of a shock are easily
understood as the value of the coeflicient in the expansion of

L & () T(d+k)

Recent applications of fractional integration are found in, e.g., Bollerslev and Wright
(2000) and Brunetti and Gilbert (2000). Henry and Zaffaroni (2003) provide a sur-
vey of applications of fractional integration and long-range dependence in macroeco-
nomics and finance.

Let f(A) and f,(\) denote the spectral density of X; and w;, respectively, such
that

(X, = EX)(X{p— EX]) = [ e f()ax,

—Tr

and similarly for f,()). Let
B(N) = diag (1 — €)™+ (1= ) ™H) = diag (1 - ™) ™),
then the spectral density of X; is (e.g., Hannan, 1970, p.61)

FA) = @A) fu(N)2*(A).

As we shall see shortly, the memory parameter, d, governs the long-run dynamics
of the process and the behavior of f(\) around the origin. Therefore, if the interest
lies in the long-run dynamics of the process, it is useful to specify the spectral density
only locally in the vicinity of the origin and avoid specifying the short-run dynamics
of u; explicitly. Assume f,(\) satisfies

fuX) ~ G, A= 0,
where G is real, symmetric, finite, and positive definite. Since
(1—eM)* =A% ™21+ 0(N), A—0, (2)
(Phillips and Shimotsu, 2003), it follows that
F(A) ~ diag(A\"%e™a/2)G diag(A\"%ae™™a/2) X = 0, (3)

and the behavior of f(\) around the origin is governed only by d and G.

When f()) is specified locally as (3), we can estimate d semiparametrically using
the information only on the long-run dynamics of the process. Semiparametric es-
timation uses the periodograms evaluated at a band that shrinks toward the origin
as the sample size tends to infinity. The semiparametric estimators are robust to
misspecification of short-run dynamics, because they are agnostic to the behavior of
the periodograms away from the origin.

In a univariate case where f(A\) ~ GA™2? as A — 0, one attractive semiparametric
estimator was proposed by Kiinsch (1987) and analyzed by Robinson (1995b). The
estimator, Gaussian semiparametric estimator (GSE), is based on the maximization of



the frequency domain Gaussian likelihood function that is localized to the vicinity of
the origin. The GSE has several advantages over the other semiparametric estimators,
including efficiency and a weaker distributional assumption. Lobato (1999) analyzed
a version of multivariate extension of GSE. It considers a two-step estimation of d,
which is based on the first-step univariate estimate of dy,...,d; and a Newton-type
second step, and shows the asymptotic normality of the two-step estimator.

We consider semiparametric estimation of d when the spectral density has the
form (3). The specification (3) extends the specification f(\) ~ GA™2? into the
multivariate case. It includes multivariate fractionally integrated processes and is
also general enough to accommodate the presence of poles and zeros at frequencies
away from the origin. In (3), the memory parameter d appears in A% and eim™de/2,
and hence the estimation of d needs to take both A™% and e¢™/2 into account. This
dependency was thought to make the analysis difficult. Consequently, Lobato (1999)
considered semiparametric estimation of d from an alternate form of spectral density!

F(\) ~ diag(A\~%)Gdiag(A~%), X — 0. (4)

When X; is generated by a multivariate fractionally integrated process (1), however,
it is not clear if an estimator based on the specification (4) provides a valid estimate
of d. This is because the off-diagonal elements of diag(A%)f(\)diag(A%) have a
nonnegligible imaginary part even in the neighborhood of the origin, and f(\) does
not belong to the class of spectral densities specified in (4). Indeed, we are not aware
of a time domain model of multivariate time series whose spectral density follows (4).

We also prove the consistency of our multivariate GSE. Two-step estimation is
partly motivated by its computational ease. However, in view of today’s computa-
tional power, a maximization of the objective function with respect to ¢ parameters
is not likely to cause any practical difficulty. Indeed, the simulation in this study
confirms it. Direct maximization of the objective function also dispenses with the
numerical differentiation that is necessary for the evaluation of the score function
and Hessian. Although the proof of the consistency of univariate GSE by Robinson
(1995b) is not directly applicable to the multivariate case, a proper modification of
the proof by Robinson (1995b) enables us to handle the nonuniform convergence of
the objective function and establish the consistency of the multivariate GSE.

The GSE is shown to have a Gaussian limiting distribution. Intriguingly, its
limiting variance is different from that of the GSE analyzed by Lobato (1999), and
the GSE based on (3) has a smaller limiting variance than the one based on (4). This
gain of efficiency arises because it takes both real and imaginary parts of the spectral
density and periodograms into account, and the presence of d in ei™a/2 provides
more information about the value of d. In simulations with multivariate fractionally
integrated processes, the GSE based on (3) exhibits smaller variance than the GSE
based on (4 ).

The remainder of the paper is organized as follows. Section 2 describes the GSE.
Consistency of the GSE is demonstrated in Section 3. Section 4 derives the limit
distribution. Section 5 reports some simulation results. Proofs are given in Appendix
A in Section 6. Some technical results are collected in Appendix B in Section 7.

'The specification (4) is also used in Lobato and Robinson (1998) to construct a nonparametric
test for weak dependence. Lobato and Velasco (2000) extend it to analyze the two-step Gaussian
semiparametric estimation of multivariate nonstationary long-range dependent processes.



2 Multivariate semiparametric estimation

We consider semiparametric estimation of d = (dy, - - - ,dq)/, which uses only Fourier
frequencies in the neighborhood of the origin and hence is nonparametric with respect
to short-run dynamics of the data. Define the discrete Fourier transform (dft) and
the periodogram of X; evaluated at frequency A as
1 n
w(A) = X e T\ =w\)w* (N,
W= g L TN = w0

where x* denotes the conjugate transpose of x. For the reason explained in Section 3,
it is useful to consider an approximation finer than (3). Since |1 — ™| = [2sin()\/2)|
and arg(l — e*) = (A — 7)/2 for 0 < A < 7, we have

(1—e™)? = ([2sin(A/2)])’ expli(A — 7)6/2]
= Mexpli(A — 7)0i/2](1 + O(\?)).

This is merely a refinement of (2), but the smaller error magnitude (O(A\?)) will
become essential in the analysis in Section 4. Since f,(A\) ~ G as A — 0, we have, for
the Fourier frequencies \; = 27j/n with j =1,...,m and m = o(n),

FON) ~ M (d)GAS(d),  Aj(d) = diag(\; %elmAi)e/2),

Therefore, the Gaussian log-likelihood function localized to the origin is

m

Qm(G,d) = % 3 {log det Aj(d)GA%(d) + tr [(Aj(d)GA;f(dD_l I()\j)] } .

J=1

Using the fact that det AB = det A det B for any complex matrices A and B (Liitkepohl,
1996, p. 48), the first order condition with respect to G is (Liitkepohl, 1996, p. 179)

9Qm(G.d) _ 1 & - - - sy —1—1]
B = @7 - [ @6 <o
J:
Taking its transpose gives G = m~! ;n:l{Aj(d)*lf()\j)A;(d)*l}. Substituting this

into Qm (G, d) in conjunction with the fact that
log det Aj(d) + log det A% (d)

q
= logdet A;(d)A}(d) = log(diag(A;>*)) = =2 dqlog A,

a=1

and G is real, we obtain the objective function

N il 1 &
R(d) = logdetG(d)—2 Z da% Z log \;,
a=1 j=1

Gd) = nllije [Aj(d)—lf(Aj)A;(d)—l}.

In the following, we denote the true parameter values by GV and dy. The estimator
is defined as
d =arg min R(d),
deo
where the space of admissible estimates of d°, ©, takes the form © = [A1, As]?, with

—1/2 <AL <Ay < 1/2.



3 Consistency of the estimator

We now introduce the assumptions on m and f(\) necessary for the consistency
of the estimator. Let fu,(\) and GY, denote the (a,b) th element of f()\) and GY,
respectively.

Assumption 1  As A — 0+,
fab (A) = e 2G0 \~dady 4 o(\~damd) g b=1,...q.

Assumption 2
oo o
Xt—EXt:A(L)Et:ZAjSt—ja ZHA]H2<OO7
j=0 J=0

where || - || denotes the supremum norm and E(e¢|Fi—1) =0, E(ee}|Fy—1) = I a.s.,
t =0,%£1,..., in which F; is the o-field generated by 5, s < t, and there exists a
scaler random wvariable € such that Ec? < oo and for all n > 0 and some K > 0,
Pr(|le]] > n ) < KPr(e? > ).

Assumption 3 In a neighborhood (0,0) of the origin, A(\) = 3272, Aje is dif-
ferentiable and

9
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where Aq(X) is the ath row of A(M).

Ag(N) =OA %) as A — 0+,

Assumption 4 As n — oo,
1 m
—+ — —0.
m n
Assumptions 1-4 are multivariate extensions of Assumptions A1-A4 of Robinson
(1995b) and analogous to the ones used in Robinson (1995a) and Lobato (1999).

In Assumption 1, replacing eim(da=dy)/2 with ei(m—M(da=db)/2 Joes not make differ-

ence because ¢ — 1 = o(1). Assumption 3 implies Assumption A3’ of Lobato
(1999), i.e., DA(A) /X = O(A™Y|Aa(V)]]), because [[Aa(A)|| = (Aa(N)A5(N)/9)!/? =
(27 faa(N) /) 12,

Under these conditions, we may now establish the consistency of d.

3.1 Theorem
Let Assumptions 1-4 hold. Then, for dy € O, J_’p do as n — oo.

4 Asymptotic normality of the estimator

We introduce some further assumptions that are used in the results of this section.
They are analogous to the assumptions in Lobato (1999).

Assumption 1’ For € (0,2] and a,b=1,...,q,

fap (A) — ei(”_/\)(dg_dg)ﬁ)\_dg_dgng = O()\_dg_ngrﬂ) as A — 0+.



Assumption 2" Assumption 2 holds and also for a,b,c,d = 1,2,
E(eatepect| Fi-1) = pape  @-8.,  Eleatepectar| Fi-1) = Papeas t=0,%1,...,
where |Mabc| < o0 and |Mabcd‘ < 0.

Assumption 3 Assumption 3 holds.

Assumption 4 Asn — oo,

1 mM*2(logm)2  logn
1 (logm)” | log
m n2p mY

— 0, for any v > 0.

Assumption 5" There exists a finite real matriz H and o > 0 such that
A (d)TAQ) = H 4+ 0().

Assumption 1’ does not hold for 5 > 1 if we replace lm=N(da=d})/2 it e”(dg_dg)/z,
because e = 1 + O(\). Assumption 4’ is slightly stronger than the assumptions in
Robinson (1995b) and Lobato (1999), i.e., m~! +m!*26n=28(logm)? — 0. It is satis-
fied if m ~ Cn® with a finite positive constant C' and 0 < ¢ < 23/(1+283). The third
term on the left hand side of Assumption 4’ is necessary in establishing the conver-
gence of the Hessian. Assumption 5 complements Assumption 1’ in that it controls
the degree of approximation of the transfer function by A;(d°). This assumption

obviously implies HH' = 2rG° and is satisfied by multivariate ARFIMA models.

4.1 Theorem
Let Assumptions 1'-4" hold. Then, for d° €Int(©), as n — oo,

m!/2(d—do) — 4N (0,07), Q=2 Iq+G0@(GO)—1+7f(Go@(GO)—l—Iq)],

é(gl\) - PG07

where © denotes the Hadamard product.
Lobato (1999) analyzes the two-step GSE that uses the objective function based
on (4):

f: e [diag(Xf) I(\;)diag(A*)] ,

~ ~ o1& 1
R(d) =logdet G(d)—2) do— Z log \j, E
and show that the limiting variance of that estimator is = = 2[I, + G° ® (G°)71].
Because G° ® (GY)~! — I, is positive semidefinite (Horn and Johnson, 1985, p.475),
d has a smaller (in a matrix sense) limiting variance than the two-step estimator
analyzed by Lobato (1999), if GO # cI, for a positive scalar c. The properties the GSE
based on the objective function }Nz(d) remains unclear when the data are generated

by (1). We conjecture it is still consistent, but the limiting variance may depend on
d because [diag(A%)f(\)diag(A%)] depends on d as A — 0.



We compare the diagonal elements of Q! and Z~! with the asymptotic variance of

the univariate GSE (= 1/4) when ¢ = 2. Note that (Q)1}! = (Q)55 and (2)1! = ()%
GY is chosen to be

GO = [ ; f ] . p=0.0,0.2,0.4,0.6,0.8.

Table 1 reports ()77 and (Z);;" and their ratio to 1/4.

Table 1. Comparison of asymptotic variance

p 0.0 0.2 0.4 0.6 0.8
univariate 0.250 0.250 0.250 0.250 0.250
(Q Yy, 0.250 0.234 0.200 0.167 0.142

(E Yy 0.250 0.245 0.230 0.205 0.170
(Q7111/(0.25) 1.000 0.937 0.801 0.670 0.570
(27111/(0.25)  1.000 0.980 0.920 0.820 0.680

When p < 0.2, the variance of the three estimators is not substantially different.
When p > 0.4, both (271)1; and (£7!)1; are noticeably smaller than 1/4. As p
gets larger, they become still smaller, and also the difference between (271)1; and
(27111 increases. Therefore, we may expect a nonnegligible gain in efficiency from
estimating the elements of d jointly, and the gain may be substantial, especially when
both real and imaginary parts of the spectral density are taken into account.

5 Simulations

This section reports some simulations that were conducted to examine the finite
sample performance of the analyzed GSE (hereafter GSE1). We also examine the
finite sample properties of the GSE based on the objective function R(d) (hereafter
GSE2). The sample size and band parameter m were chosen to be n = 500 and
m = n%% = 56. We generate X; by truncating the infinite order moving average

representation of (1):

—_ )% U1
X, = < (1 OL) (1_%)_@ ) l( u; )1{152 1}

() = (o]} 2])

n 4 2000 observations of X; were generated, and the first 2000 observations were
discarded. The bias, standard deviation, and root mean squared error (RMSE) were
computed using 10,000 replications. The value of d was chosen to be (0.2, —0.2),
(0.2,0.2), and (0.2,0.4). The results do not appear to depend on the value of d.
Three values of p were used; p = 0, 0.5, 0.8.

Tables 2-4 show the simulation results of both estimators. Table 2 shows the
results for p = 0. Both GSE1 and GSE2 have little bias for all values of d. The
standard deviation and RMSE of GSE1 are slightly higher than those of GSE2. The
limiting variance of the two estimators is the same, and the simulation result appears
to corroborate it. The bias, standard deviation, and RMSE do not appear to be
affected by the value of d. Table 3 shows the results for p = 0.5. GSE1 has smaller

)




standard deviation and RMSE than GSE2. Again, the performance of the estimators
is not substantially affected by the value of d. Table 4 shows the results for p = 0.8.
Interestingly, the standard deviation and RMSE of GSE2 appear to depend on the
value of d. This suggests that the limiting variance of GSE2 depends on d when the
data are generated by an ARFIMA process. This is not surprising, however, because
when X; follows an ARFIMA process and p # 0, the matrix G in (4) depends on
the value of d. Both GSE1 and GSE2 have smaller standard deviations than the case
when p = 0.5. A simulation for a single pair of (d;,dz p) took around 60 minutes with
a PC box with a dual 2.0 Ghz CPU running the Linux operating system.

Table 2. Simulation results: n = 500, m = n%% = 56

GSE1 GSE2
bias s.d. RMSE bias s.d. RMSE
p=0.0
(d1,d2) = (0.2,—0.2)
d; -0.0064 0.0789 0.0792 -0.0066 0.0784 0.0787
dy -0.0038 0.0777 0.0778 -0.0037 0.0773 0.0774
(di,d2) = (0.2,0.2)
d; -0.0060 0.0781 0.0783 -0.0061 0.0776 0.0778
ds -0.0074 0.0781 0.0785 -0.0075 0.0777 0.0781
(d1,d2) = (0.2,0.4)
d; -0.0062 0.0785 0.0787 -0.0063 0.0780 0.0782
ds -0.0020 0.0790 0.0790 -0.0021 0.0786 0.0786

Table 3. Simulation results: n = 500, m = n%% = 56

GSE1 GSE2
bias s.d. RMSE bias s.d. RMSE
p=0.5
(di,d2) = (0.2,—0.2)
di -0.0043 0.0672 0.0674 -0.0037 0.0752 0.0753
dy -0.0007 0.0665 0.0665 -0.0001 0.0747 0.0747
(di,ds) = (0.2,0.2)
d; -0.0059 0.0667 0.0670 -0.0067 0.0728 0.0731
ds -0.0055 0.0665 0.0667 -0.0070 0.0730 0.0733
(d1,d2) = (0.2,0.4)
d; -0.0034 0.0670 0.0671 -0.0054 0.0740 0.0742
dy -0.0016 0.0673 0.0673 -0.0008 0.0744 0.0744




Table 4. Simulation results: n = 500, m = n0-6% = 56

GSE1 GSE2
bias s.d. RMSE bias s.d. RMSE
p=038
(d1,d2) = (0.2,—0.2)
di  0.0022 0.0597 0.0598 0.0056 0.0721 0.0723
ds  0.0056 0.0599 0.0601 0.0093 0.0721 0.0727
(di,da) = (0.2,0.2)
d;  -0.0052 0.0587 0.0589 -0.0070 0.0644 0.0647
ds -0.0047 0.0585 0.0586 -0.0067 0.0644 0.0647
(d1,d2) = (0.2,0.4)
d;  0.0001 0.0595 0.0595 -0.0013 0.0678 0.0678
ds  0.0004 0.0597 0.0597 0.0034 0.0682 0.0683

6 Appendix A: Proofs

In this and the following section, C' denotes a generic constant such that C' € (1, 00)
unless specified otherwise, and it may take different values in different places.
6.1 Proof of Theorem 3.1

Define § = (01,---,0,)' = d — d° and S(d) = R(d) — R(d°). Fix 1/2 > 4§ > 0, and
define N5 = {d : ||d—d°|| > 6}, where ||-|| denotes the supremum norm. For arbitrary
small A > 0, define ©1 = {0 : 0 € [-1/2+ A, 1/2]7} and Oz = ©\O1, possibly empty.
Without loss of generality, assume A < 1/4. Then we have (c.f. Robinson, 1995b, p.
1634)

Pr(||d—d||>38) < Pr(infy, qS(d) <0

< Pr (mmel S(d) < o) + Pr(infe, S(d) < 0).  (5)

For the first probability on the right of (5), rewrite S(d) as

q m
S(d) = kgdmcx@-—mgmnauﬂ)—2§:af£§:kgkj
m =
j=1

a=1
~2(01+++04) _
= logdet G(d) + log (2””1> " logdet G(d°)
q 1 m
-2 0, | — 1 —1
Z m; ogj —logm
= — S1(do) + Sa(d
where
Si(d) = log A(d) — log B(d),
9 —2(014--+04) R q
Ald) = (T) " et G(d), B(d) = 1260 +1)~" det G°,
a=1
q
Sao(d) = —220 ( Zlogg —logm) — Zlog(%a +1).
Jj=1 a=1



Since m™! 1" logj — logm + 1 = O(m~'logm) (see, e.g. Robinson, 1995b, Lemma

2), we have
q

Sa(d) =Y [204 — log(20, + 1)] + O(m ™" logm).

a=1

Because x — log(z + 1) achieves a unique global minimum on (—1,00) at x = 0 and
x —log(z + 1) > 22/6 for 0 < |z| < 1, for all sufficiently large n

infy o, S2(d) > 62/6.
For S;(d), if there exists nonrandom Z(d) such that
(i) supe, |A(d) — E(d)| = 0,(1), (i) E(d) > B(d), (iii) E(d°) = B(d"), (6)

as n — 0o, then we have

Sid) = log(2(d) + op(1)) — log B(d) = log <1+

i
&
|
Sy
—~
&
+
<
—_
~—
N——

Si(d) = log (1+0,(1)/B(d)),

uniformly in ©;. Then Pr(infg o S1(d) — S1(d%) < —62/12) — 0 follows because
|log(1+x)| < 2|z| for [z| < 1/2 and infe, B(d) > 0. Thus Pr(infg, g S(d) <0) — 0
follows.

We proceed to show (6). For (i), recall that A;(d)~! = diag(e%(’\f”)d“i)\?a) and

Aj(d)™h = Aj(d —d) A (d%) T = Ay(0) T A (d%)

It follows that

A(d) =

x det {; i Re [Aj(0)_1Aj(dO)—lj()\j)A;f(dO)—lA;‘f(Q)—l} }

m

= det {Tln Z Re |:MJ(9)/\](do)—lf(kj)A;(dﬂ)—lM;(Q)} } ) (7)

J=1

where M;(0) =diag(e!*=™%/2(j /m)%). Hereafter let I; denote I();) and w,; denote
wa(Aj), the ath element of w(\;). Observe that the (a,b)th element of the inside of
det{-} in (7) is

m -\ Oa+0

iZRe ot =m)(0a—05)/2 ( bei(/\jfw)(dgfdg)/Q/\flg+dgw Wk

m = m J AL
]:

Summation by parts (Robinson, 1995b, p. 1636) and Lemma 7.1 give, uniformly in
(a,0),

1 & j

) ) 0a+6 . 0 70
% Z el()‘j —m)(0a—0p)i (‘7> (el()\jﬂ')(dgdg)/Q)\;laerb wajw;)kj _ G2b>
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m—1 9a+0 9a+9
< LS <7°) bewm)(eaeb)/z_(” 1> " i1 =m)(0a=04) /2
oMo e m m
r . 04 40
" ( T S ng>
j=1
1 —)(dO — O d0+d
j=1
m—1 2A r
r 1 i(A\j—m)(dd—d? d0+d "
R ) A e s )
r= 7=1
1 m—1 0
+% <ez(,\-_7r)(d0 dO)/2>\d o+dY Pz ng> = 0p(1). (8)
j=1
It follows that
* — * ]' = *
—ZRe{ A (d) LA ()M (0)] = EZ e [M;(0)G°M; (0)] + 0,(1),

uniformly in ©;. Define £ () and M () to be matrices whose (a,b) elements are
e~ ™(0a=0)i/2 gnd fol xYat0 dx, respectively. From Lemma 2 of Robinson (1995b), we

iy o2
2l —1mo() wmow

for e € (0,1] and C € (e, 00). Hence, in view of e/A =™ 0a=0)/2 — g=in(0a=0:)/2 L O()\),

we have

have

sup
C>v>e

fj [M;(0)GOM; (6)] = € (6) © Muo(6) © G + O(mn™) + O(m ™22,

1
m

and (i) of (6) follows with
=(d) = det(Re[€ (0)] ® Moo (6) ® GO),

because the determinant is a continuous function of each element and £ (6) , M (6),

and GO are finite for § € ©;.
For (ii) and (iii) of (6), since we can rewrite £ (f) = ££* with € = (e=7™01/2 ... ¢~ 0a/2),
Re[€ (0)] = Re (§67) = Re[¢] (Re [¢])" + Im [¢] (Tm [¢])', (9)

and it follows that Re [€ (6)] is positive semidefinite. Since M, (6) and GO are positive
semidefinite, Re [€ (0)]® Moo (0) is also positive semidefinite (Liitkepohl, 1996, p.152).
It follows from Oppenheim’s inequality (Liitkepohl, 1996, p.56) that

q

> ]:[ (Re [€(0)] © Moo (0)) 4 det(G) = [ [Moo(6)],, (det G°) = B(d),

a=1

—_
—
—

giving the second part of (6). (iii) follows because Z(d°) = det(M(0)©G?) = B(d°),

since all elements of £ (0) are one.
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We move to bound the second probability in (5). Observe that

q m
S(d) = logdet G(d) —logdet G(d°) —2 fu— > log A;
a=1 j=1

1 & _ _ " 1Ak —
= logdet — 3 Re [45(0) 1A (@) LA ()T A (0) 7

j=1
q 1 m .
-2 Zl Oo— Zl log \j — log det G(d°)
a= Jj=

= logdet D(d) — log det D(d°),

where
1 m — * — >k
D() = — 3 Re[P(O)A;(d) A ()P} 0)].
j=1
Pi(0) = diag(¢! %2 (j /p)’),
p = exp (m_l Zlogj) ~mje, asm — oo.
1

Since log x is a monotone increasing function of z, Pr(infe, S(d) < 0) — 0 follows if

Pr(infe, det D(d) — det D(d°) < 0) — 0 as n — oo. (10)

For a g-vector W;, we can write down each summand of ﬁ(d) as

Re[P;(0)A;(d°) " ;A (d%)~ Py (0)]
= Re[W;W}] = Re[W;](Re[W;]) 4 Im[W;](Tm[W}])’,

which is positive semidefinite. Thus ﬁ(d) is a sum of m positive semidefinite matrices.
Define

Then, it follows from Liitkepohl (1996, p.55) that, for any x € (0, 1),

det D(d) > det Dy (d). (11)
Define
1 . )
K.(d) = — di i(Nj—m)0a/2¢ ; O GO di —i(X\j—m)0a/2( ; 04 )
(d) mj:%:m} Re |diag (¢ (j/p)’*) G° diag (e (i/p)")]

The (a, b)th element of Dy (d) — K, (d) is

m -\ Oa+0
-z > Re [ei(’\j”)(gaeb)ﬂ (j) ' (ei“ﬂ'“)(dgdg)/Z/\jg+dgwaijj - ng)]
™ j=lem) b
0a+0y 1 m i\ Oat+0y . 0, 40
_ (7;1) Re [ 3 (Tﬂn> i) (0a—00) /2 (ez()\j—ﬂ)(dg—dg)/Q)\ja+dbwangj _ ng)
j=[km]

12




From summation by parts and Lemma 7.1, this is bounded by, uniformly in § € ©9,

C(e+o(1)) ’”2*:1 (r)—2 =

r

i —m)(d0—d0) /2 y da+dy x 0
3 (e< LG EINL S Sy )

2
r=[km] m " j=[rm]
| &/ atdy
DO (e e N | e
j=lxm]

It follows that, for any x € (0,1),

supg,

det D,.(d) — det K,{(d)‘ =o0p(1), asn— oo
We proceed to derive the lower bound of K,(d) for d € ©5. Rewrite K, (d) as
K,(d) =Re[€ ()] © M};(0) © G°,

where a positive semidefinite matrix M}, (6) is defined as

m

ME (0) = Re[Z,Z;]. 2y = (eMO2(i/p), - 02 (i fp)f) .

1
M o]

Fix € € (0,0.1). Then, in view of (9), Oppenheim’s inequality, and Lemmas 7.4 and
7.5, there exists & € (0,1/4) such that, for sufficiently large m and all x € (0, &),

0 q 1 m ] 20,
inf det K, > inf — =
inf det Ki(d) > detG inf al:[l — _z: <p>

j=[rm]
> det GO(1+2¢)(1 — k?2)771 +0(1).
Choose & sufficiently small so that (1 4+ 2¢)(1 — x22)7~1 > 1 + €. Tt follows that
infe, det D, (d) = infe, det K, (d) + 0,(1) > det G°(1 + &) + 0,(1).
From the results for d € ©1, we have det D(d°) —p det GO as n — oo. Therefore,

Pr(infe, det D, (d) — det D(d°) < 0) — 0 as n — oo,

and (10) follows in view of (11), completing the proof. M

6.2 Proof of Theorem 4.1

Theorem 3.1 holds under the current conditions and implies that with probability
approaching to one, as n — 00, d satisfies
) (d—d°).
d-

N d?R(d)
&0 dddd’

where ||d — d°|| < ||d — d°||. d has the stated limiting distribution if, for any ¢ x 1

vector 7, as n — o0,

_ dR(d)

0 _ dR(d)
~ dd

s dd

rm R@[ OR(d) ,

vl ;na\/ﬁ B, | N1, (12)
d?R(d) _ 0 1 T -
daad |[; = v 0=l Eeld) + (o) 1))

13



6.2.1 Score vector approximation
First we show (12). Observe that

OR(d) 2 & A
ad. ——\/HZIOg)\]—i—tr

v G(d)" i

dG (d)
dd, |-

Let i, be a ¢ X ¢ matrix whose ath diagonal element is one and all other elements are
zero, and let A} denote A;(d”) in the following. It follows that

8é(d) B 1 ‘ )\j—ﬂ'. 0\—1; 7 /AOx% —1:|
L m R ' Aj,ﬂ', AO 71]'» AO* —1
+ mz (§] 7 2 ? ( j) ]Za’( .] )
j=1
1 & : ; )=
_ TnzlogA Re [(A?)‘1 (ialj + Ljia) (A) 1}
j:l
Z T [(A) ™ (il — Lia) (AY) ']
— Hla + H2a-

Therefore, >-2_ | n,v/m(0R(d))/(ddy)| 40 is equal to

zq:na{ \FZIOg)\ +tr{@(d0>_1H1a}}+Z7ya{tr{ (@) HQH

a=1
= Ri+ Rs.

We proceed to find an approximation of Ry and Ry. For R, define
Gy = log Aj Re | (AY) 1 1;(A)~
S| ],

so that Hiq = i4G1+ Ghig. It follows that, with vj =log\j—m 1Y " log \; = log j—
m~' 31" log j = O(logm),

) . _
—\F;logx\ + tr {G <d0> 1Hla}

= 2ymtr l@l(do)

~ 1 ™ ~ )
G- — zljlog )\jG(dO)] za]

— otr él(do)lmf:yjm (AN LA z]
= (0" 0p(1) —= Doy {Re [(AY) 1 (a0} (14)
j=1

where g% is the ath row of (GY)~! and {A}, denotes the ath column of matrix A.
Observe that

1
vm

ZVJ 1] AO*)

J=1

14



- vaJ[AO LA L AT (AF) T = 6]+ 0y(1) = 0,(1), (15)

where the first equality follows from summation by parts, Lemma 7.1 (bl), and
> 1"v; =0, and the second equality follows from E[(Ag)_lA()\j)IEjA*()\j)(A?*)_l] -
G° = 0(j°n=P), Cov(Iej, I.k) = O(1) if j = k and O(n™!) if j # k, and 7" v3 =
O(m). It follows that

—1) + 0,(1).

a

2 U m . | * .
:M;na;w (g {Re [(AD A I 4* (1) (A ]}

The first term is equal to

Z%Zw<“{ [AO) ( zetet>m A HQ

Z%Zw( {

t#s

The first part is 0,(1) because E|[n~' 7, g6} — I|| = O(n~/?) and Assumption 1/

imply that
}i:: ( { ( Zatst>A* (A% }a_1>
_ \Fi ( { ( Z&q)A*(Aj)(A?*)_I} 1)
_ZVJ ({rosr BT Bhag ) ) |
- Op(ml/%fl/zlogm)+O(mﬂ+1/2n,glogm)' N

The second part can be rewritten as

n t—1 m
Z&f;ZRe[@t,s]gs’ — 7T\/>n -1 Zl/] |: —itA; + Q/ i)\ :| (17)
t=1 s=1

J=1

where €; is defined as
Q, = Z Na {A"OG)AT) ] 9" (AN AR, (18)

Rewrite S°7 ;¢ 021 Re [@;_4] &5 as

n t—1 1 m
;E; 2 {W Z_: vjRe [Qj + Q;] cos(t — S))\j} Es

n 1 m )
—I—ZSQZ{W\/mn;y]Im{ Q;} sm(t—s))\]}ss.

15
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The second term is o,(1) because its second moment is equal to

n—1ln—t m

an Z Z ZVQtr{(Im {Q - Q'D/Im [Qj - Q;} } sin?(s))
t=1 s=1j=1

n—1n—t

n2 SN Z > vjvktr { (Im {Qj - Q;DI Im [Q — Q] } sin(sA;) sin(sh9)

t=1s=1 j#k

This is o(1) from Im[2;] — 0 and Lemma 7.7 (c) and (d). Therefore, we can rewrite
Ry as

-1
n t 1

Ry 226£Z@t_353+0p(1); O; =
t=1 s=1 ﬂfn

Zl/] Re [Q +Q } cos(sA;).
We move to Rp. An argument similar to (15) and (16) gives
Z II (AO*

and

2 (o o000 () ot ) o

Therefore, Ry is equal to

T 2D TTAC) LA () (AF) T 0p(1) = Op(L),

™
vm ot

(Ag)) (27Tn Zzg 6/ i(t—s) >A*()\])(A9*)_1

} ) + 0p(1)

a=1 j=1
T n t—1 N 1 m N
= 35 > el Im[®_]es + op(1), = (my/mn)" > { —HA 4 Qe } :
t=1 s=1 7j=1

where Q; is defined in (18). Rewrite (7/2) Y0 & 202 Tm[®,_ e as

gisgg{wlip@[ Q; —|—Q}sm( s))\j}es

t=1 s=1 mn i
T n t—1 1 m [ }

+-) e > Im [Q + Q| cos(t — s)A; ¢ e,
24 o | mVmn j=1

The second term is o,(1) from an decomposition similar to (19), Im[Q2;] — 0 and
Lemma 7.7 (a) and (b). Hence, we can rewrite Ry as

n

t—1
Ry = "N Oy_ges + 0p(1); O, Re |—Q; + Q| sin(s\;).
EOIEPILTERL anz e [~ + )] sin(s)))

It follows that, with z; = 0,

t—1

Z zZt + Op 2t = 57/3 [@tfs + étfs] Es-
do s=1

Z\F
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By a standard martingale CLT, (12) follows if

n q q
S EEF-1) = >0 namQa — 0, (20)
t=1 a=1b=1
n
S E(#I(|lz] > 6))—0 forall§>0. (21)
t=1

Following the argument in Lobato (1999, pp. 149-51), we obtain ||©]|, ||Os| =
O(n~'m'/2logm) for 1 < s < n/2 and ||0,]|,]|0s]] = O(m~/2s " logm), and As-
sumption 1 implies that ; = O(1). Therefore, Lemmas 2 and 3 in Lobato (1999)
hold for ©, and O, defined in this paper, and Lemma 4 of Lobato holds for 2; defined
n (18). Hence, we can apply the arguments in Lobato (1999, pp. 142-43) to show
that (21) holds. For (20), from the results in Lobato (1999, p.142 and Lemmas 2 and
3), we have

n n t—1
S EEIF) =33 [0+ 61 [0 + 6] +0,(1).
t=1 t=2s=1
Now
n t—1 N _
tz;g (6101 + 61,60

n—1ln—t m

= 772mn2 ZZZV tr{(Re {Q +Q’D,Re {Qj—i-Qﬂ}cosZ(s)\j)
t=1 s=1j=1

n—1n—t

7r mn2 Z Z ZZ vvtr { (Re [Q + Q/D’Re [ + Q] } cos(sA;) cos(sAg)
t=1s=1 j#k

n—1ln—t m

o 2 33t { (e [0+ 8]) e [0, e
t=1 s=1j=1

n—1n—t

7r2mn2 SN Z S tr { (Re [ Q; + Q’D/ Re [—Q + Q] } sin(s\;) sin(s\g).

t=1s=1 j#k

The second and fourth terms are o(1) from ©; = O(1) and Lemma 7.7 (b) and (d).
For the first and third terms, observe that

{ tr {(471'2)—1 Re [Q’] Re[ ]} — 22 1 Zb ) naanab(G )balv (22)
{

r (471’2)71 Re[ }_> 2Za lnaa

as A\j — 0. It follows that

M=
M=

tr {(4772)_1 (Re {Qj + Q;-D/Re [Qj + Q;H — 2 naangb(GO);} +2 zq: n?,
a=1

Il
—
o
I
—

a

M=
MQ

tr [(47#)1 (Re [-9; + Q;.D' Re [-9; + Q;H — 2 NGO (GO — 2 Z 2,

a

Il
—
o
I
A
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as Aj — 0, and the sum of the first and third terms converge to 37 >\ 1,1,
in view of Lemma 7.7 (a) and (c). Finally,

n t—1
;X
>y 6.
t=2s=1

n—1ln—t m

= 5 Z Z Z v tr { (Re [Q + Q/D,Re [—Qj + Qﬂ } cos(sA;)sin(sA;)

t=1 s=1j=1

n—1n—t

7T2mn2 22 Z D vitr { (Re [Q + Q/D/ Re [-€ + 2] } cos(sA;) sin(sAg).

t=1s=1 j#k

The first term on the right is zero because tr{Re[€2; +Q}]}'{Re[~€2; +Q;]} = 0. Since
Q=30 1 n{H }og"H + O(m®n~%), the second term on the right is equal to

n—1n—t

m Zmz v;O(m%n~?) Z Z cos(sA;) sin(sAg)
i~k

t=1 s=1

= 0 ( o alogmzz (] +k ; i l<:|>) =0 (man*a(logmﬂ) =o(1),

from Lemma 7.7 (d). Therefore, Y /", Zi;ll [G)t_s+(:)t_s]’[@t_s+(:)t_s] — > > M Qab
and (20) follows.

6.2.2 Hessian approximation

Define # = d — d°. Fix ¢ > 0 and let M = {d : (logn)*|d — d°|| < e} = {0 :
(logn)4]|0|| < €}. First, we show Pr(d ¢ M) — 0 as n — oo. Using the notations in
the proof of Theorem 3.1, infg \ 5 S2(d) is bounded as

infg,\ar S2(d) > e2(logn)®/6.

By applying Lemma 7.1 (b2) to (8), we strengthen (i) of (6) to

supg, |A(d) — E(d)| = Op(mPn=" + m= 2 logm +m~2Plogm + m™% + mn™1).
It follows that, uniformly in ©1,
E(d) — B(d) + op((logn)~®)
= 1 1
S1(d°) = log (1 + 0p((log n)*S)/B(dO)) ,

and since Z(d) — B(d) > 0 and infg, B(d) > 0 we obtain

Pr (infe, s [S1(d) — S1(d”) + Sa(d)] <0) =0, asn — oo,
Therefore, Pr(d ¢ M) — 0 as n — oo follows.

Observe that
O2R(d) o 0G(d) &y, OG(d) A, . 92G(d)
=tr |-G '(d G (d G 23
ddgod, D d, ¢ Daa, ¢ Vo504, (23)



The derivatives of G(d) are given by

dG(d) 1 & A=\ 1 e
ad. = mZReKlog)\j—H 32 >ZaAj(d) 1IjAj(d) 1}

j=1
and
*’G(d) —iRe (10 A+ it )2iz’A'(d)_1I-A*(d)_1
dd,od, = &7 albl\; i
m i L 2
+%ZR6 ((log)\j)2+()\J 4”) )iaAj(d)_lle;(d)_lib]
j=1 L
m B L 2
—i—%ZRe ((log)\j)2+ G I ) )ibAj(d)lle;'f(d)lia]
j=1 L
1 & | : 2
+EZRG <log)\j — i W) Aj(d)_lfjA;(d)_liaib‘| .
j=1

Define, for £k =0,1,2,
Gi(d) = m™' S (log \y)* Re [A;(d) " LA (d) ],
Gr(d) = m~ 'S (log A)F T [A;(d) " [;A(d) ]

Then it follows that

0G(d N N B B
ac; ) _ 1aG1(d) + G1(d)ia + (7/2)iaGo(d) — (7/2)Go(d)ia + 0p((logn) ™),

9?G(d A L

3da6(dz = iq0pGa(d) + 1,G2(d)iy + ipG2(d)iq + Gao(d)igip

+(7?/4) |~iaisG(d) + 10 G(d)is + 1sG(d)ia — G(d)iai]
+7iqi,G1(d) — 7G1(d)iaip + 0p(1),

where the order of the reminder terms follows from summation by parts, >>%_; A; (d)~'I A (d)y~' =
O,(r), and Assumption 4. We proceed to show, uniformly in d € M,

Gr(d) = GOm™ 3271 (log \j)" + 0p((logn)*2),  Gr(d) = 0,((logn)*2).  (24)

The assumption m~7logn — 0 is necessary here, because the terms with G1(d) do
not cancel out even if we take the trace of G~1(d)(9%>G(d))/(dd,0dy). Define

Fy(d) = m™" 337 (log Aj)"A;(6) "1 GOAS(0)
then (24) follows if

supgeyr [m ! S (log Aj)* [A5 () A ()| = Fuld)]| = o, ((logn)*2)(25)
supdeMHFk(d)—Gom_1 Tzl(log)\j)kH = o((logn)*=2). (26)
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We show (25). The (a,b)th element of the left hand side of (25) is equal to

. . 0 0
-1 > (log )\j)kez()\jfﬂ)(GGbe)/Q)\?a—‘r@b ez()\jfw)(dgfdg)/Q)\;laerbwaijj _ ng} ‘

Define b,,;(6) = (log \;)*eiri—m)(0a _95)/2)\0“+9b then it follows from the summation
by parts that the above is equal to

- m— r i ) (d)—d? dg+dy *
ML b (6) — by (0)] 1_1[ Oy=m(de—d)/2\ % wajwbj—agb}m

m z Aj—m)(dd—dd dg +dy *
+m- nm( )Z (da=d )/2)‘ ‘w ajWp; — ng .

Since (log A\)¥ = O((logn)¥), (log \,)* — (log Ary1)F = O(r~1), Met® = 0(1),

Aﬁa“‘eb_)\ﬁi'il'eb _ O(T_l), et —m)(0a—0p)/2 — O(1), and €' (Ar—W)(Qa—Gb)/Q et Arp1=m)(0a—06)/2 —

O(r~1) uniformly in # € M, we obtain
byr(0) — b1 (0) = O((logn)*r™1),  bum = O((logn)¥).
In conjunction with Lemma 7.1 (b2), we have
27 = 0O, ((log n)kwf1 m (rﬁn*ﬁ + 7“*2/3(10g m)z/3 +rtlogm + r’l/Q))
— 0, ((togm)* (mn "+ m=21*(10gm)/* + m~!(tog m)? + m~1/2))
= 0, ((logn)*2),

giving (25).
We move to the proof of (26). The (a, b)th element of the left hand side of (26)
is equal to
m-! Z;’nzl(l‘)g )\j)k [ei(xj—w)(ea—ob)/z/\?ﬁeb _ 1} ng

Since, for 0 € M and 0 < \; <1,

NI —11/10q + 0] < |log Aj|n%F1%l < (logn)n'/ 18" < C'logn,  (28)
it follows that
ei(Aj—w)(Ga—Gb)/Q)\?a-i-Gb -1 = (ei(Aj—T()(ea—eb)/Q _ 1))\?a+6b + (/\?a""eb _ 1)

C (164] + 10]) + C(|6a] + |05]) logn = O((logn)~3).

IN

Therefore,
m~1 i1 (log A )k { g jf”)w“*e”)ﬂ)\?ﬁrab — 1} G% =o ((log n)kiZ) )
giving (26).
Define G, = iaG" 4+ GYq, GY,, = 1aisG° + 1aG%p + 1sG%q + GYqip, and GY,, =

—iqipGO + .Gy + i, G% 4 — G4iy. Tt follows from (24) that

G (d)(0G(d)/9da)G (d)(0G(d) /Ody)

0 17— 0 -1
= {G + 0p((logn)~ )} [m 71 (log Aj) G, + 0p((logn) )}
—1
x [GO+ op((logn) )| [m ™! S (log 1) G, + 0p((logm) )|

> <1ogA>ﬁ<ao>—1@9a+<GO> 1G] + 0p(1),
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and
G~1(d)(0*G(d)/0daddy)

=[G+ 0p((togn) )] [ I (log 1)) G+ (72/4)Cs + 0p(1)]
= Y (0g X)X (G0) Gy + (72 /4)(GY) T Gyt 0y ).

Since tr[(G°)'GY,(GO) 71 GY,] =tr[(G0) 7' GY,,) and m ™! > i (log Aj)2—[m~t > (log A2 —

1, we obtain

82R(d)
8d,0dy

= tr [(G*) 7' Gy + (72/4)(G) 1G] + 0, (1),

3) follows.

~

(1
G(d) —, GO follows from (24) and Pr(d ¢ M) — 0 as n — oo, completing the
proof. W

7 Appendix B: technical lemmas

Lemmas 7.3 and 7.4 are from Shimotsu and Phillips (2003, Section 5). They are
given for the convenience of readers and are to be removed from the final version.

7.1 Lemma

(a) Under the assumptions of Theorem 3.1, as n — o0,
maxz < Aj=m)(da - do)/Z)\d atdy P Wajwy; — ng> = op(r)+0p(r1/2 logm), 1<s<r<m.
(b) Under the assumptions of Theorem 4.1, as n — oo,

(1) maxze I 2NEE (g — Au(0) 45 (V)
= Op(r 1/3(10g7“)2/3+logr+rl/2n_l/4)7 l<s<r=m
= Op(rﬁle B4 3 logr)¥? +logr +7Y?), 1<s<r<m.

7.2 Proof

Decompose the term inside the summation as Hyj + Haj; + H3j;, where

i(Nj—m)(d0—d? dg+d0 * *

Hy; = e!i—m)(da db)/2/\j b{wajwbj—Aa()\j)IejAb ()‘j)}
PO — ) (d0 — d%+d?

Hyy = O d)2\ 0 (A, () I Af (A) = Fan(N)]
. 0 0

Hz; = 61(Aj_ﬂ)(d2_dg)/2/\ja+dbfab()\j)—Gglﬂ
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where A, ();) is the ath row of A(\;) = 372 Are* and Aj();) is the bth column
of A*(\;). We prove part (a) first. Assumptlon 1 implies that, for any n > 0, n can
be chosen such that

. 0 0
Héa'bx €Z(Aj_ﬂ—)(d2_dg)/2>\;la+db fab(Aj) - ng < m, ] = 17 U

and maxgp Y ;s [Hsj| = o(r) follows. For the contribution from Hij, from the proof
of Theorem 2 of Robinson (1995a) (also see Robinson (1995b) p. 1673) we have

El = fi{1 + O(j~'log(j + 1))},
Bwgjwl; = Aa(A )/27T+O('_1log(j+1))\;d“), j=1,...,m. (29)
El.; = I,/2m + O(j log(j + 1)),

Rewrite Hy; as
i(A;—7)(dd—d9 dg+dy) * Ak
=M= )2 XD f [y — Aa (g )weg) wiy + Ay )we; [wi; —wl A7 (49)] -

The Cauchy-Schwartz inequality gives

d+d? *
BN [waj — Aa(Aj)wej] wy;

2d0 1/2 2d0 *
< (E>\j “|waj — Aa(Aj)weij) (E)‘j bwbjww')
(

From (29), Aa(A))A5(A;)/27 = faa(X;), and A “ faa(Aj) ~ GY

aqs We have

B g = AaNwl® = 25 fua(A)}{1 + O~ og(i + 1))}
_2A§d2faa<)\j){1 + O(jfl IOg(j + 1))}
= O(j 'log(j +1)).

E)\?dgwbngj = O(1) follows from (29), hence (31) is O(5~'/?log(j + 1)). The second
term of (30) is bounded in the same manner, and we obtain maxgp E;ZS Hy =
O,(r'/?logm).

For the contribution from Ha;, as in Lobato (1999, p.148) use I.; = (27mn) 1 (3] ere)+
DD st 56! =DX) to rewrite >ies Haj as

i) (d—d2)/2 L g (Ao I8N
et =m)( v)/ %Z:)\j b Au( g; eiey — 1) Ay () (32)

1

Oy AN AT 4, (0
+e Z -

SN et ) A (). (33)
sF#t

(32) is op(r) because

"L @040
Z)‘ja+ bA — 5t5t (/\j)

n T 0 0
- z (ere) — 1) SOATT 0 A7 (A) Aa(Ny)
t: j=s

IA

. dO4+d0 | .
L)X 145 () AaO)

j=s
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n~t 3 (e} — I,) —p 0 from Theorem 1 of Heyde and Senata (1972), and

* * 7d2.7d0

145 (A7) Aa)I < 14 (A7) Aa(N)lly < (1A, AN N1 [[Aa(As)lly = O ).
by Cauchy-Schwartz inequality, where || - ||2 denotes the Euclidean norm. For (33),
note that (33) is bounded by

Z)\d +dbA ( 2286615 t))\) ) Zzgtit sEss

s#t s#£t

where .
—_ 1 d2+d0 (s—t)N\: *
=t = Gy 27 " Aa(g)e' TN AL (V).
j=s
32 D54t €451—sEs has mean zero and variance 3 3, sy vec'=;svec'Eysvec'SE;_ = O(r)
in view of the arguments in Lobato (1999, p.148). Therefore, 373, ;€15 s&5 is
O, (r'/?), giving part (a).

For part (b), (b1) holds because max, ;3 Hij = 0, (r'/3(logr)?/3 4+ logr +
71/2n=1/4) which follows from applying the proof of (C.2) in Lobato (1999). For (b2),
we have max, >, Haj = 0,(r'/?) because (32)= O,(r'/?) since n=' 31", (g4} —
I,) = Op(n~/2) from Assumption 2’ and (33)= O, (r'/?) still holds. Assumption 1’
implies max,p > i, [Hz;| = O(r’nF), giving (b2). M

7.3 Lemma (Shimotsu and Phillips, 2003)
For k € (0,1), as m — oo,

1 & J)7 /1 7y -1
— =) - dz| =0 ,
R R
" Sup. o ™ i /m)] = O 1)
liminf,, . inf_c< <o |m > fem) (/M) > € > 0.

7.4 Lemma (Shimotsu and Phillips, 2003)

For p~m/e as m — oo, € € (0,0.1), and A € (0,1/(2¢)), there exists k € (0,1/4)
such that, for sufficiently large m and all fized k € (0, ),

m

Z = — Z) >
(@ —c<w< 1424 M, mo e ( ) 21+ () 1§Hvl£c m j%:m] (p> Z 1+ 2.

7.5 Lemma

For p~m/e as m — oo, € € (0,0.1), A € (0,1/(2¢)), and k € (0,1/4), we have, for
sufficiently large m,

: RSN 24
inf — =) >1-r“"40(1).
—142A<y<t m <= \p
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7.6 Proof

It follows from Lemma 7.3 that

PO - EE Q- Lo -

Krm

The stated result follows because €7/(y+1) > 1 for y € [-1+2A,1]. &

7.7 Lemma

For j,k=1,...,m with m = O(n), as n — oo,

(a) ? 11 1COS 2(sj) = (1/4)n® + o(n?),

(b) B Z” ! Cos(S/\ Jcos(sAk) = O(n), j#k,

(c) ? 11 1Sm 2(sAj) = (1/4)n? + o(n?),

(d) . Z” 18111(3)\ )sin(sA\g) = O(n), j #k,

(e) ? 11 “1cos(sAy)sin(sAg) = O(n*(j + k)~ +n?lj — k7Y, j# k.
7.8 Proof

Robinson (1995b, p 1645) shows that 11 S2"2 cos?(sA;) = (n—1)2/4, X1 32"  cos(s);) =
—n/2, and Z?:_ll 1 cos(sA;) cos(sAy) = —n/2 forj,k=1,....m< %n,j # k, giv-
ing parts (a) and (b) Part (c) follows from

n—1n—t —1n—t 9 9
sin? (s\;) 1 — cos? sh) b = (n—l)(n—Q)_(n—l) _n (1+o(1)).
E L) = 3 {1 —eofton) = 4 ’

Part (d) follows from

n—1n—t n—1n—t
2 Z Z sin( s)\ )sin(sAg) = Z Z {cos( SAj— k) — COS(S)\j+k)} O(n).
t=1 s=1 t=1 s=1

For Part (e), first observe that 2 cos(s\;) sin(sAg) = sin(sAj4x)—sin(sA;j_). Robinson
(1995b, p. 1645) shows Y i_; sin(s\) = [cos(A/2) — cos((r + 1/2)N)]/(2sin(A/2)) for
A # 0, mod(27). The stated result follows from 1/(2sin(\/2)) = O(|]A|7!). &
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