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Abstract

This paper considers various AK models to investigate inference about the

relative price between consumption and investment using NIPA data. We find,

that depending on the model used, we can legitimately generate different time

series for this price. If we successfully construct a falling price of investment,

the model implies an inadmissibly low share of consumption in output. If we

use an admissible share of consumption we generate investment prices which

increase over time, contrary to the intuition generated by the price of equipment

goods.
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1 Introduction

A key fact to have emerged from U.S National Income and Product Accounts (NIPA)

data is that the price of equipment investment goods has fallen dramatically in the

past 30 years relative to the price of consumption non-durable and services. Changes

in this relative price are important because of its role in the decision to postpone

consumption, thereby impacting on capital accumulation, the growth rate of output,

and future welfare. Accordingly, the literature has devoted significant attention to

this relative price.1 In particular Greenwood, Hercovitz, and Krusell (1997) develop a

model of capital embodied technological progress in equipment goods, where relative

prices are determined by sectorial differences in the rate of technological progress.2

Equipment prices, however, are but one component of the broad intertemporal

price relevant for the determination of aggregate savings and capital accumulation.

This broad price is not just a measurable quantity but its relevance depends on the

model one has in mind. Felbermayr and Licandro (2005), building on the framework

proposed by Rebelo (1991), show that a two-sector AK model is consistent with

several important characteristics observed from NIPA data. In particular that of a

falling relative equipment price and real investment growth exceeding consumption

growth.3

This paper uses a number of alternative AK models as a convenient tool to extract

predictions for the relevant relative prices. Each model is used as a filter that takes

quantity data as inputs to predict prices. The emphasis is therefore not on testing

the models but rather on evaluating the inference induced by them. Very different

outcomes for these predicted prices can be obtained, depending on the model as-

1See, for example, Chari, Kehoe and McGrattan (2001), Fisher (2003), and Whelan (2003).
2They briefly discuss issues related to this paper but they do not address our main question. In their
model relative prices are assumed rather than inferred.

3Fatas (2000) and McGrattan (1998) also show that AK models match other features of the data.
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sumptions and on the exact quantity data used to generate them. This suggests that

inferences regarding the intertemporal trade-off, based on prices computed directly

from the data, can be misleading.

We first consider a one-sector AK model that produces output using a linear pro-

duction function, where output can be divided into consumption and savings. Savings

are in turn transformed into investment via another linear production function. Both

production functions are subject to specific technology shocks. The model is solved

analytically and NIPA data is used to obtain a unique time series of the two shocks,

such that the model exactly fits the data. These shocks are then used to construct the

single relative price in the model. If quantity data for consumption is used an increas-

ing price of investment relative to consumption is obtained. If investment quantity

data is used, a relative price that falls across time is obtained. This relative price

is the inverse of the technology shock from the savings technology. Both approaches

are legitimate. However even if investment quantity data is used to generate a falling

investment price, this comes at the cost of an inadmissibly low real consumption

share.

Given that the relevant economic prices depend on the model, different models will

yield different results. This is examined by considering a two-sector AK model studied

by Felbermayr and Licandro (2005). In this model one sector produces consumption

goods using a concave technology, and the other sector produces investment goods

using a linear technology. Since investment goods are then used in both sectors, the

model predicts that consumption will become more expensive as capital accumulates

in the economy. Thus the declining price of investment, is not fundamentally a result

of technological progress, but rather a result of the asymmetric sectorial impact of

capital accumulation. This model is also biased towards this relative price outcome

because it only permits the use of investment quantity data to construct the shocks
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needed to predict prices. However both of these bias fade away as the production

technology for consumption becomes linear, such that the model converges to the

one-sector model, where the relative price is determined by exogenous technology

changes in the investment sector.

The final exercise in this paper considers a three-sector model in order to decom-

pose investment into equipment and structures. Here the relative prices observed

directly in the data can differ from those implied by the model, such that a differ-

ent view of the intertemporal significance of equipment prices can be obtained. In

addition, this disaggregated model is used to highlight one final issue: in general,

aggregate output is not uniquely defined, such that the inference crucially depends

on how one chooses to define it. This is a problem related to the construction of

indices for real aggregates in NIPA data.

The next section revisits the one-sector AK model and discusses the main prob-

lems in obtaining the predictions of such models. Section 3 considers a two-sector

growth model and Section 4 examines the three-sector AK model to study the impact

of different capital goods on the broad relative price. An appendix details the index

algebra used to construct consumption, investment and output variables from NIPA

data. Section 5 concludes.

2 A One-sector AK Model

2.1 Model Outline

Consider the following one-sector growth model.4 Utility of the representative agent

is maximized subject to a resource utilization constraint where aggregate output is

4For this economy, the solution to the planner’s problem coincides with the market solution, because
all markets are assumed to be perfectly competitive.
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divided between consumption and savings, yt = Atkt = ct + st. Production is of

the AK form, where At is an intratemporal technology shock. There is also an

intertemporal technology that transforms current savings into investment, It = θtst,

which is summarized by the shock θt. An increase in θt constitutes an increase in the

efficiency of the intertemporal technology. Capital accumulation obeys the following

law of motion:

kt+1 = (1 − δ) kt + It, (1)

where capital depreciates at rate 0 < δ < 1.

The problem of the planner is to choose an investment path to maximize the sum

of the present value of expected utility flows

E0

∞
∑

t=0

βtU(ct),

subject to the resource utilization constraint

ct = Atkt −
It
θt

= Atkt −

(

kt+1 − (1 − δ)kt

θt

)

. (2)

Given a discount factor 0 < β < 1, and solving with respect to kt+1, one can obtain

the Euler equation of this economy:

u′(ct) = θtβEt

{

u′(ct+1)

[

At+1 +
1 − δ

θt+1

]}

. (3)

With logarithmic utility the dynamic programming problem can be solved analyti-

cally. The policy function for this model is then given by:

kt+1 = β [θtAt + (1 − δ)] kt. (4)
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Using the resource constraint (2), the policy function (4) and the law of motion for

capital (1), it is straightforward to obtain the consumption share and the growth

rates for consumption, output and investment:

ct
yt

= (1 − β)

[

1 +
(1 − δ)

Atθt

]

(5)

ct+1

ct
=

βθt

θt+1

[At+1θt+1 + (1 − δ)] (6)

yt+1

yt

=
At+1

At

β [Atθt + (1 − δ)] (7)

It+1

It
= β [Atθt + (1 − δ)]

[

βAt+1θt+1 − (1 − β)(1 − δ)

βAtθt − (1 − β)(1 − δ)

]

. (8)

2.2 Recovering the Shocks

The task now is to obtain the shocks At and θt. Here, since the aim is to infer relative

prices, quantity data is used to enable the model to predict the prices. It is important

to be clear from the outset that the model data and the actual data are treated in

exactly the same way, through employing a Fisher chain-aggregation approach.5 The

construction of chained-type quantity indexes, for both the actual and model data,

avoids the well-known substitution bias inherent in fixed-based quantity indexes.6

In terms of the model, the time series for θ can be interpreted as the relative price

between investment and consumption (PI/PC). This follows from equation (2) where

along the resource constraint the trade-off between consumption and investment is

given by

∂c

∂I
= −

1

θ
.

5Appendix 6.1 contains details of the construction of the variables.
6See for example, Whelan (2002, 2003) and Fisher and Shell (1998).
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However given the setup of the model there are two alternative ways to construct the

shocks. Consumption share data can be used to obtain {θt, zt} or instead investment

growth data can be used to predict the implied relative price.7

First suppose that θt and At are constructed using data series for output and

consumption. Using equations (5) to (7), it is straightforward to obtain an expres-

sion for the growth of θt which depends on consumption growth and the share of

consumption:8

θt

θt−1

=

ct

yt

ct

yt

− (1 − β)

β (1 − δ)
ct

ct−1

(9)

Starting from an initial value of θ = 1, the series for θt is constructed by iterating on

equation (9), using the data on ct and yt described below in Appendix 6.1. Figure 1

depicts the first 30 observations of the series {θt} for the parameter values β = 0.94

and δ = 0.1, which shows that the computed series starts at 1 and falls geometrically

from then on.9 This outcome is very robust to variations in β and δ and data manip-

ulations on how the quantity index for the real consumption share is constructed.10

However the finding that the price of investment goods is growing faster than the

price of consumption goods is at odds with the data depicted in Figure 2. Here the

corresponding relative price measured in the data shows a clear fall in the investment

price relative to consumption, from the normalized value of 1 in 1950 to around 0.45

in 2004. Therefore, the relative price prediction of this model is misleading.

7Nevertheless, as Ingram, Kocherlakota, and Savin (1994) show, with two shocks the model can never
be rejected.

8Given the series obtained for θt, the time series for the shock At is obtained using equation (5).
9The At shock grows exponentially. The product of the two, Atθt, is stationary.

10As discussed in Appendix 6.2.2, there are alternative ways to construct the real (c/y) share using
quantity indices. However this does not qualitatively affect the series for {θt} that is recovered.
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Figure 1: θ shock obtained using consumption data
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Figure 2: Relative price (PI/PC) from actual data
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Figure 3: θ shock obtained using investment data

Alternatively, now suppose that the shocks At and θt are constructed using data

series for investment. Here the growth rate of investment can be used to compute

the product Atθt.
11 After obtaining Atθt, At+1/At is computed using the growth rate

for output, equation (7). Once the time series for At is computed,the time series

for θt can be recovered, which is depicted in Figure 3. By inspection, the θt series

obtained using investment data is very different compared to the series constructed

using consumption data. In addition since θt is increasing this implies that the time

series for At has a downward trend, since their product is stationary.

However, obtaining the shocks this way has one important strong implication: the

consumption share implied by Atθt, constructed from

ct
yt

= (1 − β) + (1 − β)
(1 − δ)

Atθt

has a mean of 0.3173 with no apparent trend. This value of 32% is interesting.

11It+1/It is stationary so Atθt is initialized at the value implied by the mean of It+1/It and iterated
on equation (8).
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Imposing a constant consumption share χ on equation (9),

θt

θt−1

=

ct

yt

ct

yt

− (1 − β)

β (1 − δ)
ct

ct−1

=
χ

χ− (1 − β)

β (1 − δ)
ct

ct−1

stationarity of θt is achieved around χ = 0.33. At χ = 0.34 the θt series clearly falls.12

When θt is constructed using consumption share data:

θt

θt−1

=

ct

yt

ct

yt

− (1 − β)

β (1 − δ)
ct

ct−1

=
yt−1

yt

ct−1

yt−1

ct

yt

− (1 − β)
β (1 − δ)

then given a stable consumption share, what determines the evolution of θt is depen-

dent upon the growth of output. However there is one caveat: how close the real

consumption share is to the value of (1 − β) crucially matters. The real consumption

share index used to construct θt was initialized at the same value as its nominal share

0.74. This share then falls over time getting closer to (1 − β) but not close enough to

overcome the impact of consumption and output growth in this sample.13 However

when investment data are used, the model implies a value of χ = 0.32 which explains

why an increasing θ series was obtained.

Hence the initial value of the real share of consumption is important for the θ

series implied by the model. Using constructed consumption share data, a price of

investment that is increasing relative to consumption is obtained, whereas if invest-

ment quantity data is used a falling relative price is recovered, but at the cost of

an inadmissibly low consumption share. Note however that while the real share of

12The nominal consumption share is very stable, with a mean of 0.744 and a standard deviation of
the log equal to 0.0193. For the implicit series the mean is 0.3173 and the standard deviation of
the log is 0.0479. Neither series has a significant trend. In addition, if the value of β is increased,
the threshold value of stationarity falls. For example if β = 0.96, this threshold value is around
χ = 0.25, making this a robust problem.

13We also used a real share computed using a Fisher index, without any significant change in θ. See
details in Appendix 6.2.2.
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consumption is clearly defined in the model, it is not clearly defined in the data.

Therefore it is essentially only common sense that suggests that a value of 0.32 is

inadmissible. Therefore the analysis suggests that virtually any relative price can be

generated through the appropriate manipulation of real c/y.

So far we conclude that relative prices, constructed from quantity data and the

model, cannot be safely predicted. Given the model, exactly how it is matched

with the data may yield vastly conflicting outcomes. However, as the next section

highlights, it is important to emphasize that outcomes are not only data dependent

but also model dependent as well.14

3 A Two-sector AK Model

3.1 Model Outline

An alternative AK growth model is explored in Felbermayr and Licandro (2005). In

this model one sector produces consumption goods using concave technology and the

other sector produces investment goods according to a linear production function.

Specifically the two production technologies for consumption and investment goods

are given by:

Ct = At (kc
t )

α

It = Atθt(k
i
t)

where 0 < α < 1, (At, θt) are technology shocks and the superscripts c and i denote

the respective consumption and investment sectors. Full employment implies that

14Indeed, Ejarque and Reis (2004) develop a model of endogenous growth where the relative price
between consumption and investment is indeterminate, and thus meaningless.
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kt = kc
t + ki

t and capital accumulation obeys the law of motion given by equation

(1). In this model aggregate output is no longer uniquely defined. One can choose to

define it by the identity Yt = Ct −
∂C
∂I
It, or it can be defined as a chained-aggregated

index, an issue we return to later in Section 4.

As before, the problem of the planner is to choose an investment path to maximize

the sum of the present value of expected utility flows, subject to a different resource

utilization constraint given by:

Ct = At

[

ktAtθt − kt+1 + (1 − δ)kt

Atθt

]α

. (10)

Given a discount factor 0 < β < 1, and assuming that utility is the logarithm of

consumption, it is straightforward to show that the policy function for this model is

still given by equation (4).

Using the resource constraint, the policy function and the law of motion for capital,

one can reproduce the same growth rate for investment as given by equation (8).

However the growth rate for consumption is now given by:

Ct+1

Ct

=
At+1

At

[

Atθt

At+1θt+1

]α [
(1 − β)At+1θt+1 + (1 − δ)(1 − β)

(1 − β)Atθt + (1 − δ)(1 − β)

]α

β [(1 − δ) + Atθt] .

In this model the only way to extract the shocks θt and At is to use equation (8) to

construct the product Atθt and then use other expressions to extract the At shock.

This limits the quantity data that can be used to recover the shocks and therefore

biases the inference towards obtaining an increasing series for θt and a declining price

of investment. However, from the conclusions of the previous section, this may still

not lead to a satisfactory outcome.
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Figure 4: PI/PC

3.2 Model Predictions

If α = 1 this model is identical to the previous one-sector model with the results

based on investment data reported above. If α ≈ 1, θ is an increasing series, but as

α is reduced this is reversed. Therefore variations in α (concavity) directly affect the

series for θ that is obtained.15. However, given the assumption 0 < α < 1, 1/θ in

this model is no longer the relative price. The trade-off between consumption and

investment along the resource constraint (10) is now given by:

∂C

∂I
= −

1

Atθt

α
Ct

kc
t

= −
Ct

It

α

(1 − β)

[

βAtθt − (1 − δ) (1 − β)

Atθt + (1 − δ)

]

where quantity data for consumption and investment is used, together with the con-

structed shocks Atθt, to obtain the investment price relative to consumption. This

relative price recovered is illustrated by the bottom line in Figure 4 which, for com-

parison, also depicts the relative prices obtained from the actual data (middle line)

15With β = 0.94 and δ = 0.1 stationarity for θ is achieved when α ≈ 0.8
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and the previous one-sector model using investment data (top line). As can be seen,

this price is decreasing across time, which is easy to understand since Atθt is station-

ary from that data and real investment grows more than real consumption.16 Even

though the trajectory of θt depends on α, it is important to stress that since only

equation (8) can be used to construct the shocks, the relative price obtained is de-

creasing over time irrespective of the value of α. While the price level depends on

the value of α, its path, normalized by the initial value, is independent of α. This

helps explain the crucial difference between the two models. In the previous model

the relative price obtained (1/θ) depended only upon changes in technology. Here,

however, capital accumulation rather than exogenous technology changes, is the key

factor behind the predicted relative price. If α is close to one, the θt series is in-

creasing and this delivers the falling relative price of investment. If α falls below

0.8, then given the other parameter values, concavity takes over the task of generat-

ing this falling relative price. However now the technology shock series θt decreases

over time, implying that the price of capital falls despite the technological regression.

Therefore, given a little concavity, this model inevitably generates a falling relative

price, since as the stock of capital grows, then by assumption, investment becomes

more productive relative to consumption.17 Furthermore since the use of the data is

also limited, it biases the inference in the same direction.

The consumption share implied by Atθt, constructed from

Ct

Yt

=
(1 − β) [Atθt + (1 − δ)]

(1 − β)(1 − δ)(1 − α) + Atθt [1 − β(1 − α)]

is crucially affected by the value of α. Figure 5 depicts this implied consumption share

16The quantity indices for consumption and investment grow at 3.48% and 4.53% respectively.
17In this sense the one-sector model is more agnostic regarding relative prices. This is also in contrast

to Greenwood, Hercowitz and Krusell (1997) model where relative prices are determined by the rate
of technological progress between sectors.
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Figure 5: Implied real C/Y given the mean (Atθt)

for variations in α using the mean (Atθt): the higher is α the lower is the implied

consumption share.18 Therefore, a falling price of investment relative to consumption

can be obtained, for any consumption share greater than 0.3173.19 However whether

the consumption share is admissible or not depends on the value of α. The problem

here is the implication that a low α is needed for a high consumption share, but

this also implies a falling series for θt, or a technological regression in the investment

sector. Thus this model requires an empirical measure of the degree of returns to scale

in the consumption goods sector, given that linearity in investment is a maintained

assumption of endogenous growth.20

We have discussed the main issues in using these models to infer relative prices.

First, different quantity data, consumption share data or investment growth data,

18The product Atθt is obtained using equation (8) which is a stationary series & is independent of α.
19Clearly when α = 1 both models imply the same real consumption share.
20If labor is explicit, the utility function matters. If Ct = At (k

c
t )
α

Lφt , and U = log(Ct) −
τφ

1+ψ
L1+ψ
t ,

and L only enters the production of consumption goods, then the exponent of k is unchanged at

α. But if utility is given by U = log
(

At (k
c
t )
α

Lφt −
τφ

1+ψ
L1+ψ
t

)

, then a different power of k in the

production function is obtained.
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imply different predictions for relative prices. This is fundamentally due to differences

in the implied real consumption share. There is no way around this problem since

the real consumption share is not observed and can only be constructed from nominal

data using Fisher indices, which do not aggregate additively. Consequently there is

no right or wrong outcome for the different series generated above. Second, the choice

of model is also important, not least as it crucially conditions the quantity data that

can be used.

One particular caveat of the models considered so far is that they do not distin-

guish between different types of capital and thus provides no guide to the aggregation

of different components of investment. To address such issues, the next section de-

velops a three-sector growth model to investigate how the disaggregation of capital

influences our conclusions to date.

4 A Three-sector AK model

4.1 Model Outline

Consider the following three-sector version of the previous model, which now consists

of a consumption sector and two investment sectors. Each investment sector employs

only its sector-specific capital denoted k and h, to produce its respective output I

or J . In the consumption sector both types of capital are combined under a Cobb-

Douglas production function to produce a consumption good C. Specifically the
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production technologies for consumption and investment goods are given by:

Ct = At (kc
t )

α (hc
t)

γ

It = θtk
i
t

Jt = zth
j
t

where α > 0, γ > 0 and α + γ < 1; At, θt and zt are technology shocks; and the

superscripts c, i and j denote the respective sectors. Full employment implies that

kt = kc
t + ki

t, and ht = hc
t + hj

t . Sector specific investment and capital accumulation

obey

kt+1 − (1 − δk) kt = It = θt [kt − kc
t ] (11)

ht+1 − (1 − δh)ht = Jt = zt [ht − hc
t ] (12)

where (δk, δh) are the sector-specific depreciation rates.

The problem of the planner is to choose an investment path to maximize the sum

of the present value of expected utility flows subject to the resource constraint

Ct = At

(

ψk
t kt − kt+1

θt

)α(
ψh

t ht − ht+1

zt

)γ

(13)

where ψk
t = (1 − δk)+θt, and ψh

t = (1 − δh)+zt. With log utility, the Euler equations

for the planner’s problem are:

1

ψk
t kt − kt+1

= βEt

{

1

ψk
t+1kt+1 − kt+2

ψk
t+1

}

1

ψh
t ht − ht+1

= βEt

{

1

ψh
t+1ht+1 − ht+2

ψh
t+1

}
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and the policy functions of this model are given by:

kt+1 = βψk
t kt (14)

ht+1 = βψh
t ht. (15)

Note that this solution, and both Euler equations, are independent of consumption

good technology (α, γ).21

4.2 Relative Price Predictions

Using the resource constraint (13), the policy functions (14 − 15) and the laws of

motion for capital (11 − 12), one can obtain the growth rates for investment and

consumption to construct the shocks:

It+1

It
=

Ωk
t+1

Ωk
t

βψk
t

Jt+1

Jt

=
Ωh

t+1

Ωh
t

βψh
t

ct+1

ct
=
At+1

At

(

θt

θt+1

ψk
t+1β

)α(
zt

zt+1

ψh
t+1β

)γ

where Ωk
t = [βθt − (1 − δk)(1 − β)] kt and Ωh

t = [βzt − (1 − δh)(1 − β)]ht. Initial

values for (zt, θt) are set using the sample average of the investment growth equations,

as in both cases the growth rates are stationary in the data. The initial value of (At)

is just set at 1 where the consumption growth equation is used to recover the At

shock. The θt shock obtained displays large fluctuations around a slight positive

trend, whereas the zt shock increases until mid sample and then falls, being hard to

21It is easy to show that, as long as θt and zt do not grow or decline too fast, the transversality
conditions are satisfied for any value of α and γ. See Appendix 6.3 for further details.
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discern a trend.22

For this three-sector model, it is useful to solve for the prices that generate a de-

centralized equilibrium. If all three sectors are characterized by perfect competition,

then given the rental rates for sector specific capital, rh
t and rk

t , profit maximization

in each sector implies the following first order conditions:

αAt (kc
t )

α−1 (hc
t)

γ = rk
t

γAt (kc
t )

α (hc
t)

γ−1 = rh
t

and for the investment sectors, pi
tθt = rk

t , and pj
tzt = rh

t , where the price in sector

I (J) is denoted pi (pj) with pc
t = 1 for all periods.23 After some straightforward

substitutions one arrives at the relative price between capital goods

pi
t

pj
t

=
αψh

t

γψk
t

Ωk
t

Ωh
t

Jt

It

which depends on the quantity indices I and J and on the parameters of the model.

The narrow relative price of each capital good with respect to consumption is

pi
t

pc
t

= pi
t =

Ct

It

α

(1 − β)

Ωk
t

ψk
t

pj
t

pc
t

= pj
t =

Ct

Jt

γ

(1 − β)

Ωh
t

ψh
t

and the relative price of broad capital is then computed using a Fisher index.24

To use the model to infer the shocks, we need values for the five parameters

(β, α, γ, δk, δh), and use Whelan (2003) to obtain the benchmark. The depreciation

22Recall that (zt, θt) are independent of the values of (α, γ).
23Since only relative prices matter for equilibrium, consumption is the numeraire.
24See Appendix 6.3.1.
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rates are chosen as δk = 0.13, and δh = 0.03, as these are the typical values used

to construct the NIPA capital stocks for durable equipment and structures, and the

production technology parameters are set at α = 0.145 and γ = 0.165. The discount

factor is chosen at β = 0.94. It is important to note that these parameter values are

used for aggregate models which differ from the model used here. While it is natural

to use the benchmark for the physical depreciation rates, the equivalence of (α, γ) in

this model with that of aggregate models does not necessarily follow.25

Figure 6 depicts the relative prices (relative to consumption prices) found in the

data and Figure 7 depicts the relative prices predicted by the model. In each figure,

the middle line is the price of broad capital, which is a Fisher index that includes

equipment and structures. The upper line is the price of structures and the lower

line is the price of equipment. It is transparent to see that the three-sector growth

model robustly produces the pattern for relative prices found in the data, which is

equivalent to the results generated by the previous models when investment data was

used. However an additional observation emerges: the prices generated by the model

are similar but not identical to the Fisher price indices that where constructed using

the data. While this difference may not seem remarkable, and is not fundamental

for the main point of this paper, it is still the case that the price of broad capital

index falls to about 0.5 in the actual data, whereas the same index implied by the

model only falls to about 0.8, a significant difference. The model is a filter that takes

quantity data as inputs to predict prices, and shows that inference based on prices

computed directly from the data can be misleading.

25α and γ are parameters of the production function of nondurable goods and services, not of aggregate
output.
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Figure 6: Relative Prices obtained from Actual Data
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Figure 7: Relative Prices obtained from Model
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4.3 Real Consumption Share

If we define output as Y = C − ∂C
∂I
I − ∂C

∂J
J this yields a consumption share given by:

C

Y
=

(1 − β)ψk
t ψ

h
t

(1 − β)ψk
t ψ

h
t + αΩk

tψ
h
t + γΩh

t ψ
k
t

.

Since neither the shocks θt and zt nor the parameters Ωk
t , Ωh

t , ψ
k
t and ψh

t , are affected

by (α, γ) it is possible to see how changes in the production technology parameters

affect the implied consumption share when output is defined in this way. Using the

mean of Atθt and Atzt, the implied real consumption share is calculated, for different

values of 0 < α + γ < 1. Similar to the two-sector model and as highlighted by

Table 1, the lower the concavity, the lower is the implied real consumption share.

The consumption share is also stationary in this construction given values for α and

γ. For example if α = 0.145 and γ = 0.165, then a real consumption share series is

obtained that starts from a value of 0.6517 in 1950 and ends at a value of 0.6605 by

2004 with a mean of 0.6505 and a standard deviation equal to 0.0161.26 Of course

under the assigned parameter values for α and γ, this is still a significant degree of

concavity by comparison with the linear technology for investment goods.27

However an alternative way to define aggregate output is to construct a real

expenditure series using chained-aggregated data. In this case a completely different

series for the real consumption share is obtained and this highlights the inherent

difficulties in trying to measure this share when aggregate output is not uniquely

defined in the model. The series constructed using a Fisher index for output declines

dramatically. Given an initial value of 1 in 1950, the series declines to 0.4738 by

26The series Atθt and Atzt are both stationary.
27See, for example, Hornstein and Pracschick (1997) and Huffman and Wynne (1999), for evidence

that this difference in concavity may not be found in the data. For instance, Huffman and Wynne
estimate the power of capital in the production function of consumption goods at 0.41, while for
investment goods this value is 0.34.
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α
0.05 0.25 0.45

0.05 0.8478 0.5797 0.4406
ψ 0.25 0.7405 0.5274 0.4097

0.45 0.6577 0.4838 0.3828

Table 1: Implied real consumption share for variations in α and γ

2004. Therefore we can conclude that since relative price shifts are important, the

construction of the real consumption share based on direct addition will lead to a

significant difference in the results obtained. This arises because the first approach

fails to account for relative price movements within the two types of investment.28

5 Concluding Remarks

In this paper three AK models are matched with the data to evaluate their quantity

and price implications. We find that the relative price predicted by the models de-

pends crucially on what part of the data is used. Using a constructed consumption

share, a price of investment that is increasing relative to consumption is obtained, or

using investment quantity data a falling price of investment relative to consumption

is obtained, but at the cost of an inadmissibly low consumption share. There is no

right or wrong way to do this exercise. However one can bias the inference towards a

declining relative price of investment, either through the choice of model or through

the choice of quantity data to use. For instance the two and three sector AK models

considered, unambiguously predict a falling relative price because they are limited in

their use of data. Even so, since in this multi-sector environment the definition of

output is not unique, different definitions of aggregate output yield different conclu-

sions for the implied real consumption share. This is directly related to the index

28See Whelan (2002) for more on the additive problems when using chain-aggregated data.
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number construction in NIPA data. The use of NIPA data to match these models

must be done with care. What we show here, that even if this is the case, robust

inference is not necessarily obtained, particularly with regard to the broad relative

price between consumption and investment.
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6 Appendices

6.1 Data

We use yearly National Income and Product Accounts (NIPA) data over the period

1950 − 2004 obtained from the U.S. Department of Commerce, Bureau of Economic

Analysis (BEA). From 1996 the BEA calculates all published real aggregates accord-

ing to a chain-index formula.29 We define C to be the consumption of nondurable

goods and services, (columns 5 and 6 in the NIPA tables), I to be consumption of

durable goods and investment in equipment and software, (columns 4 and 11), and

J to be investment in structures (column 10). While a real series for J is directly

available from the NIPA , our definitions of C and I each require the aggregation of

two real series to produce a series not currently made available through the BEA.

Given the additivity problems associated with chain-index data, as recommended by

Whelan (2002) we construct real quantity indexes for C and I using a Fisher chain-

aggregate formula (the square root of the product of a Paasche and a Laspeyres index)

that replicates the procedure used by the BEA in producing the NIPA accounts.

The data extracted from the NIPA tables contains nominal quantities (m) and

indices for prices (px) and real quantities (qx). The price and real quantity indices are

normalized to 100 in the year 2000. The indices and nominal quantities are related

by the equation:

mt =
px

t

100

qx
t

100
×m2000

Before proceeding, we renormalize the indices dividing by their initial value. This

way, all indices will have value 1 in 1950, instead of 100 in 2000. This is useful because

29For information on the construction of NIPA accounts visit the BEA website at
{www.bea.doc.gov/bea/dn1.htm} and see Whelan (2002). We use: “Real Gross Domestic Product,
Quantity Indexes (Yearly)” , “Gross Domestic Product, Billions of Dollars (Yearly)”, and finally
“Implicit Price Deflators, Index numbers (Yearly)”.
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the Fisher indices constructed below also have initial value of 1.

We need a new price index and a new quantity index for consumption that aggre-

gates nondurables (n) and services (s). The Fisher quantity index is:

F c
t =

[

qn
t p

n
t + qs

t p
s
t

qn
t−1p

n
t + qs

t−1p
s
t

qn
t p

n
t−1 + qs

t p
s
t−1

qn
t−1p

n
t−1 + qs

t−1p
s
t−1

]
1

2

and then

Qc
t = F c

t ×Qc
t−1

with initial value Qc
1 = 1. Inverting the time index on prices and quantities we

get the price index P c.30 The price indices must be divided by the price index for

consumption, so that they become comparable with the model.

30We can construct implicit price deflators, defined as ratios of the current dollar value series to the
corresponding chained dollar value series. These are almost exactly the same as the price indices
computed in the text and do not change the results.
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6.2 One-sector AK model

6.2.1 Planner’s Problem

Choosing k as the endogenous state variable with (A, θ) being the set of exogenous

state values, the value function for this two-sector growth model is given by:

V (kt, At, θt) = max
kt+1

{U(ct) + βEtV (kt+1, At+1, θt+1)}

subject to the resource utilization constraint:

ct = Atkt −

[

kt+1 − (1 − δ)kt

θt

]

.

Letting λ denote the Lagrangian multiplier, the first-order conditions are:

U ′(ct) − λt = 0 (A1)

βEtV (kt+1) −
λt

θt

= 0 (A2)

V (kt) = λt

[

At +
(1 − δ)

θt

]

(A3)

Forwarding (A3) and substituting this along with (A1) into (A2) yields the Euler

equation (3.3).With U = log ct the Euler equation becomes:

1

ct
= θtβEt

{

1

ct+1

[

At+1 +
(1 − δ)

θt+1

]}

(A4)

Guess that the policy function takes the form

kt+1 = µθt

[

At +
(1 − δ)

θt

]

kt
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where µ is a constant to be determined. Using the resource constraint to eliminate

ct from (A4) and substituting this guess into the Euler equation gives µ = β.

6.2.2 Data in the one-sector AK model

We use the equation

θt

θt−1

=

ct

yt

ct

yt

− (1 − β)

β (1 − δ)
ct

ct−1

to generate the θt series, which we initialize at 1. But to do so, we need data on real

shares of spending, and on real consumption growth. The consumption indices are

constructed as described in Appendix 3.6.1 above and the output index aggregates

all five components using a Fisher index.

We first construct a real share as the division of the quantity indices

αc
t =

ct
yt

=
Qc

t

Qy
t

and multiply this equation by the initial nominal share. This index declines from the

initial value31 of 0.74 down to around 0.55 at the end of the sample.

For illustrative and robustness purposes we also construct an ad-hoc consumption

real share by using the quantity indices, Qc
t and QI

1, in the following way.

αc
t =

ct
yt

=
ct

ct + It
=

Qc
t

Qc
t +QI

t

αc
t+1 =

Qc
t+1

Qc
t+1 +QI

t+1

=
(Qc

t+1/Q
c
t)α

c
t

(Qc
t+1/Q

c
t)α

c
t + (QI

t+1/Q
I
t )(1 − αc

t)

where we initialize the real consumption share (αc
0) to equal the nominal consumption

initial share. The nominal share of consumption in output is stable around 0.74, but

the real share of consumption, as constructed here, falls from 0.74 to around 0.64.

31Set at the same value as the initial nominal share.
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However, this decline is not enough to change the outcome of a decreasing θ.

6.3 Three-sector AK Model

6.3.1 Planner’s problem and prices

It is straightforward to write the Bellman equation of this problem. The value of

entering the current period, V(S), is a function of the state vector (S = [A, z, θ, k, h]),

and is given by

V (S) = max
k′,h′

{log (ct) + βEtV (S ′)}

where primes denote future values. As before, it is also straightforward to derive the

Euler equations and show that the policy functions we use in the text satisfy the

Euler equations. Given these we can show that, under certain conditions analyzed

above for the behavior of the shocks, we find a value function which is necessarily

unique and we satisfy the transversality conditions (see below). This is enough to

ensure we have the unique solution to our problem.

If all three sectors are characterized by perfect competition, then given the rental

rates for sector specific capital, rh
t and rk

t , profits in each sector are given by

πc
t = At (kc

t )
α (hc

t)
γ − rh

t h
c
t − rk

t k
c
t

πi
t = pi

tθtk
i
t − rk

t k
i
t

πj
t = pj

tzth
j
t − rh

t h
j
t
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and profit maximization implies pi
tθt = rk

t , p
j
tzt = rh

t , and in the consumption sector

αAt (kc
t )

α−1 (hc
t)

γ = rk
t

γAt (kc
t )

α (hc
t)

γ−1 = rh
t

Now if we eliminate the rental rates we can find the relative prices:

α
At

θt

(kc
t )

α−1 (hc
t)

γ = pi
t

γ
At

zt

(kc
t )

α (hc
t)

γ−1 = pj
t

and now we make use of the policy functions and of the production functions, we

obtain the price expressions we use in the main text.

An alternative way to compute a broad price of capital uses an index weighted by

nominal expenditure weights:

p̃

pc
t

= p̃ = pi
t

[

pi
tIt

pi
tIt + pj

tJt

]

+ pj
t

[

pj
tJt

pI
t It + pj

tJt

]

p̃ =
Ct

(1 − β)

[(

αΩk
t

ψk
t It

)[

αΩk
tψ

h
t

αΩk
tψ

h
t + γΩh

t ψ
k
t

]

+

(

γΩh
t

ψh
t Jt

)[

γΩh
t ψ

k
t

αΩk
tψ

h
t + γΩh

t ψ
k
t

]]

This will yield similar results to the fisher index.
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6.3.2 Transversality Condition

Utility is given by

ut = log

[

At

(

ψk
t

θt

(1 − β)

)α(
ψh

t

zt

(1 − β)

)γ]

+ log (kα
t h

γ
t )

ut+1 = log

[

At+1

(

ψk
t+1

θt+1

(1 − β)

)α(
ψh

t+1

zt+1

(1 − β)

)γ]

+ log
(

kα
t+1h

γ
t+1

)

log
(

kα
t+1h

γ
t+1

)

= log (kα
t h

γ
t ) + log

((

βψk
t

)α (

βψh
t

)γ)

log
(

kα
t+2h

γ
t+2

)

= log (kα
t h

γ
t ) + log

((

βψk
t βψ

k
t+1

)α (

βψh
t βψ

h
t+1

)γ)

and we can write them as

ut = Bt + log (kα
t h

γ
t )

ut+1 = Bt+1 + log (kα
t h

γ
t ) + log

((

βψk
t

)α (

βψh
t

)γ)

ut+2 = Bt+2 + log (kα
t h

γ
t ) + log

((

βψk
t βψ

k
t+1

)α (

βψh
t βψ

h
t+1

)γ)

and now the present value of all this is given by

V = ut + βEt (ut+1) + β2Et (ut+2) + ...

and so we write

V =
1

1 − β
log (kα

t h
γ
t ) + Et

∞
∑

j=0

βjBt+j

+Et

∞
∑

j=1

[

βj log

((

j
∏

i=1

ψk
t+i−1

)α( j
∏

i=1

ψh
t+i−1

)γ)]

+ (α+ γ) log (β)
∞
∑

j=1

βjj

where the first and last terms are clearly finite irrespective of the values of (α, γ).

The question is about the two middle terms. Take the first middle term, and assume
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some constant growth rates for the A shock, At+j = At (1 + ga)
j:

W = Et

∞
∑

j=0

βjBt+j = Et

∞
∑

j=0

βj log

[

At+j

(

ψk
t+j

θt+j

(1 − β)

)α(

ψh
t+j

zt+j

(1 − β)

)γ]

W =
∞
∑

j=0

βj log

[

At (1 + ga)
j

(

ψk
t+j

θt+j

(1 − β)

)α(

ψh
t+j

zt+j

(1 − β)

)γ]

W =
log (At) + (α+ γ) log (1 − β)

1 − β
+
β log (1 + ga)

(1 − β)2
+W1

The last term (W1) is what worries us. We take a look at it now:

W1 = α

∞
∑

j=0

βj log

(

ψk
t+j

θt+j

)

+ γ

∞
∑

j=0

βj log

(

ψh
t+j

zt+j

)

Clearly, if θt and zt tend to zero, we need these effects to be dominated by the

discounting. If these shocks are stationary these terms are finite and we have no

problem. If they have a positive growth rate again we have no problem as both

fractions will tend to 1. Since we do not know the properties of the different shocks

we will leave this discussion for now. Note however, that the value of α+ γ is not an

issue until now.

The second middle term is

Y = Et

∞
∑

j=1

βj

[

α log

(

j
∏

i=1

ψk
t+i−1

)

+ γ log

(

j
∏

i=1

ψh
t+i−1

)]

and again it is easy to show that this expression is finite if the two shocks are sta-

tionary. We can show easily that this sum is finite if θt and zt are constants. This

expression is also finite if the two shocks tend to zero. If they grow, we cannot have

them growing very fast.

Therefore, as long as θt and zt do not grow or decline too fast, we will have a well
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defined problem and satisfy the transversality conditions.
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