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Abstract

In a standard search model the expected duration of unemployment
is independent of the duration of previous employment, as well as of the
current length of the unemployment spell. This paper offers a network
mechanism to generate these correlations. Here, employed workers invest
in social contacts with other employed workers, which will help them find
jobs in the event of unemployment. These social contacts "depreciate"
because they can also become unemployed and unemployed contacts are
assumed to be useless. In this model the longer you have been working,
the more contacts you are likely to have, and the more contacts you have
the shorter your expected unemployment duration will be. The model
is a simple and tractable way of introducing network ideas in one of the
workhorses of labour and macroeconomics. The model also suggests that
networks are less productive during periods of high unemployment, mainly
because high unemployment destroys part of the network. In addition, the
model provides guidance for indirect inference of network effects from the
data.
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1 Introduction
In a texbook version of the Mortensen and Pissarides (1994) search model the
expected duration of unemployment is independent of the duration of previous
employment, as well as of the current length of the unemployment spell. These
are clearly counterfactual implications, and, as an example, models of loss of
skill during unemployment such as Pissarides (1992) and Larsen (2001) sucess-
fully generate duration dependence in unemployment.1 This paper provides an
alternative mechanism inspired by the growing literature on networks and their
implications for labour markets.
Here, as a natural by-product of working activity, employed workers invest

in social contacts with other employed workers. In turn these contacts will help
them find jobs in the event of unemployment. These social contacts "depreci-
ate" because they can also become unemployed and unemployed contacts are
assumed to be useless. In this model the longer you have been working, the more
contacts you are likely to have, and the more contacts you have the shorter your
expected unemployment duration will be.2

The assumption used here that unemployed workers do not constitute useful
contacts is largely a simplifying assumption. It does stand in contrast with some
of the literature on networks in labour markets, where the goal is to model the
flow of information about available jobs.3 In these models everyone is important
because if an unemployed worker is offered two jobs he will pass one of the jobs
onto another unemployed acquaintance. In the present paper there is an implicit
assumption that these information flow propagation mechanisms are of second
order in the dynamics of unemployment.4 If what matters is who you know, or
here how many people you know, there is a presumption that it is best if these
people are working.
A direct outcome of the model is that the network is less productive during

periods of high unemployment, since unemployment duration increases and the
network gets partially destroyed. This result seems contrary to, but is not nec-
essarily inconsistent with, empirical findings that the fraction of people finding
jobs through friends increases during times of high unemployment.
The idea that the number of people one knows matters has some indirect

empirical support. Weatherall (2008) finds that displaced workers that exit
establishments with a small number of workers have a higher probability of
becoming long term unemployed. Also, Addison and Portugal (1989) show for
US data that the length of tenure prior to unemployment has a positive impact
on post displacement wages.

1Also, models of endogenous search effort where a longer unemployment duration signals
a lower quality imply the payoff of search and search intensity declines with duration.

2An additional implication is that the time series process for unemployment is no longer a
first order autoregressive process, but rather a potentially infinite order one.

3 See for example Calvó-Armengol and Jackson (2007) and Galeotti and Merlino (2008).
4The literature on networks is extremely suggestive but the fact that network use and

density are correlated with unemployment does not prove that the network is causing unem-
ployment behaviour. For example, it is very difficult to disentangle the network implications
developed here from those of human capital models.
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Simplifying assumptions aside, the mechanism and model presented here
offers a simple marriage between the search and the network literatures that we
believe is interesting and useful in its own right.
This paper explores first a deterministic model to highlight the properties of

the resulting equilibrium which arise from the network structure. This version
of the model allows for an examination of cross sectional properties of an artifi-
cial dataset, where we obtain the negative correlation between employment and
unemployment durations. It also allows us to study which properties the new
additions to the standard search model should have if we want to fit the data.
Following that, a model with aggregate shocks is developed and explored quan-
titatively. This version of the model allows us to evaluate time series properties
of the model, such as serial correlations, volatilites and response to shocks.
The difficulties of the standard model to match simultaneously the quanti-

tative behaviour of vacancies, unemployment, productivity and wages are well
documented in Shimer (2005). While it is not the primary goal of this paper to
adress those shortcomings, we also explore how the model offered here performs
on this score.
Finally, the model is also useful as it suggests one should look into the

detailed relationship between employment and unemployment durations as a
way to identify network effects.

2 Deterministic Model

2.1 Firms

There is a unit mass of workers. When a vacancy is created, the probability a
vacancy meets an unemployed worker is denoted by αf . In Montgomery (1991)
the network helps in reducing the effects of adverse selection. In the present
paper all workers are identical from the perspective of the firm so that this
mechanism is absent. Danish survey data from Filges (2008) also contains in-
formation suggestive of the importance of personal contacts in the hiring process
for firms: around one third of the latest hires across the firms surveyed were
achieved through personal contacts. Here, this mechanism is summarized inside
the matching function because in the standard search model each match is itself
a firm, and so there are no current in-house workers to rely on.5

The value of posting a vacancy is

V = −k + βαfJ + β(1− αf )V

where k is the flow cost of keeping a vacancy open.
Free entry will drive V to zero so that k = βαfJ , where J is the value of

a filled vacancy. Here β is the discount factor (over one week). A filled job

5Two exception to this modelling framework are Cooper, Haltiwanger, and Willis (2007),
and Ortigueira and Faccini (2008), where firms have many workers.
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produces an ouput y, which is divided between the firm and the worker.6 The
value of the wage, w, is above the unemployment output b the worker gets,
which can be labelled home production. All matches have an exogenous break
up rate of 1− λ.7 The value of a filled vacancy is

J = y − w + βλJ + β(1− λ)V =
y − w

1− βλ

which implies we must have

αf =
k (1− βλ)

β(y − w)

which is a constant, implying (as we will see later) that vacancies v adjust to keep
the probability of success constant. We can also see that if the cost of vacancies
rises relative to the wage then the equilibrium probability αf must rise, which
happens by decreasing vacancies relative to the number of unemployed.

2.2 Some probability algebra

The algebra that follows rests on the Pascal Triangle relationship. Employed
workers create relationships or contacts in the course of their working activity.
They can make at most one extra contact each period and the model is such
that there will be a voluntary upper bound n̄ on the number of contacts any
worker is willing to have. This assumption that it takes time to reach the upper
bound on contacts is essencial for the model to be able to generate the correct
correlation between employment and unemployment durations.
All workers face the same exogenous probability of losing their jobs, (1− λ),

and we assume here that only employed workers count as contacts.8 Therefore
workers lose contacts because their contacts can become unemployed.9 Given
n employed contacts - and if there is no investment in an additional contact
today - we have the following probability distribution over the set [0, 1, 2, ..., n]
contacts tomorrow:

f(n− k) =

µ
n
k

¶
(λ)

n−k
(1− λ)

k
=

n!

k!(n− k)!
(λ)

n−k
(1− λ)

k

6The appendix discusses extensions which include allowing wages to depend exogenously
on the number of contacts the worker has (as a measure of his outside option), and also wages
determined by Nash bargaining over the surplus of the match.

7Conceivably, well connected employees may have lower job destruction rates, but we do
not exmine this issue here.

8This is justified by the fact that the number of connections of any agent is finite, but the
population is an everywhere dense unit mass.

9We assume that an individual knows only how many contacts he has, but never knows
how many contacts his contacts have. From an individual perspective each of his contacts
is an identical random variable. Of course, each of his contacts is in fact a realization of a
random variable. An individual knows his own employment history, but does not know anyone
else´s employment history (and therefore cannot infer the number of contacts anyone else may
have). In fact, these issues are assumed away.
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with f(n) = λn, and f(0) = (1− λ)n.
In case an additional contact is made today, the same type of distribution

applies but over the set [0, ..., n + 1]. The Pascal Triangle will give rise to two
important matrices in this problem. The matrixM which governs transitions of
unemployed agents, of which we show the examples with supports [0, 1] and
[0, 1, 2]:

M =

⎡⎣ 0 1

0 1 0
1 (1− λ) λ

⎤⎦ , M =

⎡⎢⎣ 0 1 2

0 1 0 0
1 (1− λ) λ 0

2 (1− λ)2 2λ (1− λ) λ2

⎤⎥⎦
and the matrix M̂ which governs the transitions of employed agents, of which
we show the examples here also with supports [0, 1] and [0, 1, 2], corresponding
to the upper bounds n̄ = 1 and n̄ = 2:

M̂ =

⎡⎣ 0 1

0 (1− λ) λ
1 (1− λ) λ

⎤⎦ , M̂ =

⎡⎢⎣ 0 1 2

0 (1− λ) λ 0

1 (1− λ)2 2λ (1− λ) λ2

2 (1− λ)2 2λ (1− λ) λ2

⎤⎥⎦
2.3 Workers

Managing contacts is costly which implies there will be a finite upper bound
on the number of connections any worker accumulates. These connections or
contacts are useful because they will help the worker find a job in the event
of unemployment. The number of connections a worker has is his individual
state variable or "network type". When the unemployed worker gets a job his
"network type" vanishes. He then starts reconstructing his network from zero
contacts. This is a strong assumption but it greatly simplifies the analysis.

There are two distributions that matter in this model. One is the distribu-
tion of the unemployed population over contacts, Sut , and the second one is the
distribution of the employed population over contacts, Set . The level of unem-
ployment, 0 < ūt < 1, is also a state variable. All of these are summarized in
the state vector S.

For simplicity we assume where convenient that n̄ = 1, in which case the
state vector S, effectively has three numbers, S = (ū, u0, e0), where u0 is the
fraction of unemployed workers with zero contacts, and e0 is the fraction of
employed workers with zero contacts.

Value of Unemployment

The value of unemployment of a worker with zero contacts given state S
satisfies

U0 (S) = b+ βαw0 (S)W0 (S
0) + β (1− αw0 (S))U0 (S

0)
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and similarly, the value of unemployment of a worker with one contact obeys:

U1 (S) = b+ βαw1 (S)W0 (S
0) + β (1− αw1 (S)) [(1− λ)U0 (S

0) + λU1 (S
0)]

Here, αwn (S) is the probability that an unemployed worker with n employed
connections will find a vacancy this period, given the current state vector.
It is important to note here that, despite the fact that for each agent the

transition of his own contacts is stochastic, the transition of the aggregate state
vector is deterministic. That is why there are no expectational operators over
S0 in the equations above.
We can write this in matrix form as:

U (S) = b+ βα (S)W0 (S
0) + βT (S)U (S0)

where T (S) = Diag (1− α (S))×M , and for the example with n̄ = 1 this yields:

α (S) =

∙
αw0 (S)
αw1 (S)

¸
, U (S) =

∙
U0(S)
U1(S)

¸
,

T (S) =

∙
1− αw0 (S) 0

0 1− αw1 (S)

¸
×
∙

1 0
(1− λ) λ

¸
Value of Employment

The value of being employed having already built n connections is then:

Wn (S) = max

½
w − g(n) + β(1− λ)EUj(S

0) + βλEWj (S
0)

w − c− g(n) + β(1− λ)ẼUj(S
0) + βλẼWj (S

0)

There are two expectation signs in the above equation, because they are taken
with respect to different probability distributions over different sets of contacts,
with Ẽ being taken over a support with one extra contact. Each period the
worker has the choice of adding one connection to his private network at a cost
c > 0. There is also a convex cost g(n) of maintaining connections, which
ensures the existence of a finite upper bound on the number of connections any
individual creates, n̄. This also ensures there are no "stars" in the network
because no worker is willing to manage more than n̄ contacts. If this cost g(n)
is not incurred the connections are lost. Note also the timing convention that
g(n) is associated with the beginning of period state variable.
An employed worker stops making contacts when

c > βλ
h
ẼWj (S

0)−EWj (S
0)
i

+β(1− λ)
h
ẼUj(S

0)−EUj(S
0)
i

so that there is a decision rule whereby the worker stops investing at a given
number of connections and then invests again when some of these connections
are lost (because they have become unemployed).
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In the example where n̄ = 1, we have10

c > βλ
h
(1− λ)2W0 + 2λ (1− λ)W1 + λ2W2 − (1− λ)W0 − λW1

i
+β(1− λ)

h
(1− λ)2 U0 + 2λ (1− λ)U1 + λ2U2 − (1− λ)U0 − λU1

i
Example

In our example with a maximum of one connection this is simpler and can be
written with the pair of equations (where the maximization is already resolved
in both of them):

W0 (S) = w − c− g (0) + β(1− λ)EUj(S
0) + βλEWj (S

0)

W1 (S) = w − g(1) + β(1− λ)EUj(S
0) + βλEWj (S

0)

We can write this in matrix form as:

W (S) = wg + β (1− λ) M̂U (S0) + βλM̂W (S0)

where

wg =

∙
w − c− g(0)
w − g(1)

¸
, M̂ =

∙
(1− λ) λ
(1− λ) λ

¸

We are assuming that the maximum number of connections the agent is
willing to acquire is one, so that one contact is always desirable while g(2) is such
that two contacts are never desirable. In general we have g(n+ 1) > g(n) ≥ 0.
There is a conjecture here that a random wage would not affect the upper

limit on the number of contacts for each worker, which implies that this upper
limit is unique and the same for all workers. The reason this is so is that contacts
only affect the probability of finding a job, and once agents get unemployed they
would all have the same expected wage once they find a job. In addition, utility
is linear in income and the job destruction probability does not depend on the
number of contacts.11

A more substantive issue regarding wages is that here they are exogenously
set, as opposed to the standard practice of using Nash bargaining to do so.
This is a tractability device. However, Nash bargaining is not the only wage
determination procedure, and following Cooper, Haltiwanger, and Willis (2007)
we set output and wages to depend only on the aggregate state of the economy
which, in this first version of the model without aggregate shocks, is constant.12

10Note that W1 for n̄ = 1 differs from W1 for n̄ = 2. The same is true for U1. Still, we
can design a g(n) function such that we can get any n̄ we want, which greatly simplifies the
solution of the model.
11We can therefore simplify by having a constant wage. However if the lower bound of the

hypothetical wage distribution is less than b this might not be the case.
12 See also references in their paper. In their model the wage bill is firm specific and varies

with idiosyncratic shocks because hours vary within the firm, but the outside option of the
worker depends only on the aggregate state.
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2.4 Mechanics of employment and unemployment

Two types of attrition are at work in this model: attrition on the number
of contacts, and attrition on the transition to and out of unemployment. To
characterize the mechanics for the unemployed population we need to detail
two transitions: the transition from unemployment to unemployment, and the
transition from employment to unemployment. Here we use the example where
the maximum number of contacts is n̄ = 1.

Mechanics of Unemployment

Let
£

ūt0 ūt1
¤
be a row vector containing the number of unemployed at

time t by number of contacts,£
ūt0 ūt1

¤
≡ ūt

£
ut0 ut1

¤
≡ ūt

£
ut0 1− ut0

¤
≡ ūt (S

u
t )
0

Here ūt is the unemployment rate (a scalar), (ūtSut ) is a population vector, and
Sut is a density vector with elements summing to one. Now let

£
ũt+10 ũt+11

¤
be the vector that contains the subset of these workers that remain unemployed
the following period. The transition between unemployment and unemployment
is then given by:£

ũt+10 ũt+11

¤
=
£

ūt0 ūt1
¤
×
∙
1− αw0 (St) 0

0 1− αw1 (St)

¸
×
∙

1 0
(1− λ) λ

¸
The transition of total unemployment is an operator:©

ūt (S
u
t )
0 ≡

£
ūt0 ūt1

¤ª
=⇒

£
ūt+10 ūt+11

¤
To get this operator we must add the incoming cohort to our previous algebra.
The incoming cohort is the transition from employment into unemployment

and is given by

(1− λ) (1− ūt) (S
e
t )
0
M̂ = (1− λ)

£
ēt (S

e
t )
0¤
M̂

where ēt is the employment rate (a scalar), (ētSet ) is a population vector, and
Set is a density vector with elements summing to one. We have then:¡

Zu
t+1

¢0
= ūt (S

u
t )
0 × T (St) + (1− λ) (1− ūt) (S

e
t )
0
M̂

which in our example:¡
Zu
t+1

¢0 ≡ ūt+1
£

ut+10 1− ut+10

¤
= ūt

£
ut0 1− ut0

¤
× T (St)

+ (1− λ) (1− ūt)
£

et0 1− et0
¤
× M̂

and then

ūt+1 =
¡
Zu
t+1

¢0 × [1]
Sut+1 = Zu

t+1/ūt+1

which gives both the unemployment level/rate and its distribution.
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Mechanics of Employment

This is the last piece of the problem. We need it because we want to know the
distribution of employment (the level we already know since we know unemploy-
ment from the previous equation). It involves the transition from unemployment
into employment:

ūt
£
α (Sut )

0 Sut
¤ £
1 0

¤
and the transition from employment to employment:

λ(1− ūt)
h
(Set )

0
M̂
i

to get: ¡
Ze
t+1

¢0
= λ(1− ūt)

h
(Set )

0 M̂
i
+ ūt

£
α (Sut )

0 Sut
¤ £
1 0

¤
where ¡

Ze
t+1

¢0 ≡ ēt+1
£

et+10 1− et+10

¤
= (1− ūt+1)

£
et+10 1− et+10

¤
and in detail¡

Ze
t+1

¢0
= λ(1− ūt)

£
et0 1− et0

¤
M̂

+ūt
£

ut0 1− ut0
¤ ∙ αw0 (St)

αw1 (St)

¸ £
1 0

¤
where αw (St)

0 is a row vector. The distribution of employment by contacts
next period is then:

Set+1 = Ze
t+1/

³¡
Ze
t+1

¢0
[1]
´

2.5 Equilibrium

These last two sets of equations are enough to determine the equilibrium given
the current state variables. But to get the long run equilibrium we need three
equations. So far we have:

ū
£

u0 1− u0
¤
= ū

£
u0 1− u0

¤
×
∙
1− α0 0
0 1− α1

¸
×M

+(1− ū) (1− λ)
£

e0 1− e0
¤
× M̂

(1− ū)
£

e0 1− e0
¤
= λ(1− ū)

£
e0 1− e0

¤
× M̂

+ū
£

α0 α1
¤ ∙ u0

1− u0

¸ £
1 0

¤
but to close the model we need two more steps. First we find the equilibrium
distribution for employed agents, Se.
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Finding Se.

Given an upper bound n̄ on the number of connections we can derive the
expected distribution of connections at the point of job destruction for a given
agent, when he starts working. Starting from zero in a new job the worker makes
a connection in the first period and continues making a new connection each
period until he reaches n̄ connections. Along the way he can lose connections,
and of course his own job.
If the worker is unemployed after one period of work, an event which occurs

with probability (1− λ), he can have either zero or one contacts with respective
probabilities ((1− λ) , λ). If he becomes unemployed after two periods, which
happens with probability λ (1− λ), he can have entered the second period with
one contact (probability λ), and then he can have [0, 1, 2] contacts at the end

of period two with probability vector
³
(1− λ)

2
, 2λ(1− λ), λ2

´
. But he can

also have entered the second period with only zero contacts - an event with
probability (1− λ) - and then he can have at most one contact as above.

If we assume that the upper bound on the number of contacts is 2, we have
the following graphic representation of the probability paths:

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

TIME

and the probability associated with each final node is the sum of all paths that
leads to that node.

We can write this algorithm in matrix form. The appendix details this
algebra for the cases where n̄ = 1, and n̄ = 2. All the algebra is from the
perspective of time zero, when the worker starts his new job. For the case
where n̄ = 1 the density over contacts is

D0 = (1− λ) M̂0

³
I − λM̂1

´−1
≡
£
e0 1− e0

¤
= Se

where M̂0 =
£
(1− λ) λ

¤
and M̂1 = M̂ . In steady state equilibrium this is

the density over contacts of the employed population, Se, as well as the equi-
librium distribution over contacts of the cohort entering unemployment (since
the probability of losing a job does not depend on the number of contacts).
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Final Step

Tne final step involves solving a non linear expression. We need it because
the matrix T depends on α, and α depends on vacancies, and vacancies depend
on the distribution of unemployed workers over contacts. We therefore need an
extra loop to make sure the unemployment distribution inside T is consistent
with the distribution on the left hand side of the above expression. We do not
solve this problem here but numerically - as long as care is taken in the selection
of the matching function - there is no problem converging on this operator.

2.6 The matching function

The simple Cobb-Douglas matching function is not enough in this model. We
want the matching function to have several standard properties. The total
number of matches must be increasing in both the number of vacancies and the
number of unemployed workers. And the probability that an unemployed worker
finds a vacancy must be increasing in the number of vacancies and decreasing
in the number of unemployed workers. Additionally, this probability must be
increasing in the number of contacts a worker has. This extra feature of our
problem provides us with the possibility of matching time patterns of job finding
rates in the data which the standard model does not, and therefore may help
us better understand the matching process.
Equilibrium consistency of the matching probabilities then implies for the

total number of matches:

m =
n̄X
i=0

αwi uiū

where

1 =
n̄X
i=0

ui

and for αwi = g (i, ū, v) we must have at least that gi > 0, gū < 0, and gv > 0.
Note that we are not imposing that these probabilities depend explicitly on the
distribution of workers over contacts. We now check whether a close relative of
the standard Cobb-Douglas will satisfy our requirements. Consider the function

αwi = γ
³v
ū

´θ
φ (i)

with 0 < θ < 1, and φi > 0. This function satisfies all our derivatives above.
Furthermore it also satisfies the condition that the total number of matches is
increasing in both vacancies and unemployment:

m = γ
³v
ū

´θ
ū

n̄X
i=0

φ (i)ui = γ (v)
θ
(ū)

1−θ
n̄X
i=0

φ (i)ui
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The final steps in the logic of this construction come from the side of the
firm. We know that αf is a constant:

αf =
k (1− βλ)

β(y − w)

and because for the firm it does not matter which type of worker they meet,
this probability can be written simply as αf = m/v.
We then have

m

v
= γ

³ ū
v

´1−θ n̄X
i=0

φ (i)ui =
k (1− βλ)

β(y − w)

which then implies

v = ū

⎛⎝ 1
γ

k (1− βλ)

β(y − w)

"
n̄X
i=0

φ (i)ui

#−1⎞⎠− 1
1−θ

that vacancies depend on the distribution of types. This also provides an addi-
tional mechanism affecting the dynamics and volatility of vacancies.
Given that vacancies depend on the distribution of contacts, worker proba-

bilities also do:13

αwi = g (i, ū, v) = g (i, ū, v (Su))

This construction allows us to now specify the function φ (i) independently
of any other considerations. Its main property is that it should be increasing in
the number of contacts, but we should also define whether this function should
be concave or convex. The following function:

φ (i) =
log(τ0 + τ1i)

N

where N is an arbitrary number chosen for calibration purposes, is positive and
strictly concave in (i). The choice of (N, τ0, τ1) ensures the match probabil-
ity is positive even at zero contacts and grows with the number of contacts,
and determines the shape of φ over the relevant range. With the appropriate
calibration we can choose any shape we want, either concave, linear or convex.

2.7 Unemployment Duration Algebra

Consider a worker who enters unemployment with zero contacts.
His probability of reemployment is constant every period at αw0 . Therefore

he finds a job after one period with probability αw0 . Finds a job after two periods

13The level of unemployment at the start of the period summarizes all the useful information
about the distribution of contacts in the employed population Set .
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with probability αw0 (1−αw0 ). After three periods with probability αw0 (1−αw0 )2,
etc. We have expected duration of unemployment given by

d0 = 1αw0 + 2α
w
0 (1− αw0 ) + 3α

w
0 (1− αw0 )

2 + ...

= αw0
£
1 + 2(1− αw0 ) + 3(1− αw0 )

2 + ...
¤

= 1/αw0

This algebra, however, depends on the state vector:

d0 (St) = 1αw0 (St) + 2α
w
0 (St+1) (1− αw0 (St))

+3αw0 (St+2) (1− αw0 (St+1))(1− αw0 (St)) + ...

so that the value of this sum is not trivial to compute (even though the law of
large numbers ensures the transition of the state vector is deterministic).
We can write the expected duration algebra for all contacts in matrix form

as:

D (St) = αw (St) + 2α
w (St+1)T (St) + 3α

w (St+2)T (St+1)T (St) + ...

and in steady state equilibrium we can write the expected duration algebra in
matrix form as:

D =
©
I + 2T + 3T 2 + ...

ª
αw = [I − T ]

−1
[I − T ]

−1
αw

where αw is a column vector.
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3 Numerical Simulations
The experiments conducted in this paper take the shortcut of determining n̄
by assuming the g(n) function to be such that the optimal n̄ does not depend
on the state variables in the problem. This circumvents the need to solve the
optimization problem at each step and reduces the evolution of the economy to
the mechanics presented above. There is a loss of the endogenous transmission
mechanism which would come from changing n̄ as the state of the world changes,
but this is compensated by an enormous gain in numerical implementability.
Calibration
Here we follow Shimer (2005), Mortensen and Nagypal (2007), Cooper, Halti-

wanger and Willis (2007), and Zhang (2008), adapting where appropriate for
our weekly frequency. CHW use an annual interest rate of 4%, while Shimer
uses a value around 5%. We use 5%. CHW report that a value of θ, the weight
of firms in the matching function, of 0.64. Shimer uses a value of 0.28 for this
parameter. We use the mid point of these two values, 0.46, which is within the
plausible range proposed by Petrongolo and Pissarides (2001).
CHW report a monthly job finding rate equal to 0.61, while Shimer reports a

value of 0.45, and Zhang reports a value of 0.309 for canadian data. Disregarding
contacts this implies on a weekly frequency:

αw + (1− αw)αw + (1− αw)
2
αw + (1− αw)

3
αw = 0.61

which in turn implies αw = 0.21 or for Shimer’s number αw = 0.14, while
for Zhang’s number it is αw = 0.08825.14 We note here that over four weeks
we expect few contacts to lose their jobs, so that we can use this number to
benchmark αwn̄ .

αwn̄ = γ
³ v
ū

´θ
φ (n̄)

and so we calibrate the φ function such that we obtain αw7 ≈ 0.15.15
Shimer uses a quarterly separation rate of 10% which delivers an expected

employment duration equal to 30 months or 130 weeks. This then implies a
value of (1− λ) = 1/130, and we use this value. Zhang finds that canadian
jobs have an expected duration of 146 weeks. Given a value of the monthly
separation rate in Canada of 0.03 we can compute a gross value of our weekly
λ simply by doing (1− λ) = 0.03/4.35 = 1/145.16 In the case of Shimer the
separation rate used is 0.10 at the quarterly frequency, and a gross computation
yields (1− λ) = 0.1/13 = 1/130. The numbers match and the value of 1/130 is
our benchmark.
14Lynch (1989) reports a value of 0.30 for the first week of unemployment. This number

falls fast with duration though, suggesting the φ function is quite possibly convex rather
than concave. Alternatively, this quick drop reflects mismeasurement by including in the
unemployment pool job to job transitions (which require a week or two to clean up a desk).
15We achieve this by setting (τ0 = 1.2, τ1 = 2, N = 18).
16This is not the only way to compute the weekly separation rate out of quarterly numbers.

The reason is that we do not know how the following event is accounted for in the data: a
firm and a worker separate 2 weeks into the quarter and 4 weeks later, well before the quarter
is over, both the firm and the worker have found new matches.
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Given that the values of unemployment in Canada and the US reported by
Zhang and by Shimer are respectively 0.0778 and 0.0567, the difference must
come from the job finding rates we construct above.
CHW report that the average value of labor market tightness, the ratio v/u,

is around 0.46. However, Shimer argues that this ratio is essentially meaningless
and he calibrates it to equal 1, which in turn implies that in equilibrium αw =
αf . We therefore use the vacancy cost k to target the vacancy filling rate directly
to be αf ≈ 0.14. This implies a value of k = 16. The tightness ratio is then
implied by the rest.17 CHW estimate γ = 1.0072, and we set this parameter
to 1. We note here that in Shimer (2005), setting γ ≥ 1, and at the same
time normalizing the tightness ratio to be one, implies the ratio of matches
over vacancies or over unemployment is greater than one. Irrespective of the
frequency with wich one looks at the data, this implies awkwardly that more
matches are formed than vacancies or the number of unemployed workers. In
the present paper, this is not the case because the matching function is different
and the quantity

n̄X
i=0

φ (i)ui

adds up to a small number, bringing down the number of matches formed.
The following table summarizes the calibration of the deterministic model:

Table 1: Deterministic Model Parameters
n̄ 1− λ γ θ β y − w k τ0 τ1 N

9 1
130

1 0.46 (0.95)1/52 1 75 ∗ 0.213 1.2 2 18

Note that what matters in our construction - and following the discussion of
Hagedorn and Manovski (2007) and Mortensen and Nagypal (2007) potentially
makes the surplus of the match small - is the ratio of k to y − w, and not the
value of y − w itself. The value of αf is 0.1387 in this calibration example.
Simulations
The following simulation outcomes average thirteen runs of a panel with four

thousand individuals and four hundred periods. From each panel only about
200 individuals (5%) are unemployed in the last period of the panel. For these
200 individuals we measure the length of their current unemployment spell, the
length of the employment spell that preceded it, and the number of contacts
they have today. Then we compute three correlations. All this is done for the
different values of n̄ shown.18

Row 1 in table one shows the correlation between the length of the current
unemployment spell and the length of the employment spell that immediately
17Shimer sets the ratio k/(y−w) to 0.213. Here since y−w = 1 this would be the value of

k. But these values do not work in our model. He also sets home production at b = 0.4.
18The model is run for a number of periods first until the unemployment rate and the contact

distributions converge. It is from then on that the simulations begin, and all individuals begin
the simulations with maximum contacts n̄. After 400 periods the simulation stops and we
pick the cross sectional status of the panel at this period.
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Table 2: Correlations in artificial data
n̄ 0 1 ... 7 8 9 26

ρ1 -0.5396 -0.3562 -0.0791 -0.0716 -0.0925 -0.1109
ρ2 - 0.5904 0.6680 0.5947 0.6242 0.7205
ρ3 - -0.1465 -0.1570 -0.1628 -0.1634 -0.1879
ū 0.8759 0.6329 0.0496 0.0459 0.0431 0.0272
n 45427 32112 2627 2430 2278 1439

0 917 479 96.0 92.5 89.7 72.0
1 222 22.9 21.8 20.9 15.7
2 12.2 11.7 11.3 8.7
3 9.4 9.0 8.7 6.9
4 8.2 7.8 7.6 6.0
5 7.4 7.1 6.9 5.5
6 6.9 6.7 6.5 5.1
7 6.5 6.3 6.1 4.9
8 6.0 5.8 4.7
9 5.6 4.5
26 ... 3.3

preceeded it. Row 2 shows the correlation between the length of the current
unemployment spell and expected unemployment duration, and Row 3 com-
putes the correlatiuon between the length of the employment spell and current
expected unemployment duration. Row 4 shows the observed average unem-
ployment rate for each n̄, and the following row the total sum of unemployed
agents over the thirteen panels. The following rows show expected duration by
contacts in weeks.
Table 2 shows, for the case of n̄ = 9, the functions φ and αw, and the

histogram of the distribution of unemployed agents by contacts:

Table 3: Contacts in the matching function when max(n)=9

0 1 2 3 4 5 6 7 8 9

φ 0.010 0.065 0.092 0.110 0.123 0.134 0.143 0.151 0.158 0.164
αw 0.011 0.071 0.101 0.121 0.136 0.148 0.158 0.167 0.174 0.181
HU 32 40 28 28 25 28 48 130 459 1460

The histogram of contacts on the bottom row is slightly U-shaped because
of the steep drop in the φ function close to zero contacts. It is interesting that
the histogram of contacts for n̄ = 1, is reversed at [24579, 7533]. Because the
technology φ is not changing with n̄, a small value for the maximum number
of contacts implies that nobody has a large probability of reemployment (αw =
[0.0021, 0.0133]) which implies most workers will be unemployed long enough to
lose their single contact.
One characteristic that stands out from this calibration is that, for the n̄ = 9

case, only about 1.5% of the unemployed population (the ones with zero con-
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tacts) is really long term unemployed. If we add the workers with one con-
tact (which have 21 weeks of expected unemployment duration) this proportion
comes up to 3.5% which is closer to the number found in Weatherall (2008)
on Danish data. In any case, the shape of the duration histogram is clearly a
pattern which this model hopes to match.

3.1 Convex versus concave matching technologies

Here we pick the experiment with n̄ = 9 and compare the distributional im-
plications of a convex function φ, keeping the unemployment rate at roughly
the same level. The convex φ function has three parameters (τ0, τ1, τ2) =
(1.15, 0.6, 0.015), and is constructed as follows. First define φj = (τ0)

j − τ1.

Then define φj = −τ2 + φj/
³Pnbar

j=0 φj

´
. The correlations, expected duration

by contacts, and the job finding rates and contact distribution of unemployed
workers are given in tables 4 and 5:

Table 4: Correlations and expected duration (weeks)

n̄ = 9 Concave Convex n Concave Convex

ρ1 -0.0925 -0.2194 0 90 72
ρ2 0.6242 0.7495 1 21 47
ρ3 -0.1634 -0.3471 2 11 32
ū 0.0431 0.0465 3 8.7 23
n 2278 2420 4 7.6 17

5 6.9 13
6 6.5 10
7 6.1 7.9
8 5.8 6.4
9 5.6 5.3

Table 5: Contacts with a convex matching function
n̄ = 9 0 1 2 3 4 5 6 7 8 9

φ 0.013 0.023 0.035 0.049 0.065 0.084 0.105 0.129 0.157 0.189
αw 0.014 0.025 0.038 0.053 0.070 0.089 0.112 0.138 0.167 0.202
HU 74 138 74 56 46 50 56 135 446 1345

We can see that while the signs of the different correlations are naturally the
same, both the magnitude of the correlations and the shape of the distributions
change with the shape of the φ function, which is good news for identification. At
this stage there is a variety of moments that characterize the dynamic behaviour
of the model which we cannot measure without adding aggregate shocks. We
do this in the next section.
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4 Aggregate Shocks
The aggregate state affects productivity, y, and the destruction rate, λ. We add
to this the cost of opening a vacancy, k, only for linear algebra reasons. For
simplicity of exposition we work here with two aggregate states, indexed x1 and
x2. The transition between them is governed by the Markov matrix:

Π =

∙
q 1− q

1− p p

¸
4.1 Firms

The value of posting a vacancy is now

V (xi) = −ki + βαf (xi)Ei (J) + β(1− αf (xi))Ei (V )

where the probability a vacancy meets an unemployed worker is denoted by
αf (xi). Free implies V = 0 whatever the state so that

ki = βαf (xi)Ei (J)

A filled job produces an ouput yi ≡ y (xi), which is divided between the firm
and the worker, with wi ≡ w (xi) > b. Matches have an exogenous break up
rate of 1− λi ≡ 1− λ (xi). The value of a filled vacancy is

J (xi) = yi − wi + βλiEi (J) + β(1− λi)Ei(V )

and in matrix form

J =

∙
J (x1)
J (x2)

¸
=

∙
y1 − w1
y2 − w2

¸
+ β

∙
λ1 0
0 λ2

¸
Π

∙
J (x1)
J (x2)

¸
J = [I − βDiag (λ)Π]

−1
∙
y1 − w1
y2 − w2

¸
which implies we must have a vector of constants with dimension given by the
number of aggregate states:

1

αf (xi)
=

β

ki
Ei (J)

1/αf =

∙
1/αf (x1)
1/αf (x2)

¸
= β

∙
1/k1 0
0 1/k2

¸
ΠJ

4.2 Probability matrices.

We still have the transition matrices M and M̂ as before, and one difference is
that they are indexed by the aggregate state since the destruction rate varies
with the aggregate shock, λ (xi). This is, however not the only difference. In
our example of two states we will assume that it is possible for the maximum
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number of contacts to differ in state zero and state one. In this case the two
transition matrices change in a subtle way. We give here an example where
n̄ (x2) = 2, and n̄ (x1) = 1. We have then for unemployed agents in state i:

M (xi) =

⎡⎣ 1 0 0
(1− λi) λi 0

(1− λi)
2 2λi (1− λ) λ2i

⎤⎦
with i = 1, 2, while for employed agents we have:

M̂ (x2) =

⎡⎣ (1− λ2) λ2 0

(1− λ2)
2 2λ2 (1− λ2) λ22

(1− λ2)
2 2λ2 (1− λ2) λ22

⎤⎦
M̂ (x1) =

⎡⎣ (1− λ1) λ1 0
(1− λ1) λ1 0

(1− λ1)
2 2λ1 (1− λ1) λ21

⎤⎦
which marks a qualitative difference from the deterministic model.
We emphasize here that the exercise with aggregate shocks will keep n̄ con-

stant across the aggregate states. This will allow us to see the impact of the mere
inclusion of this mechanism in the standard model, without the contributions
of changes in its intensity.
Some reflections are nevertheless in order. The aggregate state will always

be ranked by its impact on total match productivity, y. But it is unclear what
the variation of n̄ should be across aggregate states. Furthermore with several
parameters likely to change with the aggregate state this is hard to predict.

4.3 Mechanics

The transition from unemployment to unemployment when the current aggre-
gate state is xt is now:

[ũt+1] = ūt [ut]× T (xt, St)

T (xt, St) = Diag (1− αw (xt, St))×M (λt)

The incoming cohort (employment into unemployment) is:

(1− λt) (1− ūt) [et] M̂ (λt)

The transition of employment into employment is:¡
Ze
t+1

¢0
= λt(1− ūt) [et] M̂ (λt)

and the transition of unemployment into employment yields the scalar:

α (xt, St) ūt [ut]

We will proceed with the simplifying assumption that the maximum number
of contacts never changes, n̄ (xt) = n̄.
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4.4 The matching function

With a constant n̄ the algebra here is trivial again. From the firm side we know
that αf is a constant which depends on the aggregate state:∙

1/αf (x1)
1/αf (x2)

¸
= β

∙
1/k1 0
0 1/k2

¸
ΠJ

and where αf (xt) = m (xt) /vt. All we need is

mt

vt
= γ

µ
ūt
vt

¶1−θ n̄X
i=0

φ (i)ui,t = αf (xt)

which then implies

vt = ūt

Ã
γ

αf (xt)

n̄X
i=0

φ (i)ui,t

! 1
1−θ

We see that it is only through the expectation of J inside αf (xt) that the
parameters of the matrix Π enter vacancies and affect dynamics, in the world
where n̄ is fixed. Other than that the matrix Π manifests itself through the
realized path of the aggregate shock.
Discussion
We can also explore having (N, τ0, τ1) change with the aggregate state. This

requires discussion. Is it the case that in good times the contribution of a contact
for finding a job is smaller than in bad times (perhaps because its is easier to
find a job without contacts in good times)? Or is the contribution of a contact
for finding a job higher in good times? One reason this matters is because the
distribution of contacts can either smooth or magnify the effect of the aggregate
shock. We have no a-priori reason to think one way or another, and perhaps
the data will be able to tell us something about this. At this stage we do not
pursue these ideas, and the φ function is not affected by aggregate shocks.

4.5 Unemployment Duration Algebra

Consider a worker who enters unemployment with zero contacts. His probability
of reemployment αw0 now can change every period depending on the aggregate
state. We can show that for zero contacts, given initial aggregate state xt,
expected duration is given by

d0 (xt) = αw0 (xt) + 2(1− αw0 (xt))Πt [α
w
0 ]

+3(1− αw0 (xt))Πt [Diag (1− αw0 )Π] [α
w
0 ]

+4(1− αw0 (xt))Πt [Diag (1− αw0 )Π]
2 [αw0 ] + ...

= αw0 (xt) + (1− αw0 (xt))Πt

h
(I − Z)−1

³
1 + (I − Z)−1

´i
[αw0 ]
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However, this is not enough. In practice the computation of expected unem-
ployment duration is much harder because as aggregate shocks hit, the distri-
bution of workers over contacts changes. The αwn (x) functions are themselves
changing over time because the distributions are changing.
To overcome this difficulty, in the stochastic model we measure actual dura-

tions. Once we pick a cross section of workers at a given period, we measure its
characteristics both backward and forward looking. For all workers at this mo-
ment we measure their unemployment spell to date, the length of the previous
employment spell, and the length of the subsequent duration of unemployment
from this period onwards. Rather than measuring expected duration of unem-
ployment we measure observed subsequent duration.
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5 Numerical Simulations
While the dynamics arising from the proper solution to the model are certainly
more interesting, we believe it is useful to use a constant n̄ to examine the time
series behaviour of this economy. We preserve the calibration used previously,
but now we need to target new moments. The following table summarizes
moments for the US and Canadian economies taken from Zhang (2008).19

Table 6: Actual data. USA and Canada
u v v/u αw δ y

CA σ 0.162 0.237 0.367 0.105 0.096 0.021
US σ 0.190 0.202 0.382 0.118 0.075 0.020
CA ρ1 0.956 0.956 0.959 0.791 0.795 0.876
US ρ1 0.936 0.940 0.941 0.908 0.733 0.878

CA μ 0.078 0.309 0.030
US μ 0.057 0.452 0.023

And also the following correlations

Table 7: Quarterly data. USA and Canada

ρ (v, u) ρ (v/u, αw) ρ (δ, y)

CA -0.689 0.753 -0.396
US -0.894 0.948 -0.524

The correlation between the destruction rate, 1 − λ ≡ δ, and productivity
dictates the construction of the shocks. We form the two shocks as different
linear combinations of two identical and independent Markov processes (they
have the same transition matrix):

y = x1 + x2

δ = x1 − ψx2

where the support of δ is constructed around the value 1/130 and the support
of y is constructed around 1.20 With the parameter ψ set at 3.1, the correlation
between the two variables is around -0.36. Both x1 and x2 are generated from
a discretization of an AR1 process on a five point support using Tauchen’s
method.21 The serial correlation parameter is 0.98. The standard deviation is
19The top four rows have moments for quarterly frequency data, while the bottom two rows

have moments for monthly frequency data. The data are measured always as log(xt)− log(x̄),
where x̄ is the Hodrick-Prescot trend. CHW estimate the serial correlation of market tightness
to be 0.93 using monthly data. The average monthly separation rate for the US is computed
simply as 0.1 (the quarterly rate in Shimer (2005)) divided by 4.3482, which is the average
number of weeks in a month - a year has 365.25 days on average.
20 In fact here it is the support of y −w, since the two are indistinguishable.
21We suspect that the Ornstein-Uhlenbeck process used by Shimmer (2005) may be useful

to tackle some correlations arising from time aggregation.
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set to match the standard deviation of productivity, although we fall just a little
short in the present calibration.
Tables 8 and 9 show standard deviations, first order serial correlations, and

averages, of the stochastic model with the concave φ function used before and for
n̄ = 104. Everything is identical to the previous numerical experiments except
where adjustments must be made for the stochastic nature of the problem. The
initial run of the model is made using a constant realization of the aggregate
state at its highest value. After convergence the stochastic path of aggregate
shocks is used for the following 600 periods, and we make use of 520 weeks which
are ten years of (artificial) data.22

Table 8: Moments in artificial data with a maximum of 104 contacts
u v v/u αw δ y α̂w δ̂

m

σw 0.105 0.049 0.064 0.041 0.087 0.0173
σm 0.106 0.050 0.064 0.042 0.099 0.0173 0.155 0.0063

ρ1w 0.999 0.962 0.982 0.990 0.973 0.970
ρ1m 0.982 0.869 0.941 0.970 0.957 0.888 0.594 -0.018

μw 0.058 0.058 1.01 0.127 0.0078 1.001
μm 0.058 0.058 1.01 0.127 0.0078 1.001 0.401 0.032

We have data here for weekly and monthly frequencies. The monthly fre-
quency data is sampled every fourth week, - in the first 6 columns - except in
the last two columns where the relevant measure must be constructed.
The job finding rate at lower frequencies, α̂w, is defined as a moving average

and thus has weekly values. For the monthly frequency, we take the unemployed
population at the start of each week and measure their finding rate over the
following four weeks:

αw,mt = αwt + αwt+1 (1− αwt ) + αwt+2
¡
1− αwt+1

¢
(1− αwt )

+αwt+3
¡
1− αwt+2

¢ ¡
1− αwt+1

¢
(1− αwt )

where each weekly αwt is the weighed average

αwt =
nX
j=0

αwt (j)uj

Now, for example, the serial correlation of this variable is then measured by
first sampling it every fourth week and then running an AR1 regression on this
sampled time series. The other measures are also taken on the sampled time
series.
The job destruction rate at lower frequencies, δ̂

m
, is constructed in a similar

way. For the monthly frequency we have the forward looking measure:

δ̂
m
= δt+δt+1(1−δt)+δt+2 (1− δt+1) (1− δt)+δt+3 (1− δt+2) (1− δt+1) (1− δt)

22One issue is whether the cross sectional moments are affected by the particular aggregate
state at which the cross section is selected.
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where δt is simply the destruction rate in week t. It is worth noting how both
αw,mt and δ̂

m
perform.

And finally, a set of correlations where we can see that vacancies and un-

Table 9: Moments with a maximum of 104 contacts

ρ (v, u) ρ (v/u, αw) ρ (v/u, α̂w) ρ (δ, y) ρ δ̂, y

w 0.904 0.951 -0.361
m 0.903 0.950 0.069 -0.361 -0.004

employment are strongly positively correlated (we have not adressed this issue)
and at the weekly frequency the other correlations are close to the data. unfor-
tunately, when we aggregate to monthly frequencies, these correlations are lost
for the more relevant measures.

5.0.1 Network productivity

In an interesting paper, Galeotti and Merlino (2008) use the measure: "the
proportion of newly employed workers that found a job through a friend or
acquaintance that worked in the same place as the new employee". This measure
is positively correlated (0.44) with the unemployment rate.23

This measure of network productivity is only part of the picture, since it can
be positively correlated with the unemployment rate and still the network be
creating fewer jobs. The network can be absolutely less productive during times
of high unemployment. In fact, we can consider a world where everyone has one
cousin, and therefore the "network" is constant and exogenous, and where all
jobs are first filled by asking current employees about their cousins. When the
unemployment rate is high, few new jobs are being created and more "cousins"
are likely to be unemployed. For a firm with an open vacancy, it is more likely
that one of its employees will have an unemployed cousin and so at times of high
unemployment, more jobs will be filled by cousins, and less by a random draw
from the market. In this world there is no notion of "network productivity",
and yet the correlation of the empirical measure with the unemployment rate
may be positive.24

Here, in the present paper, by construction close to 100% of jobs are found
with some unspecified use of contacts (inside the φ function) - the absolute
exception being the finding rate for workers with zero contacts. We therefore
need to construct a different measure of "network productivity". We use two
notions, which are related to the number of contacts of the set of unemployed
workers, and its subset of those who find jobs on a given week.

23These authors also state that "between 30% and 50% of jobs are filled through social
exchange of information.", and this number matches well with the numbers obtained from the
Danish survey.
24This is in fact not obvious because in equilibrium firms would tend to employ workers in

pairs (of cousins), and so it is not clear that more cousin-pairs would be broken in times of
high unemployment.
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The first measure of network productivity is: the difference between, on one
hand, the average number of contacts of the cohort of unemployed workers,
and, on the other hand, the average number of contacts of the subset of the
unemployed that finds a job in the period (job finders):

NP1 =
Total Contacts of Job Finders
Number of Job Finders

− Total Contacts of all Unemployed
Number of Unemployed

Regarding this measure, it is not clear whether the average number of contacts
of the unemployed population should rise or fall as the unemployment rate
increases. This is because as unemployment increases more workers with lots
of contacts enter the unemployment pool, but at the same time unemployment
duration might increase. In fact, it does: taking in each period the cohort of
workers that enters unemployment, their average onward realized duration of
unemployment is positively correlated - with a coefficient of 0.72 - with the
unemployment rate verified at the time they lost their job.
We know a priori less about what happens to the average number of contacts

of job finders. This depends on the shape of the job finding rate function which
depends on the shape of the distribution of contacts and of the φ function.
The behaviour of this gap measure will tell us something about how the labour
market works in this model.
The second measure of network productivity is the fraction of job finders

with less than n̄
4 contacts.

NP2 =
Number of Job Finders with less than n̄

4 contacts
Number of Job Finders

It is useful to emphasize that it is hard to draw a normative inference from
just looking at this measure. Is it a good or a bad thing if the measure NP2
rises? In fact, in the data, is it a good or a bad thing if a measure of "network
productivity" is positively correlated with unemployment? In light of this, what
the measures used here tell us is how to understand the way shocks interact with
the model of the labour market we have constructed.
The following table shows the weekly frequency correlation between these

two network productivity measures and the unemployment rate in an artificial
panel with 58500 workers. We use the concave φ function described above.

Table 10: NP and unemployment
NP1 NP2 U

NP1 1 0.22 -0.10
NP2 1 -0.00
U 1

In this simulation average unemployment is about 5.77.% or 3375 workers,
and the average number of job finders each week is 434 or about 12.86% of the
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unemployed. Of these job finders, an average of 87 workers has less that n̄/4
contacts (or roughly 20% of job finders).25

We see that these "network productivity" measures are negatively correlated
with the unemployment rate. The tail measure (NP2) has a zero correlation with
unemployment. Our "gap" measure is negatively correlated. When unemploy-
ment increases, the average number of contacts of the unemployed rises more
(see below) than the average number of contacts of job finders. The question
is how can this be interpreted as a productivity measure? Well, job finders are
less driven by contacts than by the macroeconomy. This is a model where the
network is important, but the network productivity seems to be lower during
periods of high unemployment because high unemployment destroys part of the
network. This makes sense: as workers lose their jobs and spend more time
unemployed, their contacts vanish faster and matter less.
It is useful to decompose the correlation of NP1, in its components:

Table 11: NP1 Decomposed
ACJF1 ACU1 U

ACJF1 1 0.98 0.16
ACU1 1 0.17
U 1

We see that it is the average number of contacts of the unemployed that
is responsible for the bigger share of the correlation. This is also the part of
the model where we have an explicit mechanism. The response of the average
number of contacts of job finders depends more on the φ function for which we
have not much direct empirical guidance.26

Note that the average number of contacts of job finders is positively corre-
lated with the unemployment rate, and in fact we can think of this as a similar
measure to that of Galeotti and Merlino, since as job finders have more contacts
they are more likely to find jobs where ther cousins are working (if the place
where their cousins work has many employees and if their cousins don’t neces-
sarily have all the information about the job openings- because they work in a
different division perhaps).

5.0.2 Duration

This model delivers clear implications for the pattern of employment and unem-
ployment durations. Specifically, it predicts that workers separating from jobs
with longer durations, will have on average shorter unemployment durations. It
also generates exponential decay in unemployment duration. These are patterns
we can look for in the data.
25 In a simulation with n̄ = 52, the unemployment rate is 6.3% or 3700 workers, the average

number of job finders is 431 or 11.6% of unemployed, and the number of job finders with less
than n̄/4 contacts is 43 or 10% of job finders.
26This is one of the empirical challenges: to use indirect inference, or find moments using

the model that may help us identify this function in the data.
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We now construct a duration matrix in the same manner as what we also
obtain from the data.27 From our artificial data we select a given period, and for
that period we select first all employed workers. Then we follow these employed
workers for the next 13 weeks and extract all those that start an unemployment
spell in this period. Then we measure the length of their subsequent unemploy-
ment spell, as well as the length of their previous employment spell.
The element (i,j) of this matrix has the number of unemployed workers that

find a job after (j) weeks of unemployment, following a previous employment
spell of (i) weeks. Dividing by the total number of elements in the matrix this
is a joint density value f (i, j). There are several aspects of this density matrix
which are of interest. The first obvious one is the correlation coefficient between
durations:

ρweekd =

XX
(xi − x̄) (yj − ȳ) f (xi, yj)hX

(xi − x̄)2 g (xi)
i1/2 hX

(yj − ȳ)2 g (yj)
i1/2 = −0.1893

and here, the empirical counterpart of this measure is positive at 0.121.28

But other less obvious characteristics have to do with where the matrix is
populated, and how the shape of this density matches what we obtain from the
data. A first indicator is the pattern of exponential decay in unemployment
duration. We have data on a cohort of 18473 danish workers that start their
unemployment spell in first quarter of 2002. The unconditional density of un-
employment duration - here shown only for the first 24 weeks which uses 4975
observations - is concave (left picture) and log-linear as we can see in the right
hand side picture:
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Interestingly, in red (thinner line) we have the corresponding values for the
artificial data.

6 Conclusion
In this paper we construct a version of the Mortensen-Pissarides search model
where the duration of unemployment is not independent of the duration of

27 In the data we select all Danish workers that start an unemployment spell in the first
quarter of 2002.
28 In a simulation with n̄ = 52, this value is -0.147.
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employment. Here, in the course of their working activity, employed workers in-
vest in social contacts with other employed workers. These professional contacts
will help them find jobs in the event of unemployment. These social contacts
are a type of capital, similar to experience or skill. In the same spirit they
also"depreciate" during unemployment spells. Here this happens because the
contacts a worker has acquired can also become unemployed and unemployed
contacts are assumed to be useless - an extreme version of less useful. In this
model the longer you have been working, the more contacts you are likely to
have, and the more contacts you have the shorter your expected unemployment
duration will be.
Interestingly, on a first unconditional examination of a cohort of unemployed

workers in Danmark, this pattern seems to be the reverse: the longer you have
been working previously, the longer unemployment duration is. One task in
progress is to examine the Danish data to see if we can separate out the con-
tributions of age, gender and education from possible network characteristics of
the different individuals. We expect the initial empirical result to be reversed.
We simulate a stochastic version of the model to generate duration moments

as well as "network productivity" moments. This is a model where the network
is important, but the network productivity seems to be lower during periods of
high unemployment. This makes sense: as workers lose their jobs and spend
more time unemployed, their contacts vanish faster and matter less. This seems
contrary to some empirical evidence, but given that the model presented in
this paper is quite straightforward, the mechanisms it generates are useful to
understand possible network effects in the data.
Much identification work remains to be done. The model generates expo-

nential decay in unemployment duration, and this is exactly what we see in the
data. This is no more than very superficial evidence of network mechanisms
and can be replicated with other theories. However, the exact shape - slope and
intersept - of the duration density may provide further identifying variation.
Also, the entire shape of the joint density of unemployment versus employment
duration is also potentially revealing.
Finally, the model can be extended to tackle other possible implications of

network mechanisms in the labour market.29 For example, we see in the data
that workers displaced (due to firm closure) from smaller firms have a higher
chance of becoming long term unemployed. This is over and above individual
and sector characteristics. This suggests market structures where average firm
size is bigger may be more efficient in terms of unemployment dynamics.

29An interesting extension of this model is to consider the vacancy supply model of Cooper,
Haltiwanger and Willis (2007) to see how the richer dynamics of vacancies induced by this
mechanism interact with the network structure.
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7 Appendix: The probability distribution for an
employed agent.

Given an upper bound n̄ on the number of connections we can derive the ex-
pected distribution of connections at the point of job destruction for a given
agent, when he starts working. Starting from zero in a new job the worker
makes a connection in the first period and continues making a new connection
each period until he reaches n̄ connections. But the worker can also lose its job
along the way, as can his connections.
If the worker is unemployed after one period of work, an event which occurs

with probability (1− λ), the worker can have either zero or one contacts with
respective probabilities ((1− λ) , λ). If he becomes unemployed after two peri-
ods, which happens with probability λ (1− λ), he can have entered the second
period with one contact (probability λ), and then he can have [0, 1, 2] contacts

at the end of period two with probability vector
³
(1− λ)2 , 2λ(1− λ), λ2

´
. But

he can also have entered the second period with only zero contacts - an event
with probability (1− λ) - and then he can have at most one contact as above.

We can write this algorithm in matrix form. Here we use an example where
n̄ = 2. All the algebra is from the perspective of time zero, when the worker
starts his new job. The first period transition is between zero contacts and the
set of (0, 1) possible contacts, which defines a (1× 3) transition vector over the
set [0, 1, 2], given by M̂0 =

£
(1− λ) λ 0

¤
.

The second period transition is between the set of (0, 1) possible contacts
and the set of (0, 1, 2) possible contacts, which defines a transition matrix (with
one extra rows of zeros):

M̂1 =

⎡⎣ (1− λ) λ 0

(1− λ)2 2λ (1− λ) λ2

0 0 0

⎤⎦
Since we are assuming that n̄ = 2, the third period transition is between the
set of (0, 1, 2) possible contacts and the set of (0, 1, 2) possible contacts, which
defines a (3× 3) transition matrix:

M̂2 =

⎡⎣ (1− λ) λ 0

(1− λ)
2
2λ (1− λ) λ2

(1− λ)
2
2λ (1− λ) λ2

⎤⎦
This generates the following sequence:

(1− λ) M̂0, λ (1− λ) M̂0M̂1, λ2 (1− λ) M̂0M̂1M̂2,

λ3 (1− λ) M̂0M̂1(M̂2)
2, λ4 (1− λ) M̂0M̂1(M̂2)

3, ...

and we can show that the distribution of connections contains a matrix geometric

series which converges to
³
I − λM̂2

´−1
, if all the eigenvalues of T̂ = λM̂2 are
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less than 1 in absolute value. The probability of losing the job after k periods
of employment is λk−1 (1− λ). Taking this into account, after some algebra the
density over contacts becomes

Se = (1− λ) M̂0

∙
I + λM̂1

³
I − λM̂2

´−1¸
and this is a vector with three elements which sum to one.

Se =
£
e0 e1 1− e0 − e1

¤
where e0 is the fraction of the employed population with zero contacts.
We repeat the algebra quickly for the example where n̄ = 1. All the algebra

is from the perspective of time zero, when the worker starts his new job.
The first period transition is between zero contacts and the set of (0, 1)

possible contacts, which defines the transition vector over the set [0, 1], M̂0 =£
(1− λ) λ

¤
. The second period transition (and the last step) is between the

set of (0,1) possible contacts and the set of (0,1) possible contacts, which defines
a a (2× 2) transition matrix:

M̂1 =

∙
(1− λ) λ
(1− λ) λ

¸
After some algebra the density over contacts becomes

D0 = (1− λ) M̂0

³
I − λM̂1

´−1
=

£
e0 1− e0

¤
=
£
1− λ λ

¤
and in steady state equilibrium this is the density over contacts of the employed
population, Se, as well as the equilibrium distribution over contacts of the cohort
entering unemployment (since the probability of losing a job does not depend on
the number of contacts). The last equality is specific to the n̄ = 1 example and
is easy to prove. The correspondence of D0 to the Pascal Triangle expression is
not generalizable.
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