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Abstract

Consider the problem of deciding a winner among three alternatives when voters have com-
mon values, but private information regarding the values of the alternatives. We compare
approval voting with other scoring rules. For any finite electorate, the best equilibrium under
approval voting is more efficient than either plurality rule or negative voting. If any scoring
rule yields a sequence of equilibria that aggregates information in large elections, then approval
voting must do so as well.

1 Model

There are three candidates K = {1, 2, 3}. There is a finite set of I voters. Each voter i can submit
a ballot, or vote vector, (ci(1), ci(2), ci(3)), where ci(k) denotes the score allocated by voter i to
candidate k. The scoring rule defines the permitted ballots. As in Myerson (2002), we consider
(A,B)-scoring rules, that are defined by two parameters 0 ≤ A ≤ B ≤ 1. For a fixed (A,B)-scoring
rule, each voter can submit either a permutation of (1, B, 0) or of (1, A, 0). Let C denote the space
of all possible ballots. Given a profile of ballots (c1, . . . , cI), the winner W (c1, . . . , cI) of the election
is the candidates whose total score

∑
I ci(k) is maximal. In the case of a tie, uniform randomization

is used to select among the winners.
Some specific (A,B)-scoring rules are well known. The case (A,B) = (0, 0) is plurality voting,

where each voter can support a single candidate. The case (A,B) = (1, 1) is negative voting, where
each voter can oppose a single candidate. The case (A,B) = (0.5, 0.5) is the Borda count, where
candidates are totally ranked and receive scores proportional to their ranks. Of particular interest
is the case (A,B) = (0, 1). This case is approval voting, where each voter decides a set of one or
two candidates to support.
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Most of the literature on approval voting focuses on private values. We focus on the case of
pure common values. Let Ω be a finite set of states of the world. The prior probability of state ω
is P (ω). All voters share a common utility U(k|ω) for candidate k = 1, 2, 3 in state ω. We assume
that there is a unique best candidate kω that maximizes U(k|ω) for each state of the world.

The finite set S is a set of possible signals. The conditional probability of signal s ∈ S given ω is
denoted F (s|ω). Given the state ω, each voter receives a conditionally independent signal following
the distribution F (s|ω).

A strategy σ : S → C is a function assigning a vote vector to each signal. When σi(s) is a
degenerate lottery with probability one of c, we slightly abuse notation and write σi(s) = c. A
profile (σ1, . . . , σI) of strategies is symmetric if σi = σj for all i, j. When referring to symmetric
strategy profiles, we drop the subscript. The common expected utility for the strategy profile
σ(s) = σ1(s1), . . . , σI(sI) is

EU(σ) =
∫

Ω

∫
S

∫
X I

U (W (c1, . . . , cI) |ω) dσ(s) dF (s|ω) dP (ω).

Consider a sequence of symmetric strategies (σI). We say that the probability of error goes to zero
if, for every ω, ∫

S

∫
X I

U (W (c1, . . . , cI) |ω |ω) dσI(sI) dF (sI |ω)→ U(kω|ω),

as I goes to infinity. The probability of error goes to zero if and only if the probability of the best
candidate kω winning the election goes to one for every state of the world.

A smaller and newer literature studies information aggregation for multiple candidates with
common or interdependent values. A theme in these studies is that approval voting outperforms
other institutions. However, this comparison is currently understood only for restricted classes
of environments. Goertz and Maniquet (2009) consider a class of environments where voters are
indifferent between the two inferior candidates. Within this class, approval voting is the only simple
scoring rule that admits an informationally efficient limit equilibrium.1 Bouton and Castanheira
(2010) consider a class of environments where a majority of voters prefer two candidates to a third
minority candidate, but have incomplete information about which of the two candidates is better.
Within this class, approval voting yields a unique limit equilibrium that efficiently aggregates
information, while plurality rule can have multiple equilibria. Both papers work with Poisson
population uncertainty, which allows for a cleaner construction of limit equilibrium.

Our analysis, which makes no assumptions either on the information or on the utility, applies
to arbitrary environments. However, we do not attempt to explicitly construct limit equilibria.
Instead, we argue indirectly by adapting an insight due to McLennan (1998): in a common value
election, any strategy that maximizes utility is an equilibrium. While our hypotheses are more
general than those in the literature, our conclusions are also less sharp. We cannot speak to the

1A scoring rule is simple if B = 0. For example, negative voting is not a simple scoring rule.
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uniqueness of equilibrium nor to its characterization.

2 Results

Our first result asserts that the maximal equilibrium utility under approval voting is greater than
or equal to the maximal equilibrium utility under approval voting or under negative voting.

Proposition 1. If σ∗ is a symmetric equilibrium for plurality rule or for negative voting, then
there exists a symmetric equilibrium ρ∗ such that U(ρ∗) ≥ U(σ∗).

Proof. First take the case where σ∗ is a symmetric equilibrium of plurality rule. Then define the
strategy profile ρ for approval voting by ρ(s) = σ∗(s).2 Then the expected utility of ρ is identical to
the expected utility of σ∗. Since U is continuous and the space of symmetric strategies is compact,
there exists a symmetric strategy profile ρ∗ that maximizes the common expected utility U for
approval voting among all symmetric strategy profiles. By Theorem 2 of McLennan (1998), ρ∗ is
an equilibrium for approval voting. By its construction, U(ρ∗) ≥ U(ρ) = U(σ).

The argument for σ∗ as a symmetric equilibrium of negative voting is identical.

While the reasoning for Proposition 1 is mathematically straightforward, to our knowledge it
has not been previously observed. Specifically, any ballot that can be submitted under plurality
rule can also be submitted under approval voting. So the expected utility under plurality rule can
be replicated under approval voting, by having each voter approve the singleton set corresponding
to the candidate that she would support under plurality rule. Of course, approval voting also allows
other ballots that support two candidates. However, the observation of McLennan (1998) is that the
best equilibrium in a game of common values must be as good as any strategy profile. So the best
equilibrium under approval voting must be at least as efficient as any equilibrium under plurality
rule. The argument makes transparent the connection between approval voting and plurality rule:
the fundamental reason that approval voting outperforms plurality rule (or negative voting) is
that approval voting allows a larger set of feasible ballots. While similar arguments for approval
voting are suggested in private value environments, its flexibility has direct force in common value
environments.

Our second finding is that the best asymptotic equilibrium under approval voting is at least as
good as the best asymptotic equilibrium under any interior (A,B)-scoring rule where 0 < A ≤ B <

1. Unlike plurality rule or negative voting, the strategies under general (A,B)-scoring rules cannot
be exactly replicated by approval voting. When A 6= B, a general (A,B)-scoring rule allows for
twelve distinct vote vectors, while approval voting allows only for six. However, the outcome of the
(A,B)-scoring rule can be approximated through appropriate randomization of the ballots under
approval voting. Specifically, the expected vote counts can be maintained under approval voting.
This approximation becomes asymptotically precise, so the limit outcome under a general scoring
rule can be replicated by approval voting.

2To be pedantic, we identify σ∗(s) within the strictly large strategy simplex for approval voting.
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Proposition 2. Suppose A,B ∈ (0, 1). If there exists a sequence (σI) of symmetric strategies for
the (A,B) scoring rule that takes the error probability to zero, then there exists a sequence (ρ∗I) of
symmetric equilibria for approval voting that takes the error probability to zero.

Proof. For any symmetric strategy profile σ of the (A,B) scoring rule, define the symmetric strategy
profile ρ of approval voting with permutations of the following:

[ρ(s)](1, 1, 0) =
∑

X=A,B

X {[σ(s)](1, X, 0) + [σ(s)](X, 1, 0)} (1)

[ρ(s)](1, 0, 0) =
∑

X=A,B

(1−X) {[σ(s)](1, X, 0) + [σ(s)](1, 0, X)} (2)

Without loss of generality, fix a state ω such that kω = 1. We now prove that the limit proba-
bility that candidate 1 wins the election goes to one, conditional on the state ω. All probabilities
and expectations hereon are conditional on ω. Define the random variable

δIi = σIi · (1, 0, 0)− σIi · (0, 1, 0),

where the “·” operation denotes the dot product. The random variable δIi is the difference in
the scores given to candidate 1 and candidate 2 by voter i when playing the strategy σI in the
(A,B)-scoring rule. Similarly, let

∆Ii = ρIi · (1, 0, 0)− ρIi · (0, 1, 0),

i.e. the difference in the scores of candidate 1 and candidate 2 when playing the strategy ρI under
approval voting.

We first show that the expectation of the scores differences are identical under σ and ρ.

Lemma 1. E(δIi) = E(∆Ii).

Proof. We will show that the expectations conditional on a fixed signal are equal: E(δIi|si = s) =
E(∆Ii|si = s) for all signals si. Then the unconditional expectations are also equal.

First, computing the expectation for the (A,B)-scoring rule:

E(δIi|si = s) =
∑

X=A,B

{[σI(s)](1, 0, X)− [σI(s)](0, 1, X)}

+
∑

X=A,B

X {[σI(s)](X, 0, 1)− [σI(s)](0, X, 1)}

+
∑

X=A,B

(1−X) {[σI(s)](1, X, 0)− [σI(s)](X, 1, 0)}
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Next, using the construction of ρI in (1) and (2) for approval voting:

E(∆Ii|si = s) = [ρI(s)](1, 0, 0) + [ρI(s)](1, 0, 1)− [ρI(s)](0, 1, 0)− [ρI(s)](0, 1, 1)]

=
∑

X=A,B

(1−X) {[σ(s)](1, X, 0) + [σ(s)](1, 0, X)}

+
∑

X=A,B

X {[σ(s)](1, 0, X) + [σ(s)](X, 0, 1)}

−
∑

X=A,B

(1−X) {[σ(s)](X, 1, 0) + [σ(s)](0, 1, X)}

−
∑

X=A,B

X {[σ(s)](0, 1, X) + [σ(s)](0, X, 1)}

The right hand sides are equal to each other.

Consider the case where lim V(δIi) → 0 for sufficiently large I. Then δIi converges to a point
mass on some constant E for large I. However, because (A,B) are interior, 0 is not part of the
support of δIi because it is impossible for a ballot to provide equal scores to candidates 1 and 2.
Therefore, since the probability that

∑
Ii δIi > 0 goes to one, it must be the case that the point

mass is located at a strictly positive point. This point defines the expectation lim E(δIi) = E > 0
for large enough I. By Lemma 1, it is also the case that lim E(∆Ii) = E > 0 for large enough I.
By the weak law of large numbers for triangular arrays, the probability that

∑I
i=1 ∆Ii/I > 0 goes

to one. Hence the probability
∑I

i=1 ∆Ii > 0 also goes to one.
So, without loss of generality, suppose lim V(δIi) > 0 for all I, i. First, note that:

Pr

(
I∑
i=1

δIi ≤ 0

)
= Pr

(∑I
i=1 δIi − IE(δIi)√

IV(δIi)
≤ − IE(δIi)√

IV(δIi)

)

By the Central Limit Theorem for triangular arrays:∣∣∣∣∣Pr

(∑I
i=1 δIi − IE(δIi)√

IV(δIi)
≤ − IE(δIi)√

IV(δIi)

)
− Φ

(
− IE(δIi)√

IV(δIi)

)∣∣∣∣∣→ 0

Since Pr
(∑I

i=1 δIi ≤ 0
)

must go to zero by the assumed efficiency of σI , the triangle inequality

implies that Φ
(
− IE(δIi)√

IV(δIi)

)
must go to zero. Hence:

√
I

E(δIi)√
V(δIi)

→∞.
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Then

√
I

E(∆Ii)√
V(∆Ii)

=
√
I

E(δIi)√
V(∆Ii)

, by Lemma 1

=
√
I

E(δIi)√
V(δIi)

×

√
V(δIi)
V(∆Ii)

.

The second factor
√

V(δIi)
V(∆Ii)

is strictly positive. It is uniformly bounded away from zero, since
lim V(δIi) > 0 and V(∆Ii) is uniformly bounded ∆Ii takes values in a bounded set [−1, 1]. Since
the first factor E(δIi)√

V(δIi)
goes to infinity, so does the product:

√
I

E(∆Ii)√
V(∆Ii)

→∞.

Hence Φ
(
−
√
I E(∆Ii)√

V(∆Ii)

)
→ 0. Applying the Central Limit Theorem for triangular arrays and the

triangle inequality as before, we have that Pr
(∑I

i=1 ∆Ii ≤ 0
)

goes to zero.

Since the probability that Pr
(∑I

i=1 ∆Ii ≤ 0
)

goes to zero, the probability that the total score
for candidate 1 is strictly larger than the total score for candidate 2 must go to one. Similarly, the
probability that the total score for candidate 1 is strictly larger than the total score for candidate
3 also goes to one. The intersection event is that candidate 1 wins the election, and the probability
of this event goes to one.

By Theorem 2 of McLennan (1998), there must exist a sequence of symmetric equilibrium ρ∗Ii
that provides weakly more common utility than ρIi for each fixed population I. But since ρIi takes
the probability of error to zero, then ρ∗Ii must also take the probability of error to zero.
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