
Engene: A genetic algorithm classifier for content-based

recommender systems that does not require continuous user

feedback

John Pagonis, Adrian F. Clark

Abstract- We present Engene, a genetic algorithm based
classifier which is designed for use in content-based recom­
mender systems. Once bootstrapped Engene does not need
any human feedback. Although it is primarily used as an on­
line classifier, in this paper we present its use as a one-class
document batch classifier and compare its performance against
that of a one-elms k-NN classifier.

I. IN TRODUCTION

Engene is a genetic algorithm based textual content clas­
sifier. It can operate both as a batch as well as an on-line
(incremental) classifier. Our motivation in developing Engene

is for use with a Web content-based recommender system in
order to battle information overload [1].

Web content-based recommender systems filter Web pages
and present their recommendations usually through a digest.

Typically such digests are personalised collections of rank­
ordered articles. Non collaborative filtering recommender
systems infer a user's profile and use that to make sugges­
tions about a subject or item of interest. They frequently
achieve their profiling and therefore drive machine learning
through the processing of explicit and implicit [2] user
feedback. The reader interested in the plethora of recom­
mendation systems may want to examine [3], [4].

Genetic algorithms have been used successfully in web
content recommender systems [5], [6], [7], [8]. However,
it is our view that genetic algorithms have lately been
under-utilised in the fields of recommender systems and
text categorisation. This view is also reflected in [9], [10]
as well as by the absence of extensive coverage in recent
popular text classification and related review papers [11],
[3], [12]. This is unfortunate because genetic algorithms are
not only good enough for filtering but also for serendipitously
discovering pertinent content, which is a desired property for
recommender systems.

II. BACKGROUND

Traditionally in document classification applications, ge­
netic algorithms discover how well they perform by asking
the user to give feedback after each or few generations have
been evolved. As a result, attempts that have involved genetic
algorithms have required that a human user be part of the

Adrian F. Clark is with the Computer Science & Electronic Engineering
dept. of the University of Essex, Colchester, C04 3SQ, United Kingdom

John Pagonis is with Pragmaticomm Limited, High Trees, Hillfield
Road, Hemel Hempstead, Herts, HP2 4AY, United Kingdom (email:
john@pagonis.org�

2

Traditional
GAapproach

TypicalGA
approach used

for text filtering

Fig. 1. GA text filtering opens the feedback loop and Engene closes it

fitness function. An illustration in figure 1, shows how the use
of genetic algorithms has moved from a closed loop process,
for example in optimisation problems (as depicted in mode
1 of figure 1) , to an open loop process used for text filtering
applications (as depicted in mode 2 of figure 1) .

With Engene, this supervision loop is closed again, taking
explicit constant human feedback out of the process and
therefore allowing unattended operation (as depicted in mode
3 of figure 1).

III. ENGENE

A popular way of representation of documents in the fields
of information retrieval and filtering, is that of encoding them
to multi-dimensional term vectors based on the vector space

model [13], [14]. With this standard information retrieval
method each document is processed into a vector of weighted
terms. Since the vector space model represents a high­
dimensional space in such a simple structure, it fits naturally
to the chromosome metaphor of genetic algorithms.

Engene employs a dual-population arrangement of multi­
dimensional vectors where the fitness of the evolvable infor­
mation filters is assessed using a collection (also refered to as
population) of trainers that never evolve, in the evolutionary

sense.
Having two populations of which only one is evolved

has many merits, one of which is that evolution takes place
unattended -without needing the user to explicitly assess the
fitness of populations in every or in every few generations.
Unattended evolution is achieved because what would have
been a user's feedback, in Engene's case, is represented by
the population of trainers; which are used as input to the
fitness function of the genetic algorithm.

To clarify, in this arrangement, every user interest (class)
is represented by:

• A document collection that never evolves (in the evolu­
tionary computation sense). This is referred to as trainer

set.
• A population of information filters (the trainees) which

is evolved under the direction of the trainer set. These
filters are genetic algorithm individuals.

A. Bootstrapping

A drawback with this method is that during the bootstrap­
ping process of Engene, the user (unless it is automated) has
to source and present to the system such ensemble which
is usually made of about twenty to thirty documents. Care
must be taken by the user to supply documents that represent
a single category of interest per ensemble. These docu­
ments are typically in HTML and have to be cleansed and
processed so that stop-words and punctuation are removed.
Since Engene currently targets only English language text, it
avoids stemming [15] and applies no further dimensionality
reduction to the vectors created.

One of the ways that GAs differ, from other machine
learning techniques in text filtering, is that they do not
inspect their training data in order to induce a classifier
directly, but rather they employ the training data as the
primordial genetic material to generate better filters. This
genetic material comprises of the weighted terms found in the
keyword vectors that represent documents in the populations
evolved by the genetic algorithms. To incrementally create
such genetic material (by means of mutation operators for
example) would take a lot of time and make the use of genetic
algorithms mostly impractical for on-line end-user systems.
This is an issue which is less admitted to in the GA-based
text filtering literature.

B. Encoding and term weighting

With Engene, the weighted multi-dimensional vector's
term weights are represented by the T F I D F measure. The
T F I DF weighting Wdoc k of every term k, in a document
doc, is equal to the frequency of the term (T F) in the
document, multiplied by the inverse document frequency of
the term (I DF). In one of its standard forms the I DF is
defined as the 10glO of the ratio N / D F, where N is the
number of documents in the presence of the system and
DF is the frequency of the keyword within all examined
documents. What the I D F factor tries to achieve is that
a term is assigned a weight which is not only a measure
of its importance within a document but also a measure of

its uniqueness across all examined documents. Therefore the
I D F smoothens out the impact of a term when this term
appears across all documents. There are also other more
sophisticated methods [16] for calculating T F I D F but the
principle is the same for all formulae used.

Since documents processed by the system have different
lengths and contain variable collections of words, we decided
to work with vectors of an arbitrary number of dimensions
(i.e terms) and hence each of the genetic algorithm's pop­
ulation of individual's length is different. Document length
normalisation in Engene is achieved by dividing the term
frequency of every term of a document vector by the number
of terms (T L) present in the document.

The I D F factor is typically calculated using the docu­
ments at the disposal of the system at the time of such
calculation. For on-line information filtering where there is a
constant flow of documents, a system can either have a pre­
calculated set of I D F factors for each term based on some
usually domain specific sampling of documents, or just do the
calculation incrementally. Therefore, allowing an information
retrieval system to discover a document vector with the most
important terms.

Because of Engene's set-up and bootstrap mechanism,
I DF works against it during evolution. Since Engene users
are called to supply a small number (in two sets) of docu­
ments per subject of interest, it is only natural for a human to
supply a collection of very similar documents. In-fact, such
documents will most likely all contain the same terms. In
which case, the weighting of these terms following the I DF
weighting factor discussed above smoothens out the effect of
some of its most important terms. As a consequence, it was
observed during experimentation that the I DF adjustment
of term weights during evolution was not beneficial. This
happens because I D F was calculated for all the documents
at the system's disposal which in Engene's case was a small
population of trainers and filters. Therefore, it was discovered
that if the IDF factor was altered or removed altogether
during the evolution of filters then the weighting of terms
yielded better filtering.

Initially this discovery seems awkward, but it is explained
by the facts that:

1) users will supply very similar documents in terms of
keywords

2) term weighting across documents is irrelevant to evolv­
ing better individuals which need to be representative
of documents that are of interest to the user

Between the individuals that are evolved and the trainers
that direct this evolution, weighting of terms based on
their uniqueness across such ensemble is in other words
moot. This is because a good ensemble will not have too
dissimilar terms, otherwise individual offspring will not be
representative of what is of interest. Probably due to the
fact that fitness assignment in other systems is a function
of explicit user feedback, this point has never been raised

before by popular literature on automatic text classification

with genetic algorithms. As a result, the T F I D F weighting

of each term in a document vector can be transformed from
the one in equation I:

TF (N)
TFIDF

= TL
·lOgIO

DF
(1)

to a simpler form that promotes the term frequency weight
such as the one in equation 2 or the one discovered during
experimentation shown in equation 3

TFIDF
=

TF
.1.0

TL

TF (N2)
TFIDF

= TL
·logIO

TF

(2)

(3)

For a small number of documents, such as the one used
by Engene during evolution of filters, the T F I D F weighting
formula as seen in equation I will likely completely remove
a term's effect by yielding to zero. This is because, the
number of documents N and the frequency D F of a keyword
within all examined documents will many times be equal,
thus resulting in the logIO(l), which is zero. For a large
corpus, from which one seeks to discover a document with
some unique terms, this is a valuable property but for the
case examined herein it has the opposite effect. During
experimentation we discovered that apart from applying no
I D F, very good results were obtained with the weighting
set as in equation 3. Since the collection of documents for
the ensemble is between 20 and 30 and the term frequency
T F is normalised with the size of the terms in a vector, the
effects of 11; are positive.

However, when we use the generated filters to assess test
documents (e.g. with a recommender) the weighting that we
use in the similarity function is in the form of equation 1.

e. GA characteristics

To compare two vectors, Engene uses the cosine sim­

ilarity measure between the two multi-dimensional term
vectors [17], [13] using:

The fitness function makes use of the cosine measure be­
tween the multi-dimensional vectors of a trainer and that of a
filter. For each generation, every filter's fitness is assigned by
comparing its similarity against that of a randomly selected
document vector from the trainer population (see figure 2) .
In doing so, the trainer population directs the evolution of
the trainee filter population. Consequently there is no need
for continuous human feedback.

For the selection of individuals to mate, Engene uses a
tournament selection algorithm where the fittest individual
out of four randomly picked individuals is selected to become
one of the two parents to produce offspring. This process is

EngeneGA

Bootstrapping

Fig. 2. Engene GA

I

I
I

I

repeated for a maximum number of mattings, equal to half
the size of the population minus the percentage of the elite.

To keep the size of the populations manageable and in
order to reduce software complexity, the genetic algorithm
is designed to be generational; meaning that the population
size is kept constant between generations. In each generation,
an elite is chosen for immediate cloning, after which the
remaining space in the new population is inhabited with
individuals generated from the other operators. However,
irrespective of the fact that for every generation the elite
is cloned, each of the elite's clones' fitness is re-assessed

after such cloning (due to the assessment strategy described
before), thus heritage although plays its role, does not blindly
guarantee an elite individual's clone a place in the future
populations regardless.

For crossover, Engene uses a random two-point crossover

operator which exchanges part of one genotype (of a fil­
ter) of an arbitrary length with part of an another. This
recombination operation was implemented in two variants
as depicted in figure 3. The first variant made sure that after
crossover, common terms in each individual were pruned,
throwing away the terms that were duplicates (irrespective of
their weights), while the second variant moved any redundant
terms back to the individual where they came from. Our
experiments showed that the performance of the former
operator was always better and thus was used instead.

The effect of the recombination operator creates filters
such that on one hand are good for filtering, while on
the other hand tend in time to lose some of their fitness
score. This occurs because inevitably the trainers will contain

A rn:::::s:::::£) e
=:>

A B � F

A C 0 E

IEII O E O F I E
.0 =:>

A B C @:£] A B C I I

D F E

A B C

A C 0 E

� A B�
� O E B 0 F �E B �

.0 =:>
A B C � A BC A C �
D F E B A C

A B C 0

A B C 0 E

A B C 0 F

Fig. 3. Two point crossover variants

more genetic material (which means more terms each),
therefore the cosine similarity measure between the vector
of a filter individual and that of a trainer, will increasingly
involve fewer dimensions. Effectively what happens with this
crossover, is that the genetic algorithm creates a form of
dimensionality reduction (since individuals become sorter)
but without losing any genetic material from the population
as a whole. Therefore population diversity is maintained
while overfitting is avoided at the same time.

Finally a mutation operator randomly changes the value
of a gene's allele in the genotype (by 20% of their weight
in our experiments) while a reproduction operator simply
clones individuals. Typical probability values that are used
with Engene are 40% for crossover, 60% for cloning and 3%
for mutation. Elitism is usually set at 10% - 30%.

IV. ENGENE AS ONE-CLASS B AT C H CLASSIFIER

Oftentimes, classifier comparison and usage is geared
toward multi-class classification. In such usage and following
a training phase, classifiers are called to categorise test
objects in two or more categories. Training of such classifiers
is performed by supplying classifier inducers with positive
and negative training data. However, when the problem at
hand is to classify test objects as either "interesting" or
"uninteresting", supplying representative negative examples
is realistically too difficult. Therefore, in these settings clas­
sifiers have to be trained only with positive examples which
is typically done as a two step process in order to source
negative examples from yet unlabelled data [18], [19]. In
the application of information filtering to which Engene is
applied to, such unlabelled data are not typically present
because content flows progressively through the system.
Therefore Engene is operated for each subject of interest
as a one-class classifier that learns from positive examples

only [20]. When these classifiers are called in operation, they
categorise a test object as either belonging in or out of the
target category. Engene is one such classifier, though instead
of necessarily giving a binary decision, test objects are scored
and ranked instead (i.e. Engene is a soft classifier).

Testing how well Engene works as a classifier establishes
its basic utility as a filter for content recommenders in
general. Therefore, we tested Engene as a one-class classifier
for its average top N precision [21]. In this measurement
which is also known as the average 11 point precision

measurement, a ranked list of test documents is evaluated
at evenly spaced recall points such as the top N ranked
documents, where N is 10,20 .. 100. For each top N sub­
list therefore the precision is evaluated.

A. Experimental set-up

For the test, each classifier was applied as a one-class
single subject filter, which was trained only on positive ex­
amples [22]. Both classifiers used the same English language
documents which were not stemmed nor had gone through
any dimensionality reduction. Engene was bootstrapped, with
twenty eight documents (separated in the two ensemble sets).
Similarly, the one-class k-NN classifier had to be trained
with the same amount of data. Following the training phase,
classifiers were called to rank a collection of documents.

The test corpus had 986 documents that included 29842
unique terms (after stop-word removal), which were all
stored in plain text without any markup. This collection
was made of technology related news articles recorded in
the past four years and stored in the author's company
internal so-called "FYI" system. This system records articles
submitted by users that are of interest to the company and its
employees. The content of these articles spans across many
technology areas and interest domains, but is mostly related
with mobile industry developments, products, services and
technology. As such, many of the articles could have been
categorised in more than one of its twenty nine classes.

For the experiments, we selected a set of twenty eight
documents (from a total of 72) that represented the "Mobile
Voice over IP" (MVoIP) subject of interest; this set is
referred to as the "MVoIP" set. When experimenting with
the "MVoIP" classification, the corresponding documents
selected for training the classifiers were removed from the
test set (at all times there were 958 documents of a total of
986 to be classified).

B. Results

The experiment was to classify and rank the most relevant
documents to the "MVoIP" category from the "FYI" corpus
and compare the performance of Engene against this of the
one-class k-NN classifier.

The one-class k-NN classifier doesn't employ any random
processes and thus is only affected, by the trainer set, the
test set, the number of k trainer neighbours used and the
threshold set. The threshold was not used directly, since the
algorithm was made to return test object rankings. One-class

k-NN was operated with k = 1,4,8. Typical examples for
the average precision on the top N rankings (for N from 10
to 40), for the "MVoIP" category are shown in table I. The
recall denominator for T P + F N is adjusted to be equal to
72 - 28 = 44; since this is the maximum number of test
objects in the "MVoIP" category that can be retrieved.

TABLE I

ONE-CLASS K-NN TOP N AVERAGE RAN KINGS, k = 4, "MVoIP"

Recall point (N rankings) True Positives Precision Recall
10 9 90.0% 20.45%
20 15 75.0% 34.00%
30 21 70.0% 47.72%
40 24 60.0% 54.54%

As opposed to the one-class k-NN classifier, Engene makes
heavy use of directed-random processes. Therefore to gauge
performance, statistics had to be collected. In order to collect
statistics the experiment was repeated one hundred times.
The genetic algorithm evolved the ("MVoIP") filters for 1 00
generations each time. Then the effectiveness of Engene was
assessed in the top 10, 20 and so on rankings. From the
population of those experimental runs, the mean and standard
deviation was calculated. Moreover, the experiments were
repeated with various parameters. The raw results for all
permutations for recall points from 10 to 40 are shown in
terms of true positives in table II

TABLE II
ENG ENE TOP N AVERAGE RANKINGS, 10-40, "MVoIP"

params. mean/std mean/std mean/std mean/std
10 20 30 40

e2-cb-es 6.8211.36 12.72/2.41 19.32/3.03 25.2/3.68
e2-cb-ss 7.07/1.63 13.0312.72 17.19/3.95 20.45/4.69
e2-tf-es 6.4511.35 12.57/3.24 18.44/4.7 23.7116.01
e2-tf-ss 5.7212.52 9.51/4.54 12.16/6.18 14.18/6.72
e4-cb-es 6.55/1.33 12.0612.15 18.5312.88 24.4/3.98
e4-cb-ss 7.19/1.67 13.46/2.98 17.64/4.29 20.99/4.96
e4-tf-es 6.3411.53 12.22/3.47 17.89/4.75 22.73/6.13
e4-tf-ss 5.6912.72 9.37/4.64 12.16/6.14 14.33/6.31
e8-cb-es 6.81/1.18 12.7812.02 19.3712.71 25.33/3.26
e8-cb-ss 7.1111.93 13.26/3.43 17.54/4.9 20.85/5.5
e8-tf-es 6.2511.21 12.20/3.23 17.46/4.54 22.35/6.08
e8-tf-ss 6.0712.66 9.85/4.55 13.22/6.13 15.50/6.37

The encoding on the leftmost column of these tables indi­
cates the parameters used for each experiment (of 100 runs).
The number of the best fit members from each popUlation
used for the final ranking of the test documents, is indicated
by the integer next to 'e' (e.g., e4). Note that this number
refers to the number of filters used to rank documents and not
to the elitism percentage per se that was used in the genetic
algorithm during the evolution of the populations; which for
the experiments summarised in table II was set to 10%.

The 'ss' and 'es' parameter keys indicate which term

weighting was used during evolution. In one case 'ss' denotes
that no IDF factor was used, in the other case 'es' indicates
that the classical I D F (logIO (!:F) was used. The key 'cb'

indicates that the trainer set and the filter set were combined
in one set which was used both as a trainer and filter set. On
the other hand, the 'if' key indicates that the two sets were
kept separate and used respectively as the trainer and filter
set.

From the results summarised in table II, it shows that the
most competitive configuration is that of Engene using a
set of four best-fit members (from the population of twenty

�,-----�----�----�----�----�--. e4_cb_$n_
e6_cb_sn_

30

10

ToplOtrueposl1!ves

Fig. 4. Typical Engene top 10 ranking distribution

eight) to rank documents using simple T F term weighting.
This is best achieved when using the combined population
of trainers and filters; used as both the trainers and filters
-each with the same twenty eight vectors.

For practical reasons of creating digests, in reality only the
top ten rankings are of any use to a recommender. In-fact,
typically the top one or two are used by a recommender,
unless the digest has no other articles from other subjects of
interest to present. Even so, for the top ten ranked documents
the best achieved mean of true positives is 7. 19 with a
standard deviation of 1.67. In terms of average precision
in the top ten ranked articles, Engene achieves 71.9% with
recall of 16.34% for the "FYI" corpus.

On first sight, this classification effectiveness can be
characterised as adequate but it is certainly not excellent.
Although not tested on the same data set, some other genetic
algorithm based efforts have reported better results, albeit
using constant user feedback. Nevertheless, our system's per­
formance is comparable to human [23] classification ability
as well as to those of other classifiers. Very importantly
though, we found that for every experimental run the top
ranked document was never misclassified.

Furthermore, on closer inspection of the document rank­
ings we observed an interesting property of Engene, this of
most of its misclassifications being near positives. When
going over the documents that were misclassified as false

positives in the top ten lists, it was observed that those
came from categories close to the required one. It appears
that oftentimes documents that were ranked in the top ten
and regarded as false positives, could have actually been of
relevance to a user interested in the required (correct) class.
This important observation has been difficult to formalise.
However, this is certainly a desired property that can be used
to bring serendipitous recommendations to users.

C. Improving performance

Having said that, we wanted to improve Engene's perfor­
mance in two aspects, this of increasing the average precision
and that of the likelihood of producing high top-ten true
positives (hence decreasing the standard deviation of the
former average).

TABLE III
IMPROVED ENGENE TOP N AVERAGE RANKINGS, 10-50, "MVoIP"

params. meanlstd meanlstd meanlstd meanlstd
10 20 30 40

e4-cb-en 6.54/1.12 12.58/2.00 19.48/2.42 25.33/3.05
e4-cb-sn 7.56/1.59 14.58/3.00 18.56/3.89 22.26/4.67
e4-tf-en 6.33/1.16 12.54/3.24 18.22/4.64 23.6516.09
e4-tf-sn 5.73/2.65 9.68/4.77 12.5615.96 14.9116.28
e6-cb-sn 7.65/1.39 14.33/2.72 18.07/3.54 21.6813.84

In order to increase the average classification precision,
experiments were conducted with the T F I D F weighting
adjusted as reported in equation 3 (denoted by the 'sn' key).
Using this term weighting led to the 'e4' results shown in
table III, in which the improvement reported is marginally
above 5%. However, more importantly this change also
resulted in a much decreased standard deviation for the
configuration 'e4-cb-sn'. The distribution of the top ten true
positives was further improved when we tried to increase the
genetic algorithm's elitism level to 20% and we subsequently
used the top six best-fit individuals to classify the "FYI"
test corpus. In this case, average precision reached 76.5%
with recall at 17. 38%. The improvement that the 'e6-cb-sn'

configuration brings is shown in figure 4, where it is clear
that almost one in two ranking runs result in eight out of
ten true positives making it to the top ten document list. It is
extremely important to note that these improvements shift the
weight of the distribution significantly above the 160 mark.
In-fact in the 'e6-cb-sn' configuration there is a 92% chance
that Engene will produce between 7 and 10 true positives in
the top ten list, whereas the chance of having less than six
out of ten true positives is only 5%. Furthermore, in practice
user experience is even better when one considers that the
majority of false positives are really near positives, which
typically have a very good chance of being relevant to the
user.

V. CONCLUSIONS

In presenting Engene we have demonstrated how a genetic
algorithm based classifier can be used successfully and
without needing constant user feedback during evolution.
As a result, it can be used with content recommenders that
operate on implicit feedback only. We have also explained
how the classical T F I D F measure may be enhanced for
our technique. We also believe that we have given a plausible
explanation as to why genetic algorithm classifiers have been
neglected recently. Moreover we argued that the presented
classifier which has a classification performance comparable
to humans is also beneficial because it serendipitously dis­
covers content of interest to the user; which is a welcoming
property for recommender systems.

ACKNOW LEDGMEN TS

John Pagonis would like to thank Dimitris Kogias and
Dimitris Papanikolaou for their support during his research
as his work was supported in part by Pragmaticomm Limited.

REF ERENCES

[I] J. Pagonis and M. Sinclair, "Evolving personal agent environments
to reduce internet information overload: initial considerations," in
Proceedings of the lEE Colloquium on Lost in the Web: Navigation
on the Internet, ser. 1999, no. 169. London, UK: IEE, November
1999, pp. 211-2110.

[2] D. Oard and J. Kim, "Implicit feedback for recommender systems,"
in Proceedings of Recommender Systems Papaers of the AAAI 1998
Workshop, 1998, pp. 81-83.

[3] G. Adomavicius and A. Tuzhilin, "Toward the next generation of
recommender systems: a survey of the state-of-the-art and possible
extensions," Knowledge and Data Engineering, IEEE Transactions on,
vol. 17, no. 6, pp. 734-749, June 2005.

[4] M. J. pazzani and D. Billsus, "Content-based recommendation sys­
tems," in THE ADAPTIVE WEB: METHODS AND STRATEGIES OF
WEB PERSONAUZATION. VOLUME 4321 OF LECTURE NOTES IN
COMPUTER SCIENCE. Springer-Verlag, 2007, pp. 325-341.

[5] Amalthaea: I'!formation discovery and filtering using a multiagent
evolving ecosystem, London, UK, 1996.

[6] M. Balabanovic and Y. Shoham, "Fab: Content-based, collaborative
recommendation," Communications of the ACM, vol. 40, pp. 66-72,
1997.

[7] WebMate: a personal agent for browsing and searching. ACM Press,
1998.

[8] V. Milutinovic, D. Cvetkovic, and M. l, "Genetic search based on
multiple mutations," IEEE Computer, pp. 118-119, November 2000.

[9] S. l Cunningham, l Littin, and I. H. Witten, "Applications of machine
learning in information retrieval," Annual Review of Information
Science and Technology, Tech. Rep., 1997.

[10] 1. Kushchu, "Web-based evolutionary and adaptive information re­
trieval," IEEE Transactions on Evolutionary Computation, vol. 9, no. 2,
pp. 117-125, April 2005.

[II] F. Sebastiani and C. N. D. Ricerche, "Machine learning in automated
text categorization," ACM Computing Surveys, vol. 34, pp. 1-47, 2002.

[I2] S. B. Kotsiantis, "Supervised machine learning: A review of classifi­
cation techniques," Informatica, vol. 31, pp. 249-268, 2007.

[13] Y. C. S. Salton G., Wong A., "A vector space model for automatic
indexing," Communications of the ACM, vol. 18, no. 11, pp. 613-
620, 1975.

[I 4] G. Salton and C. Buckley, "Term weighting approaches in automatic
text retrieval," Cornell University Technical Report 87-881, 1987.

[15] V. Hollink, J. Kamps, C. Monz, and M. De Rijke, "Monolingual
document retrieval for european languages," I'!formation Retrieval,
vol. 7, no. 1-2, pp. 33-52, 2004.

[I 6] A. Singhal, "Modem information retrieval: A brief overview," Bulletin
of the IEEE Computer Society Technical Committee on Data Engineer­
ing, vol. 24, no. 4, pp. 35-42, 2001.

[17] S. Gerard, The SMART Retrieval System - Experiments in Automatic
Document Processing. Prentice Hall, 1971.

[I 8] B. Liu, Y. D. X. Li, W. S. Lee, and P. Yu, "Building text classifiers
using positive and unlabeled examples," in Proceedings of the Third
IEEE International Conference on Data Mining (ICDM-03), Novem­
ber 2003.

[I 9] X. Li and B. Liu, "Learning to classify text using positive and
unlabeled data," in Proceedings of Eighteenth International Joint
Conference on Artificial Intelligence (/JCAI-03), 2003, pp. 587-594.

[20] D. M. J. Tax, "One-class classification: concept-learning in the ab­
sence of counter-examples," Ph.D. dissertation, Technische Universiteit
Delft, 2001.

[21] L. Larkey and W. B. Croft, "Combining classifiers in text categoriza­
tion," in SIGIR-96. 19th ACM International Conference on Research
and Development of I'!formation Retrieval. ACM Press, 1996, pp.
289-297.

[22] D. D. Lewis and W. A. Gale, "A sequential algorithm for training text
classifiers," in Proceedings of the Seventeenth Annual International
ACM-SIGIR Conference on Research and Development in Information
Retrieval. Springer-Verlag, 1994, pp. 3-12.

[23] C. Cyril, "Optimizing convenient online access to bibliographic
databases," Information Services and Use, vol. 4, pp. 37-47, 1984.

