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Abstract- We present Engene, a genetic algorithm based 
classifier which is designed for use in content-based recom­
mender systems. Once bootstrapped Engene does not need 
any human feedback. Although it is primarily used as an on­
line classifier, in this paper we present its use as a one-class 
document batch classifier and compare its performance against 
that of a one-elms k-NN classifier. 

I. IN TRODUCTION 

Engene is a genetic algorithm based textual content clas­
sifier. It can operate both as a batch as well as an on-line 
(incremental) classifier. Our motivation in developing Engene 

is for use with a Web content-based recommender system in 
order to battle information overload [1]. 

Web content-based recommender systems filter Web pages 
and present their recommendations usually through a digest. 

Typically such digests are personalised collections of rank­
ordered articles. Non collaborative filtering recommender 
systems infer a user's profile and use that to make sugges­
tions about a subject or item of interest. They frequently 
achieve their profiling and therefore drive machine learning 
through the processing of explicit and implicit [2] user 
feedback. The reader interested in the plethora of recom­
mendation systems may want to examine [3], [4]. 

Genetic algorithms have been used successfully in web 
content recommender systems [5], [6], [7], [8]. However, 
it is our view that genetic algorithms have lately been 
under-utilised in the fields of recommender systems and 
text categorisation. This view is also reflected in [9], [10] 
as well as by the absence of extensive coverage in recent 
popular text classification and related review papers [11], 
[3], [12]. This is unfortunate because genetic algorithms are 
not only good enough for filtering but also for serendipitously 
discovering pertinent content, which is a desired property for 
recommender systems. 

II. BACKGROUND 

Traditionally in document classification applications, ge­
netic algorithms discover how well they perform by asking 
the user to give feedback after each or few generations have 
been evolved. As a result, attempts that have involved genetic 
algorithms have required that a human user be part of the 
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Fig. 1. GA text filtering opens the feedback loop and Engene closes it 

fitness function. An illustration in figure 1, shows how the use 
of genetic algorithms has moved from a closed loop process, 
for example in optimisation problems (as depicted in mode 
1 of figure 1) , to an open loop process used for text filtering 
applications (as depicted in mode 2 of figure 1) . 

With Engene, this supervision loop is closed again, taking 
explicit constant human feedback out of the process and 
therefore allowing unattended operation (as depicted in mode 
3 of figure 1). 

III. ENGENE 

A popular way of representation of documents in the fields 
of information retrieval and filtering, is that of encoding them 
to multi-dimensional term vectors based on the vector space 

model [13], [14]. With this standard information retrieval 
method each document is processed into a vector of weighted 
terms. Since the vector space model represents a high­
dimensional space in such a simple structure, it fits naturally 
to the chromosome metaphor of genetic algorithms. 

Engene employs a dual-population arrangement of multi­
dimensional vectors where the fitness of the evolvable infor­
mation filters is assessed using a collection (also refered to as 
population) of trainers that never evolve, in the evolutionary 



sense. 
Having two populations of which only one is evolved 

has many merits, one of which is that evolution takes place 
unattended -without needing the user to explicitly assess the 
fitness of populations in every or in every few generations. 
Unattended evolution is achieved because what would have 
been a user's feedback, in Engene's case, is represented by 
the population of trainers; which are used as input to the 
fitness function of the genetic algorithm. 

To clarify, in this arrangement, every user interest (class) 
is represented by: 

• A document collection that never evolves (in the evolu­
tionary computation sense). This is referred to as trainer 

set. 
• A population of information filters (the trainees) which 

is evolved under the direction of the trainer set. These 
filters are genetic algorithm individuals. 

A. Bootstrapping 

A drawback with this method is that during the bootstrap­
ping process of Engene, the user (unless it is automated) has 
to source and present to the system such ensemble which 
is usually made of about twenty to thirty documents. Care 
must be taken by the user to supply documents that represent 
a single category of interest per ensemble. These docu­
ments are typically in HTML and have to be cleansed and 
processed so that stop-words and punctuation are removed. 
Since Engene currently targets only English language text, it 
avoids stemming [15] and applies no further dimensionality 
reduction to the vectors created. 

One of the ways that GAs differ, from other machine 
learning techniques in text filtering, is that they do not 
inspect their training data in order to induce a classifier 
directly, but rather they employ the training data as the 
primordial genetic material to generate better filters. This 
genetic material comprises of the weighted terms found in the 
keyword vectors that represent documents in the populations 
evolved by the genetic algorithms. To incrementally create 
such genetic material (by means of mutation operators for 
example) would take a lot of time and make the use of genetic 
algorithms mostly impractical for on-line end-user systems. 
This is an issue which is less admitted to in the GA-based 
text filtering literature. 

B. Encoding and term weighting 

With Engene, the weighted multi-dimensional vector's 
term weights are represented by the T F I D F measure. The 
T F I DF weighting Wdoc k of every term k, in a document 
doc, is equal to the frequency of the term (T F) in the 
document, multiplied by the inverse document frequency of 
the term (I DF). In one of its standard forms the I DF is 
defined as the 10glO of the ratio N / D F, where N is the 
number of documents in the presence of the system and 
DF is the frequency of the keyword within all examined 
documents. What the I D F factor tries to achieve is that 
a term is assigned a weight which is not only a measure 
of its importance within a document but also a measure of 

its uniqueness across all examined documents. Therefore the 
I D F smoothens out the impact of a term when this term 
appears across all documents. There are also other more 
sophisticated methods [16] for calculating T F I D F but the 
principle is the same for all formulae used. 

Since documents processed by the system have different 
lengths and contain variable collections of words, we decided 
to work with vectors of an arbitrary number of dimensions 
(i.e terms) and hence each of the genetic algorithm's pop­
ulation of individual's length is different. Document length 
normalisation in Engene is achieved by dividing the term 
frequency of every term of a document vector by the number 
of terms (T L) present in the document. 

The I D F factor is typically calculated using the docu­
ments at the disposal of the system at the time of such 
calculation. For on-line information filtering where there is a 
constant flow of documents, a system can either have a pre­
calculated set of I D F factors for each term based on some 
usually domain specific sampling of documents, or just do the 
calculation incrementally. Therefore, allowing an information 
retrieval system to discover a document vector with the most 
important terms. 

Because of Engene's set-up and bootstrap mechanism, 
I DF works against it during evolution. Since Engene users 
are called to supply a small number (in two sets) of docu­
ments per subject of interest, it is only natural for a human to 
supply a collection of very similar documents. In-fact, such 
documents will most likely all contain the same terms. In 
which case, the weighting of these terms following the I DF 
weighting factor discussed above smoothens out the effect of 
some of its most important terms. As a consequence, it was 
observed during experimentation that the I DF adjustment 
of term weights during evolution was not beneficial. This 
happens because I D F was calculated for all the documents 
at the system's disposal which in Engene's case was a small 
population of trainers and filters. Therefore, it was discovered 
that if the IDF factor was altered or removed altogether 
during the evolution of filters then the weighting of terms 
yielded better filtering. 

Initially this discovery seems awkward, but it is explained 
by the facts that: 

1) users will supply very similar documents in terms of 
keywords 

2) term weighting across documents is irrelevant to evolv­
ing better individuals which need to be representative 
of documents that are of interest to the user 

Between the individuals that are evolved and the trainers 
that direct this evolution, weighting of terms based on 
their uniqueness across such ensemble is in other words 
moot. This is because a good ensemble will not have too 
dissimilar terms, otherwise individual offspring will not be 
representative of what is of interest. Probably due to the 
fact that fitness assignment in other systems is a function 
of explicit user feedback, this point has never been raised 

before by popular literature on automatic text classification 

with genetic algorithms. As a result, the T F I D F weighting 



of each term in a document vector can be transformed from 
the one in equation I: 

TF (N) 
TFIDF 

= TL 
·lOgIO 

DF 
(1) 

to a simpler form that promotes the term frequency weight 
such as the one in equation 2 or the one discovered during 
experimentation shown in equation 3 

TFIDF 
= 

TF 
.1.0 

TL 

TF (N2) 
TFIDF 

= TL 
·logIO 

TF 

(2) 

(3) 

For a small number of documents, such as the one used 
by Engene during evolution of filters, the T F I D F weighting 
formula as seen in equation I will likely completely remove 
a term's effect by yielding to zero. This is because, the 
number of documents N and the frequency D F of a keyword 
within all examined documents will many times be equal, 
thus resulting in the logIO(l), which is zero. For a large 
corpus, from which one seeks to discover a document with 
some unique terms, this is a valuable property but for the 
case examined herein it has the opposite effect. During 
experimentation we discovered that apart from applying no 
I D F, very good results were obtained with the weighting 
set as in equation 3. Since the collection of documents for 
the ensemble is between 20 and 30 and the term frequency 
T F is normalised with the size of the terms in a vector, the 
effects of 11; are positive. 

However, when we use the generated filters to assess test 
documents (e.g. with a recommender) the weighting that we 
use in the similarity function is in the form of equation 1. 

e. GA characteristics 

To compare two vectors, Engene uses the cosine sim­

ilarity measure between the two multi-dimensional term 
vectors [17], [13] using: 

The fitness function makes use of the cosine measure be­
tween the multi-dimensional vectors of a trainer and that of a 
filter. For each generation, every filter's fitness is assigned by 
comparing its similarity against that of a randomly selected 
document vector from the trainer population (see figure 2) . 
In doing so, the trainer population directs the evolution of 
the trainee filter population. Consequently there is no need 
for continuous human feedback. 

For the selection of individuals to mate, Engene uses a 
tournament selection algorithm where the fittest individual 
out of four randomly picked individuals is selected to become 
one of the two parents to produce offspring. This process is 
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Fig. 2. Engene GA 
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repeated for a maximum number of mattings, equal to half 
the size of the population minus the percentage of the elite. 

To keep the size of the populations manageable and in 
order to reduce software complexity, the genetic algorithm 
is designed to be generational; meaning that the population 
size is kept constant between generations. In each generation, 
an elite is chosen for immediate cloning, after which the 
remaining space in the new population is inhabited with 
individuals generated from the other operators. However, 
irrespective of the fact that for every generation the elite 
is cloned, each of the elite's clones' fitness is re-assessed 

after such cloning (due to the assessment strategy described 
before), thus heritage although plays its role, does not blindly 
guarantee an elite individual's clone a place in the future 
populations regardless. 

For crossover, Engene uses a random two-point crossover 

operator which exchanges part of one genotype (of a fil­
ter) of an arbitrary length with part of an another. This 
recombination operation was implemented in two variants 
as depicted in figure 3. The first variant made sure that after 
crossover, common terms in each individual were pruned, 
throwing away the terms that were duplicates (irrespective of 
their weights), while the second variant moved any redundant 
terms back to the individual where they came from. Our 
experiments showed that the performance of the former 
operator was always better and thus was used instead. 

The effect of the recombination operator creates filters 
such that on one hand are good for filtering, while on 
the other hand tend in time to lose some of their fitness 
score. This occurs because inevitably the trainers will contain 
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Fig. 3. Two point crossover variants 

more genetic material (which means more terms each), 
therefore the cosine similarity measure between the vector 
of a filter individual and that of a trainer, will increasingly 
involve fewer dimensions. Effectively what happens with this 
crossover, is that the genetic algorithm creates a form of 
dimensionality reduction (since individuals become sorter) 
but without losing any genetic material from the population 
as a whole. Therefore population diversity is maintained 
while overfitting is avoided at the same time. 

Finally a mutation operator randomly changes the value 
of a gene's allele in the genotype (by 20% of their weight 
in our experiments) while a reproduction operator simply 
clones individuals. Typical probability values that are used 
with Engene are 40% for crossover, 60% for cloning and 3% 
for mutation. Elitism is usually set at 10% - 30%. 

IV. ENGENE AS ONE-CLASS B AT C H  CLASSIFIER 

Oftentimes, classifier comparison and usage is geared 
toward multi-class classification. In such usage and following 
a training phase, classifiers are called to categorise test 
objects in two or more categories. Training of such classifiers 
is performed by supplying classifier inducers with positive 
and negative training data. However, when the problem at 
hand is to classify test objects as either "interesting" or 
"uninteresting", supplying representative negative examples 
is realistically too difficult. Therefore, in these settings clas­
sifiers have to be trained only with positive examples which 
is typically done as a two step process in order to source 
negative examples from yet unlabelled data [18], [19]. In 
the application of information filtering to which Engene is 
applied to, such unlabelled data are not typically present 
because content flows progressively through the system. 
Therefore Engene is operated for each subject of interest 
as a one-class classifier that learns from positive examples 

only [20]. When these classifiers are called in operation, they 
categorise a test object as either belonging in or out of the 
target category. Engene is one such classifier, though instead 
of necessarily giving a binary decision, test objects are scored 
and ranked instead (i.e. Engene is a soft classifier). 

Testing how well Engene works as a classifier establishes 
its basic utility as a filter for content recommenders in 
general. Therefore, we tested Engene as a one-class classifier 
for its average top N precision [21]. In this measurement 
which is also known as the average 11 point precision 

measurement, a ranked list of test documents is evaluated 
at evenly spaced recall points such as the top N ranked 
documents, where N is 10,20 .. 100. For each top N sub­
list therefore the precision is evaluated. 

A. Experimental set-up 

For the test, each classifier was applied as a one-class 
single subject filter, which was trained only on positive ex­
amples [22]. Both classifiers used the same English language 
documents which were not stemmed nor had gone through 
any dimensionality reduction. Engene was bootstrapped, with 
twenty eight documents (separated in the two ensemble sets). 
Similarly, the one-class k-NN classifier had to be trained 
with the same amount of data. Following the training phase, 
classifiers were called to rank a collection of documents. 

The test corpus had 986 documents that included 29842 
unique terms (after stop-word removal), which were all 
stored in plain text without any markup. This collection 
was made of technology related news articles recorded in 
the past four years and stored in the author's company 
internal so-called "FYI" system. This system records articles 
submitted by users that are of interest to the company and its 
employees. The content of these articles spans across many 
technology areas and interest domains, but is mostly related 
with mobile industry developments, products, services and 
technology. As such, many of the articles could have been 
categorised in more than one of its twenty nine classes. 

For the experiments, we selected a set of twenty eight 
documents (from a total of 72) that represented the "Mobile 
Voice over IP" (MVoIP) subject of interest; this set is 
referred to as the "MVoIP" set. When experimenting with 
the "MVoIP" classification, the corresponding documents 
selected for training the classifiers were removed from the 
test set (at all times there were 958 documents of a total of 
986 to be classified). 

B. Results 

The experiment was to classify and rank the most relevant 
documents to the "MVoIP" category from the "FYI" corpus 
and compare the performance of Engene against this of the 
one-class k-NN classifier. 

The one-class k-NN classifier doesn't employ any random 
processes and thus is only affected, by the trainer set, the 
test set, the number of k trainer neighbours used and the 
threshold set. The threshold was not used directly, since the 
algorithm was made to return test object rankings. One-class 

k-NN was operated with k = 1,4,8. Typical examples for 
the average precision on the top N rankings (for N from 10 
to 40), for the "MVoIP" category are shown in table I. The 
recall denominator for T P + F N is adjusted to be equal to 
72 - 28 = 44; since this is the maximum number of test 
objects in the "MVoIP" category that can be retrieved. 



TABLE I 

ONE-CLASS K-NN TOP N AVERAGE RAN KINGS, k = 4, "MVoIP" 

Recall point (N rankings) True Positives Precision Recall 
10 9 90.0% 20.45% 
20 15 75.0% 34.00% 
30 21 70.0% 47.72% 
40 24 60.0% 54.54% 

As opposed to the one-class k-NN classifier, Engene makes 
heavy use of directed-random processes. Therefore to gauge 
performance, statistics had to be collected. In order to collect 
statistics the experiment was repeated one hundred times. 
The genetic algorithm evolved the ("MVoIP") filters for 1 00 
generations each time. Then the effectiveness of Engene was 
assessed in the top 10, 20 and so on rankings. From the 
population of those experimental runs, the mean and standard 
deviation was calculated. Moreover, the experiments were 
repeated with various parameters. The raw results for all 
permutations for recall points from 10 to 40 are shown in 
terms of true positives in table II 

TABLE II 
ENG ENE TOP N AVERAGE RANKINGS, 10-40, "MVoIP" 

params. mean/std mean/std mean/std mean/std 
10 20 30 40 

e2-cb-es 6.8211.36 12.72/2.41 19.32/3.03 25.2/3.68 
e2-cb-ss 7.07/1.63 13.0312.72 17.19/3.95 20.45/4.69 
e2-tf-es 6.4511.35 12.57/3.24 18.44/4.7 23.7116.01 
e2-tf-ss 5.7212.52 9.51/4.54 12.16/6.18 14.18/6.72 
e4-cb-es 6.55/1.33 12.0612.15 18.5312.88 24.4/3.98 
e4-cb-ss 7.19/1.67 13.46/2.98 17.64/4.29 20.99/4.96 
e4-tf-es 6.3411.53 12.22/3.47 17.89/4.75 22.73/6.13 
e4-tf-ss 5.6912.72 9.37/4.64 12.16/6.14 14.33/6.31 
e8-cb-es 6.81/1.18 12.7812.02 19.3712.71 25.33/3.26 
e8-cb-ss 7.1111.93 13.26/3.43 17.54/4.9 20.85/5.5 
e8-tf-es 6.2511.21 12.20/3.23 17.46/4.54 22.35/6.08 
e8-tf-ss 6.0712.66 9.85/4.55 13.22/6.13 15.50/6.37 

The encoding on the leftmost column of these tables indi­
cates the parameters used for each experiment (of 100 runs). 
The number of the best fit members from each popUlation 
used for the final ranking of the test documents, is indicated 
by the integer next to 'e' (e.g., e4). Note that this number 
refers to the number of filters used to rank documents and not 
to the elitism percentage per se that was used in the genetic 
algorithm during the evolution of the populations; which for 
the experiments summarised in table II was set to 10%. 

The 'ss' and 'es' parameter keys indicate which term 

weighting was used during evolution. In one case 'ss' denotes 
that no IDF factor was used, in the other case 'es' indicates 
that the classical I D F (logIO ( !:F ) was used. The key 'cb' 

indicates that the trainer set and the filter set were combined 
in one set which was used both as a trainer and filter set. On 
the other hand, the 'if' key indicates that the two sets were 
kept separate and used respectively as the trainer and filter 
set. 

From the results summarised in table II, it shows that the 
most competitive configuration is that of Engene using a 
set of four best-fit members (from the population of twenty 
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Fig. 4. Typical Engene top 10 ranking distribution 

eight) to rank documents using simple T F term weighting. 
This is best achieved when using the combined population 
of trainers and filters; used as both the trainers and filters 
-each with the same twenty eight vectors. 

For practical reasons of creating digests, in reality only the 
top ten rankings are of any use to a recommender. In-fact, 
typically the top one or two are used by a recommender, 
unless the digest has no other articles from other subjects of 
interest to present. Even so, for the top ten ranked documents 
the best achieved mean of true positives is 7. 19 with a 
standard deviation of 1.67. In terms of average precision 
in the top ten ranked articles, Engene achieves 71.9% with 
recall of 16.34% for the "FYI" corpus. 

On first sight, this classification effectiveness can be 
characterised as adequate but it is certainly not excellent. 
Although not tested on the same data set, some other genetic 
algorithm based efforts have reported better results, albeit 
using constant user feedback. Nevertheless, our system's per­
formance is comparable to human [23] classification ability 
as well as to those of other classifiers. Very importantly 
though, we found that for every experimental run the top 
ranked document was never misclassified. 

Furthermore, on closer inspection of the document rank­
ings we observed an interesting property of Engene, this of 
most of its misclassifications being near positives. When 
going over the documents that were misclassified as false 

positives in the top ten lists, it was observed that those 
came from categories close to the required one. It appears 
that oftentimes documents that were ranked in the top ten 
and regarded as false positives, could have actually been of 
relevance to a user interested in the required (correct) class. 
This important observation has been difficult to formalise. 
However, this is certainly a desired property that can be used 
to bring serendipitous recommendations to users. 

C. Improving performance 

Having said that, we wanted to improve Engene's perfor­
mance in two aspects, this of increasing the average precision 
and that of the likelihood of producing high top-ten true 
positives (hence decreasing the standard deviation of the 
former average). 



TABLE III 
IMPROVED ENGENE TOP N AVERAGE RANKINGS, 10-50, "MVoIP" 

params. meanlstd meanlstd meanlstd meanlstd 
10 20 30 40 

e4-cb-en 6.54/1.12 12.58/2.00 19.48/2.42 25.33/3.05 
e4-cb-sn 7.56/1.59 14.58/3.00 18.56/3.89 22.26/4.67 
e4-tf-en 6.33/1.16 12.54/3.24 18.22/4.64 23.6516.09 
e4-tf-sn 5.73/2.65 9.68/4.77 12.5615.96 14.9116.28 
e6-cb-sn 7.65/1.39 14.33/2.72 18.07/3.54 21.6813.84 

In order to increase the average classification precision, 
experiments were conducted with the T F I D F weighting 
adjusted as reported in equation 3 (denoted by the 'sn' key). 
Using this term weighting led to the 'e4' results shown in 
table III, in which the improvement reported is marginally 
above 5%. However, more importantly this change also 
resulted in a much decreased standard deviation for the 
configuration 'e4-cb-sn'. The distribution of the top ten true 
positives was further improved when we tried to increase the 
genetic algorithm's elitism level to 20% and we subsequently 
used the top six best-fit individuals to classify the "FYI" 
test corpus. In this case, average precision reached 76.5% 
with recall at 17. 38%. The improvement that the 'e6-cb-sn' 

configuration brings is shown in figure 4, where it is clear 
that almost one in two ranking runs result in eight out of 
ten true positives making it to the top ten document list. It is 
extremely important to note that these improvements shift the 
weight of the distribution significantly above the 160 mark. 
In-fact in the 'e6-cb-sn' configuration there is a 92% chance 
that Engene will produce between 7 and 10 true positives in 
the top ten list, whereas the chance of having less than six 
out of ten true positives is only 5%. Furthermore, in practice 
user experience is even better when one considers that the 
majority of false positives are really near positives, which 
typically have a very good chance of being relevant to the 
user. 

V. CONCLUSIONS 

In presenting Engene we have demonstrated how a genetic 
algorithm based classifier can be used successfully and 
without needing constant user feedback during evolution. 
As a result, it can be used with content recommenders that 
operate on implicit feedback only. We have also explained 
how the classical T F I D F measure may be enhanced for 
our technique. We also believe that we have given a plausible 
explanation as to why genetic algorithm classifiers have been 
neglected recently. Moreover we argued that the presented 
classifier which has a classification performance comparable 
to humans is also beneficial because it serendipitously dis­
covers content of interest to the user; which is a welcoming 
property for recommender systems. 
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