
Investigation of Properties of ICmetrics Features

Yevgeniya Kovalchuk1, Huosheng Hu,
Dongbing Gu, Klaus McDonald-Maier2

School of Computer Science and
Electronic Engineering,

University of Essex
1yvkova@essex.ac.uk,

2kdm@essex.ac.uk

Daniel Newman, Steve Kelly,

Gareth Howells
School of Engineering and Digital

Arts, University of Kent
dwn3@kent.ac.uk,

S.W.Kelly@kent.ac.uk,
W.G.J.Howells@kent.ac.uk

Abstract
The ICmetrics technology is concerned with identifying
acceptable features in an electronic system’s operation
for encryption purposes. The nature of the features should
be identical for all of the systems considered, while the
values of these features should allow for unique
identification of each of the systems. This paper looks at
the properties of the Program Counter as a potential
ICmetrics feature, and explores how the number of its
samples being inputted into the ICmetrics system affects
stability of the system’s performance.

1. Introduction

As the modern society fully relies on operation of
digital devices, the importance of developing a security
infrastructure for digital data storage and transmission is
essential. As an alternative to traditional ways to secure
data (e.g. passwords, biometrics, etc.), the ICmetrics
technology (Integrated Circuit metrics) generates
encryption keys directly from measurements taken from
electronic devices. This could be advantageous in many
real world scenarios where human intervention is not
possible, limited or not desirable. For instance, we are
currently developing an ICmetrics system as part of the
SYSSIAS project (Autonomous and Intelligent
Healthcare System), which is aimed at developing an
intelligent electrically powered wheelchair for patients
with various disabilities.

A theoretical description of the operation of the
ICmetrics technology can be found in our earlier work
[1]. In summary, the ICmetrics system is a two phase
system. In the first phase, a number of known electronic
devices are used as a calibration set and desired features
associated with the devices are measured. Based on the
frequencies of the feature occurrences, the feature
distributions are generated, first within the given value
scale for each sample device, and then normalised across
all devices and features employed. The output of the first
stage is a set of normalisation maps containing normalised
feature distributions for each device.

The second, operational, phase of the ICmetrics
system is applied each time an encryption key is required
for a given device. After measuring feature values and
applying the normalisation map as created in the first
phase for the device, a unique basic number is generated
using a suitable technique for combining the features. An
encryption key can be further derived from this basic
number.

The main requirement for the basic is that it should be
the same for the same device on each attempt of its
generation, but always different from the basic numbers
generated for other devices employed in the operational
set. Furthermore, it should not be possible to derive the
encryption keys generated for other devices based on the
basic number of a given device. In order to achieve this, it
is important to find such features associated with
electronic devices, which allow for separation of the
devices in the feature space.

In this paper, we explore the Program Counter as a
potential ICmetrics feature and test if it could be used to
determine a device uniquely. By taking only one feature,
we want to evaluate whether it is suitable for ICmetrics
purposes, and how manipulating it affects the ICmetrics
system performance. In particular, we look at how
changing the employed number of the Program Counter
values as recorded during a device operation (referred
latter as samples) influences the system’s ability for
device separation.

For the purposes of this study, we have developed
and built an embedded system and loaded a number of
software applications on it so as to simulate behaviour of
several electronic devices. We have used two different
tracing methods in order to record the Program Counter
values. In addition to the characteristics of the Program
Counter as a potential ICmetrics feature itself, we also
explore how each of the proposed tracing methods affects
the process of the device separation in the feature space.
The device separation is an important stage as results
obtained during this phase determine the strength of the
encryption key that can be generated further.

In order to evaluate the Program Counter as a
potential ICmetrics feature and the tracing methods to

obtain the feature values, we have developed a system
that attempts to separate devices in the feature space.
More specifically, the system takes the feature values for
all devices employed as input, generates normalisation
maps for each of the devices based on these values [1],
and plots normalised feature distributions for all of the
devices in one space. The successful output of the system
is observed when all devices can be uniquely identified
and there are no overlaps in the distributions plotted in
one space. This is the main criterion against which we
evaluate the Program Counter as a potential ICmetrics
feature; if we could achieve the separation of the devices
based on the Program Counter values for each of the
devices, then we can say that this is a suitable feature.

The rest of the paper is organised as follows. First we
describe our hardware and software platform which we
used to extract feature values. Then we explain the
analysis of the data we performed and provide
interpretation of the results. Finally, we summarise the
paper with some suggestions for future work.

2. Experimental setup

Building an experimental platform for extracting
ICmetrics features involves several stages: (i) designing
the hardware-software test-bench; (ii) programming
simulations of embedded systems’ operation; (iii)
developing tracing methods for data acquisition; (iv)
recording feature values for their further analysis as
required by ICmetrics research. The following
subsections describe implementation of these stages in
turn.

2.1. Hardware-software test-bench

The experimental platform for extracting ICmetrics
features requires a hardware board for hosting an
embedded system, and also a soft- and hardware
infrastructure for loading programs onto the board, as
well as tracing programs’ execution in real time. For this
research, we have employed:

 ARM main board with Atmel AT91SAM7S256
microcontroller and 64Kbytes SRAM memory;

 JTAG programming port for direct access and
control to various processor features (e.g.,
memory and internal registers) and external
control of the processor (loading, executing, and
debugging programs);

 Open On-Chip Debugger (OOCD) to trace
program execution;

 Eclipse as an interface environment to develop,
compile, load, debug, and trace software code on
to the hardware platform;

 Software program that connects to the board via
the telnet port and logs required features.

2.2. Simulation of system operation

To simulate performance of several devices, we have
employed a number of algorithms from the automotive
package of the MiBench suite [2], referred later as
“devices”, namely:

 angle conversion (device 1);
 bit count (device 2);
 cubic function (device 3);
 square roots (device 5).
In addition, we have included a program generating

random numbers to simulate device 4.
We have loaded each of the programs in turn onto the

board (section 2.1), traced their execution (using the
methods outlined in section 2.3.), and logged the Program
Counter (as described in section 2.4.).

2.3. Tracing methods

We have employed two tracing methods to log the
Program Counter values which we used as ICmetrics
features. The first one is the single stepping method to
obtain benchmark data against which to evaluate the
second method, which is sampling. Both methods are
non-intrusive, meaning they do not affect the residence of
the programs in the address space.

Essentially, both methods halt the CPU by issuing
OOCD commands, via the telnet port [3], and register the
Program Counter values. The difference between the
methods lies in the frequency and completeness of
obtaining data. The single step tracing method logs every
single CPU instruction, while the sampling method does
this only at regular intervals, at the rate of 50MHz in this
case. We have chosen this sampling rate since it is the
highest frequency that our hardware supports and our aim
is to trace as fast as possible to be practical in real time
applications.

These settings mean that the single step method
provides the complete profile of the program execution,
while the sampling method only its approximation (the
more samples are taken the closer the profile is to the
complete one). Whilst the single step method is preferred
to gain a full profile, it is very slow and not always
practical to implement. The sampling method on the other
hand allows speeding up logging considerably; however it
does mean that not all data can be logged. The paper is
concentrated on the later problem of estimating the effect
of the loss in data on the efficiency of the ICmetrics
system.

2.4. Data acquisition

In this study, we have explored only the Program
Counter as an ICmetrics feature. Taking only one feature
allows for a controlled evaluation of its suitability for the

ICmetrics system. We expect the Program Counter to be a
suitable feature since the set of its distinct values is finite
and is the same for a certain device (assuming the full
program profile is taken), but is likely to vary from one
device to another. Having the requirement for ICmetrics
features that they should allow for separation of the
considered devices in the feature space, we test if this is
the case with the Program Counter.

To obtain feature data, we have logged the Program
Counter while running each of the programs (section 2.2)
using each of the two tracing methods (section 2.3) in
turn. The size of the programs was adjusted using an
oscilloscope in order to achieve practical logging times
and comparable profiles for all of them. On the coding
level, adjustment was implemented by tuning parameters
of the loops involved in the programs.

3. Data analysis

As described in section 2, we have logged the Program
Counter values while running a number of programs on
our hardware platform (this way simulating the behaviour
of several electronic devices), using two different tracing
methods. Based on the logs, we have found that there are
certain particularities related to the nature of the Program
Counter as a feature which need to be addressed first
before attempting to generate normalised feature
distributions. The following sections describe the peculiar
characteristics of the feature and how we dealt with them.

For further discussion, it is useful to note the
difference between distinct feature values (unique values
of the Program Counter) and total number of values
(referred later as samples) recorded in the devices’ logs.
This is due to a program running on a device can use the
same address several times during its operation. In this
study, we manipulate only with samples (i.e. all feature
values as recorded in the logs) regardless the number of
unique addresses that they span over. However for the
future, it would be interesting to investigate how the ratio
between the unique number of values and total number of
samples recorded in the logs determines the ability of our
system to separate the devices.

3.1. Data offsetting

From analysis of the Program Counter logs it can be

stated that the Program Counter varies in address values
across the devices. However, each one of these values lies
between 2,000,000 and 2,200,000. Note that this interval
of feature values is specific for the combination of our
ARM processor and 64Kbyte memory (see section 2.1)
and may be different if another hardware platform is
employed. At the same time, the range of the Program
Counter values is always fixed and is determined by the
size of the memory included into the hardware system.
The number of possible feature values is also restricted by

the fact that the Program Counter takes only even address
values. Therefore, we can conclude that in our case the
maximum number of distinct feature values for any of the
devices could not exceed 100,000.

Taking into consideration our observations on the
possible range of the feature values, we have offset the
data to make it suitable for further processing. In
particular we have extracted the minimum address value
present in the whole range of values, using the following
formula:

Offset Value = (Program Counter

– Program Counter(min))+1

where Program Counter(min) is equal to 2,000,000.
Examples of the resulted feature values are provided in

Table 1. Such offsetting has not only helped in reducing
the memory required for data processing and
manipulation, but also made the devices more sensitive to
any changes in data values.

Table 1. Feature 1: Program Counter offsetting
Program Counter Offset Value
2000000 1
2000100 101
2000300 301
2000600 601

3.2. Device separation

Using the system that produces the normalised feature
distribution maps [1], we have established that our
devices can be separated in the Program Counter feature
space (see Figures 3-5). Based on our earlier discussion of
the criteria for suitable ICmetrics features (see
Introduction), we can conclude that the Program Counter
is a suitable feature. However, there is a certain condition
that influences the ability of the Program Counter to
separate devices. Namely, this condition is related to the
number of samples (feature values) employed for
generating normalisation maps, and is detailed below.

When analysing the Program Counter logs, we noticed
that the number of the logged Program Counter values
(samples) varies from one device to another (see Table 2).
This number depends not only on the program each
device is running, but also on the tracing method
employed. However, the procedure of generating
normalisation maps requires that the data are unified. To
achieve this, the lowest number of samples (102,132 for
the device 5 as in Table 2) has been taken and used across
all the data sets. This has not only helped speed up the
processing times, but also shows how the performance of
the ICmetrics system is affected by taking a reduced set of
feature values, as compared to the complete set of values
registered in the devices’ logs.

Figure 1. Mapped feature values obtained with the single stepping method and a limited set of samples

Figure 2. Mapped feature values obtained with the sampling method and a limited set of samples

Figure 3. Mapped feature values obtained with the single stepping method and the whole set of samples

Table 2. Amount of samples each device has produced

for the Program Counter feature

Device Stepped Program
Counter

Sampled Program
Counter

1 263,565 754,891
2 104,972 191,354
3 205,482 306,673
4 138,012 198,787
5 102,132 273,655

In particular, we have found that by reducing the

resolution of each device (in other words, by taking less
samples, or the Program Counter values, than has been
logged), they become more block-like as compared to a
more smooth curves if all data values are considered.
This is demonstrated with the devices 3, which has a
smooth shape of the normalised feature distribution curve
in Figure 5, where there is no limit to the number of
samples considered, and a square shape on Figures 3,
where this limit is introduced.

Note that on Figure 4, where normalised feature
distributions are plotted based on the data obtained by the
sampling tracing method (meaning the reduced number of
samples), the device 3 seem to disappear completely. This

means that not enough feature values (samples) has been
taken in order to identify the device.

By comparing Figures 3, 4, and 5, it can also be
noticed that the number of samples included into the
system (with the largest on Figure 5 and the smallest on
Figure 4) affects not only the shape of the normalised
feature distribution curves (and their presence), but also
the mapped feature values. While the same devices are
used, the mapped values are not in the same place
throughout the graphs (see the modal values for each
device on axis X). This means that any drop in the
number of samples included into the system (as compared
to a full device’s profile) would change the mapped
values, which in its turn would impact encryption keys
derived from these values. In our future work, we intend
to explore techniques for finding an optimal number of
samples to include into the system so as to speed up the
logging process on the one hand (to be useful in real time
applications), and to achieve generation of strong
encryption keys on the other hand.

4. Conclusion

This paper has explored the properties of the Program
Counter as an ICmetrics feature and investigated how the
number of samples of the feature values being employed
affects the ICmetrics system’s performance.

The main criterion for ICmetrics features is that they
should allow for unique identification of the considered
devices. In other words, it should be possible to separate
the devices in the feature space based on the observed
feature values associated with these devices.

In this paper, we have shown that the Program Counter
satisfies this criterion and therefore can be considered as a
suitable ICmetrics feature. However, we have also found
that in order to activate the separating ability of the
Program Counter, it is important to correctly identify the
number of samples to include into the system. If taking
not enough feature values, there is a chance that a device
will not be identified. Also, different number of employed
features provides different mapped feature values (as we
have shown with the single stepping and sampling tracing
methods). These values will eventually be used to
generate encryption keys, which is why it is important to
investigate the optimal number of samples to employ so
as to maximise the strength of the keys.

In addition to developing techniques for finding the
optimal number of samples, we also want to explore how
the ratio between the number of unique feature values
compared to the total number of samples observed affects
the system’s performance.

Finally, it is worth noting that in this study the reading
of feature values has been done without any internal code
interfering with the actual system, but has been logged
externally. From the point of view of tracing real time
systems, our sampling method is preferred to the single
stepping method, as the latter would take too long to
retrieve the feature values.

5. References

[1] Y. Kovalchuk, G. Howells, and K.D. McDonald-
Maier, “Overview of ICmetrics Technology – Security
Infrastructure for Autonomous and Intelligent Healthcare
System”, International Journal of u- and e- Service,
Science and Technology, 4 (3) (2011), 49-60.

[2] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M.
Austin, T. Mudge, and R.B. Brown, “MiBench: A free,
commercially representative embedded benchmark suite”,
Proceedings of the International Workshop on Workload
Characterization, 2001, pp. 3-14.

[3] Online OpenOCD User's Guide:
 http://openocd.sourceforge.net/doc/html/index.html#Top

6. Acknowledgment

This research is supported at the School of Computer
Science and Electrical Engineering at the University of
Essex and at the School of Engineering and Digital Arts at

University of Kent through the European Union ERDF
Interreg IVA initiative under the SYSIASS grant.

View publication statsView publication stats

https://www.researchgate.net/publication/257999363

