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Abstract 
The ICmetrics technology is concerned with identifying 
acceptable features in an electronic system’s operation 
for encryption purposes. The nature of the features should 
be identical for all of the systems considered, while the 
values of these features should allow for unique 
identification of each of the systems. This paper looks at 
the properties of the Program Counter as a potential 
ICmetrics feature, and explores how the number of its 
samples being inputted into the ICmetrics system affects 
stability of the system’s performance.   
 
1. Introduction 
 

As the modern society fully relies on operation of 
digital devices, the importance of developing a security 
infrastructure for digital data storage and transmission is 
essential. As an alternative to traditional ways to secure 
data (e.g. passwords, biometrics, etc.), the ICmetrics 
technology (Integrated Circuit metrics) generates 
encryption keys directly from measurements taken from 
electronic devices. This could be advantageous in many 
real world scenarios where human intervention is not 
possible, limited or not desirable. For instance, we are 
currently developing an ICmetrics system as part of the 
SYSSIAS project (Autonomous and Intelligent 
Healthcare System), which is aimed at developing an 
intelligent electrically powered wheelchair for patients 
with various disabilities.   

A theoretical description of the operation of the 
ICmetrics technology can be found in our earlier work 
[1]. In summary, the ICmetrics system is a two phase 
system. In the first phase, a number of known electronic 
devices are used as a calibration set and desired features 
associated with the devices are measured. Based on the 
frequencies of the feature occurrences, the feature 
distributions are generated, first within the given value 
scale for each sample device, and then normalised across 
all devices and features employed. The output of the first 
stage is a set of normalisation maps containing normalised 
feature distributions for each device. 

The second, operational, phase of the ICmetrics 
system is applied each time an encryption key is required 
for a given device. After measuring feature values and 
applying the normalisation map as created in the first 
phase for the device, a unique basic number is generated 
using a suitable technique for combining the features. An 
encryption key can be further derived from this basic 
number.  

The main requirement for the basic is that it should be 
the same for the same device on each attempt of its 
generation, but always different from the basic numbers 
generated for other devices employed in the operational 
set. Furthermore, it should not be possible to derive the 
encryption keys generated for other devices based on the 
basic number of a given device. In order to achieve this, it 
is important to find such features associated with 
electronic devices, which allow for separation of the 
devices in the feature space.  

In this paper, we explore the Program Counter as a 
potential ICmetrics feature and test if it could be used to 
determine a device uniquely. By taking only one feature, 
we want to evaluate whether it is suitable for ICmetrics 
purposes, and how manipulating it affects the ICmetrics 
system performance. In particular, we look at how 
changing the employed number of the Program Counter 
values as recorded during a device operation (referred 
latter as samples) influences the system’s ability for 
device separation.  

For the purposes of this study, we have developed 
and built an embedded system and loaded a number of 
software applications on it so as to simulate behaviour of 
several electronic devices. We have used two different 
tracing methods in order to record the Program Counter 
values. In addition to the characteristics of the Program 
Counter as a potential ICmetrics feature itself, we also 
explore how each of the proposed tracing methods affects 
the process of the device separation in the feature space. 
The device separation is an important stage as results 
obtained during this phase determine the strength of the 
encryption key that can be generated further.  

In order to evaluate the Program Counter as a 
potential ICmetrics feature and the tracing methods to 



obtain the feature values, we have developed a system 
that attempts to separate devices in the feature space. 
More specifically, the system takes the feature values for 
all devices employed as input, generates normalisation 
maps for each of the devices based on these values [1], 
and plots normalised feature distributions for all of the 
devices in one space. The successful output of the system 
is observed when all devices can be uniquely identified 
and there are no overlaps in the distributions plotted in 
one space. This is the main criterion against which we 
evaluate the Program Counter as a potential ICmetrics 
feature; if we could achieve the separation of the devices 
based on the Program Counter values for each of the 
devices, then we can say that this is a suitable feature. 

The rest of the paper is organised as follows. First we 
describe our hardware and software platform which we 
used to extract feature values. Then we explain the 
analysis of the data we performed and provide 
interpretation of the results. Finally, we summarise the 
paper with some suggestions for future work. 

 
2. Experimental setup 
 

Building an experimental platform for extracting 
ICmetrics features involves several stages: (i) designing 
the hardware-software test-bench; (ii) programming 
simulations of embedded systems’ operation; (iii) 
developing tracing methods for data acquisition; (iv) 
recording feature values for their further analysis as 
required by ICmetrics research. The following 
subsections describe implementation of these stages in 
turn. 
 
2.1. Hardware-software test-bench 
 

The experimental platform for extracting ICmetrics 
features requires a hardware board for hosting an 
embedded system, and also a soft- and hardware 
infrastructure for loading programs onto the board, as 
well as tracing programs’ execution in real time. For this 
research, we have employed: 

 ARM main board with Atmel AT91SAM7S256 
microcontroller and 64Kbytes SRAM memory;  

 JTAG programming port for direct access and 
control to various processor features (e.g., 
memory and internal registers) and external 
control of the processor (loading, executing, and 
debugging programs); 

 Open On-Chip Debugger (OOCD) to trace 
program execution; 

 Eclipse as an interface environment to develop, 
compile, load, debug, and trace software code on 
to the hardware platform; 

 Software program that connects to the board via 
the telnet port and logs required features.  

2.2. Simulation of system operation 
 

To simulate performance of several devices, we have 
employed a number of algorithms from the automotive 
package of the MiBench suite [2], referred later as 
“devices”, namely: 

 angle conversion (device 1); 
 bit count (device 2); 
 cubic function (device 3); 
 square roots (device 5). 
In addition, we have included a program generating 

random numbers to simulate device 4. 
We have loaded each of the programs in turn onto the 

board (section 2.1), traced their execution (using the 
methods outlined in section 2.3.), and logged the Program 
Counter (as described in section 2.4.). 
 
2.3. Tracing methods 
 

We have employed two tracing methods to log the 
Program Counter values which we used as ICmetrics 
features. The first one is the single stepping method to 
obtain benchmark data against which to evaluate the 
second method, which is sampling. Both methods are 
non-intrusive, meaning they do not affect the residence of 
the programs in the address space.  

Essentially, both methods halt the CPU by issuing 
OOCD commands, via the telnet port [3], and register the 
Program Counter values. The difference between the 
methods lies in the frequency and completeness of 
obtaining data. The single step tracing method logs every 
single CPU instruction, while the sampling method does 
this only at regular intervals, at the rate of 50MHz in this 
case. We have chosen this sampling rate since it is the 
highest frequency that our hardware supports and our aim 
is to trace as fast as possible to be practical in real time 
applications. 

These settings mean that the single step method 
provides the complete profile of the program execution, 
while the sampling method only its approximation (the 
more samples are taken the closer the profile is to the 
complete one). Whilst the single step method is preferred 
to gain a full profile, it is very slow and not always 
practical to implement. The sampling method on the other 
hand allows speeding up logging considerably; however it 
does mean that not all data can be logged. The paper is 
concentrated on the later problem of estimating the effect 
of the loss in data on the efficiency of the ICmetrics 
system. 
 
2.4. Data acquisition 
 

In this study, we have explored only the Program 
Counter as an ICmetrics feature. Taking only one feature 
allows for a controlled evaluation of its suitability for the 



ICmetrics system. We expect the Program Counter to be a 
suitable feature since the set of its distinct values is finite 
and is the same for a certain device (assuming the full 
program profile is taken), but is likely to vary from one 
device to another. Having the requirement for ICmetrics 
features that they should allow for separation of the 
considered devices in the feature space, we test if this is 
the case with the Program Counter.  

To obtain feature data, we have logged the Program 
Counter while running each of the programs (section 2.2) 
using each of the two tracing methods (section 2.3) in 
turn. The size of the programs was adjusted using an 
oscilloscope in order to achieve practical logging times 
and comparable profiles for all of them. On the coding 
level, adjustment was implemented by tuning parameters 
of the loops involved in the programs.  
 
3. Data analysis 
 

As described in section 2, we have logged the Program 
Counter values while running a number of programs on 
our hardware platform (this way simulating the behaviour 
of several electronic devices), using two different tracing 
methods. Based on the logs, we have found that there are 
certain particularities related to the nature of the Program 
Counter as a feature which need to be addressed first 
before attempting to generate normalised feature 
distributions. The following sections describe the peculiar 
characteristics of the feature and how we dealt with them. 

For further discussion, it is useful to note the 
difference between distinct feature values (unique values 
of the Program Counter) and total number of values 
(referred later as samples) recorded in the devices’ logs. 
This is due to a program running on a device can use the 
same address several times during its operation. In this 
study, we manipulate only with samples (i.e. all feature 
values as recorded in the logs) regardless the number of 
unique addresses that they span over. However for the 
future, it would be interesting to investigate how the ratio 
between the unique number of values and total number of 
samples recorded in the logs determines the ability of our 
system to separate the devices. 

 
3.1. Data offsetting 

 
From analysis of the Program Counter logs it can be 

stated that the Program Counter varies in address values 
across the devices. However, each one of these values lies 
between 2,000,000 and 2,200,000. Note that this interval 
of feature values is specific for the combination of our 
ARM processor and 64Kbyte memory (see section 2.1) 
and may be different if another hardware platform is 
employed. At the same time, the range of the Program 
Counter values is always fixed and is determined by the 
size of the memory included into the hardware system. 
The number of possible feature values is also restricted by 

the fact that the Program Counter takes only even address 
values. Therefore, we can conclude that in our case the 
maximum number of distinct feature values for any of the 
devices could not exceed 100,000. 

Taking into consideration our observations on the 
possible range of the feature values, we have offset the 
data to make it suitable for further processing. In 
particular we have extracted the minimum address value 
present in the whole range of values, using the following 
formula:  

 
Offset Value = (Program Counter  

– Program Counter(min))+1 
 

where Program Counter(min) is equal to 2,000,000. 
Examples of the resulted feature values are provided in 

Table 1. Such offsetting has not only helped in reducing 
the memory required for data processing and 
manipulation, but also made the devices more sensitive to 
any changes in data values. 
 

Table 1. Feature 1: Program Counter offsetting 
Program Counter Offset Value 
2000000 1 
2000100 101 
2000300 301 
2000600 601 

 
3.2. Device separation 
 

Using the system that produces the normalised feature 
distribution maps [1], we have established that our 
devices can be separated in the Program Counter feature 
space (see Figures 3-5). Based on our earlier discussion of 
the criteria for suitable ICmetrics features (see 
Introduction), we can conclude that the Program Counter 
is a suitable feature. However, there is a certain condition 
that influences the ability of the Program Counter to 
separate devices. Namely, this condition is related to the 
number of samples (feature values) employed for 
generating normalisation maps, and is detailed below. 

When analysing the Program Counter logs, we noticed 
that the number of the logged Program Counter values 
(samples) varies from one device to another (see Table 2). 
This number depends not only on the program each 
device is running, but also on the tracing method 
employed. However, the procedure of generating 
normalisation maps requires that the data are unified. To 
achieve this, the lowest number of samples (102,132 for 
the device 5 as in Table 2) has been taken and used across 
all the data sets.  This has not only helped speed up the 
processing times, but also shows how the performance of 
the ICmetrics system is affected by taking a reduced set of 
feature values, as compared to the complete set of values 
registered in the devices’ logs. 



 
Figure 1. Mapped feature values obtained with the single stepping method and a limited set of samples 

 

 
Figure 2. Mapped feature values obtained with the sampling method and a limited set of samples 

 



 
Figure 3. Mapped feature values obtained with the single stepping method and the whole set of samples 

 
Table 2. Amount of samples each device has produced 

for the Program Counter feature 

Device Stepped Program 
Counter 

Sampled Program 
Counter 

1 263,565 754,891 
2 104,972 191,354 
3 205,482 306,673 
4 138,012 198,787 
5 102,132 273,655 

 
In particular, we have found that by reducing the 

resolution of each device (in other words, by taking less 
samples, or the Program Counter values, than has been 
logged), they become more block-like as compared to a 
more smooth curves if all data values are considered.  
This is demonstrated with the devices 3, which has a 
smooth shape of the normalised feature distribution curve 
in Figure 5, where there is no limit to the number of 
samples considered, and a square shape on Figures 3, 
where this limit is introduced. 

Note that on Figure 4, where normalised feature 
distributions are plotted based on the data obtained by the 
sampling tracing method (meaning the reduced number of 
samples), the device 3 seem to disappear completely. This 

means that not enough feature values (samples) has been 
taken in order to identify the device. 

By comparing Figures 3, 4, and 5, it can also be 
noticed that the number of samples included into the 
system (with the largest on Figure 5 and the smallest on 
Figure 4) affects not only the shape of the normalised 
feature distribution curves (and their presence), but also 
the mapped feature values.  While the same devices are 
used, the mapped values are not in the same place 
throughout the graphs (see the modal values for each 
device on axis X). This means that any drop in the 
number of samples included into the system (as compared 
to a full device’s profile) would change the mapped 
values, which in its turn would impact encryption keys 
derived from these values. In our future work, we intend 
to explore techniques for finding an optimal number of 
samples to include into the system so as to speed up the 
logging process on the one hand (to be useful in real time 
applications), and to achieve generation of strong 
encryption keys on the other hand. 
 
4. Conclusion 

This paper has explored the properties of the Program 
Counter as an ICmetrics feature and investigated how the 
number of samples of the feature values being employed 
affects the ICmetrics system’s performance. 



The main criterion for ICmetrics features is that they 
should allow for unique identification of the considered 
devices. In other words, it should be possible to separate 
the devices in the feature space based on the observed 
feature values associated with these devices. 

In this paper, we have shown that the Program Counter 
satisfies this criterion and therefore can be considered as a 
suitable ICmetrics feature. However, we have also found 
that in order to activate the separating ability of the 
Program Counter, it is important to correctly identify the 
number of samples to include into the system. If taking 
not enough feature values, there is a chance that a device 
will not be identified. Also, different number of employed 
features provides different mapped feature values (as we 
have shown with the single stepping and sampling tracing 
methods). These values will eventually be used to 
generate encryption keys, which is why it is important to 
investigate the optimal number of samples to employ so 
as to maximise the strength of the keys.   

In addition to developing techniques for finding the 
optimal number of samples, we also want to explore how 
the ratio between the number of unique feature values 
compared to the total number of samples observed affects 
the system’s performance. 

Finally, it is worth noting that in this study the reading 
of feature values has been done without any internal code 
interfering with the actual system, but has been logged 
externally.  From the point of view of tracing real time 
systems, our sampling method is preferred to the single 
stepping method, as the latter would take too long to 
retrieve the feature values. 
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