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Abstract—Gaussian process (GP) is well researched and used
in machine learning field. Comparing with artificial neural
network (ANN) and support vector regression (SVR), it pro-
vides additional covariance information for regression results.
By exploiting this feature, an uncertainty based locational
optimisation strategy combining with an entropy based data
selection method for mobile sensor networks is presented in
this paper. Centroidal Voronoi tessellation (CVT) is used as
a locational optimisation framework and Informative Vector
Machine (IVM) is applied for data selection. Simulations with
different locational optimisation criteria are conducted and the
results are given, which proved the effectiveness of presented
strategy.

I. INTRODUCTION

Wireless sensor networks (WSNs) are employed in various
research fields which require to obtain sample data from a
large scale of environment, such as forestry, meteorology,
oceanography, etc [1][2]. For pollution monitoring, WSNs
have been used for air and ocean environments in [3] and [4].
A sensor network is required to model the map of a spatial
function in the environment. For a mobile sensor network, an
effective locational optimisation strategy plays an important
role on modelling performance.

Recently, kernel based regression methods are widely re-
searched in machine learning field, including support vector
machine (SVM) [5], relevance vector machine (RVM) [6],
Kriging [7], and Gaussian process (GP) [8], etc. Some
researchers found that these methods could convert from
one to another under certain configurations [9]. Compar-
ing among these kernel methods, the GP / Kriging gives
additional uncertainty information for modelled distribution,
which provides a criterion for locational optimisation.

Combining with the regression methods, various strategies
are applied for locational optimisation in mobile sensor
networks. Flocking algorithm was used with the spatial-
temporal GP in [10]. Centroidal Voronoi tessellation (CVT)
is another famous strategy introduced by Jorge Cortes from
the view of computational geometry [11][12]. It was used
with artificial neural network in [13].

Informative vector machine (IVM) is an entropy based
method for selecting data from large number of samples,
and was first presented by Neil Lawrence et al. in [14],
[15], [16] and [17]. Their research shows that the IVM has
a similar performance in computing speed and modelling
accuracy with SVM.
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In this paper, a framework of mobile sensor network for
estimating a latent spatial function is given. More specifi-
cally, the CVT is used for optimising the sensor deployment;
the GP estimates a latent spatial function and provides the
uncertainty information for the model. In the CVT locational
optimisation process, a combination of the mean and the co-
variance information is applied. Its performance is compared
with using each of them alone. Potentially, a full data set is
an ideal scenario for the modelling. However, using a full
data set makes the computation of the GP model intractable.
Therefore, the IVM is introduced to select a sub set with
least information lost. The following sections are organised
as below: section II-A gives a brief introduction to modelling
the GP with a mobile sensor network, section II-B introduces
the CVT with optimisation criteria configuration, and section
II-C illustrates the principle of the IVM with data selection.
Simulation results and analysis are given in section III.

II. MODELLING SPATIAL FUNCTION WITH WIRELESS

SENSOR NETWORKS

A. GP Approach to Estimating the Latent Function

To estimate a latent spatial function f(x) in a 2D convex
environment Q, a mobile sensor network with N sensors
is deployed. The 2D coordinates of sensor i ∈ N are
denoted by xi ∈ R2 and its observation is yi ∈ R. By
collecting data from the sensor network, a training data set
D = [X, y] is constructed, where X := [x1, x2, . . . , xN ]T

and y := [y1, y2, . . . , yN ]T . With introducing a Gaussian
noise εi to each sensor i, an observation model is given in
eq. (1):

yi = f(xi) + εi (1)

where εi ∼ N (0, σ2

n). Corresponding to
Bayesian framework with the latent function
f := [f(x1), f(x2), . . . , f(xN )]T , the observation y is
the likelihood and its distribution can be illustrated as eq.
(2):

p(y|f) ∼ N (y; f, σ2

nI) (2)

where I is an identity matrix. The prior knowledge in the
GP is defined by a kernel function K(xi, xj) and here is
modelled by:

K(xi, xj) = σ2

f exp

{
−
‖xi − xj‖

2l2

}
(3)
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σf and l are two hyper-parameters, which can be modified
online for controlling the amplitude and length scale of
K(xi, xj). The prior distribution of the latent function is
given in eq. (4):

p(f |X) ∼ N (f ; 0,K) (4)

Let a test point be D∗ = {x∗, f∗}. A joint distribution
between the observation y and the GP prediction f∗ is
obtained in eq. (5):

[
y

f∗

]
∼ N

⎛
⎝0,

⎡
⎣K + σ2

nI K∗

KT
∗

K∗∗

⎤
⎦
⎞
⎠ (5)

where x∗ is an arbitrary test point in the environment Q,
and f∗ = f(x∗) denotes the predicted latent function value
at x∗. In addition, K, K∗ and K∗∗ are shorthand notations,
which denote K(X,X), (X,x∗) and K(x∗, x∗) respectively.
The conditional distribution of f∗ is obtained by conditioning
eq. (5):

p(f∗|f,X, x∗) ∼ N (μ∗, σ∗) (6)

μ∗ = KT
∗
[K + σ2

nI]
−1y

σ∗ = K∗∗ −KT
∗
[K + σ2

nI]
−1K∗

μ∗ and σ∗ from eq. (6) are the estimated latent spatial
function mean values and uncertainty at x∗. K, K∗ and K∗∗
are controlled by the hyper-parameters σf and l. In order
to get the optimal values for σf and l, the maximum log
marginal likelihood is applied as eq. (7):

max
σf ,l

{log p(y|X)} (7)

where

log p(y|X) =

−
1

2
yT (K + σ2

nI)
−1y −

1

2
log |K + σ2

nI| −
N

2
log(2π)

(8)

B. A Heuristic potential function for the CVT Locational
Optimisation

Centroidal Voronoi tessellation (CVT) is a gradient based
locational optimisation method. To the CVT method for the
sensor network in this paper, an arbitrary point from the
environment Q is denoted by x̂, hence the Voronoi cell of
sensor i is defined as:

Vi = {x̂ ∈ Q| ‖x̂− xi‖ � ‖x̂− xj‖, ∀i �= j} (9)

Before applying the CVT to the sensor network, a potential
function needs to be defined. The latent function model
generated from the GP contains two parts, mean μ∗ and
covariance σ∗. Some potential functions are available for
various situations: using mean component μ∗ provides the

smooth motion control result and an accurate local model,
however it may be trapped at local mean maxima; using
covariance component σ∗ makes the sensor network cover
as much area as possible, but it has lower accuracy on local
details if the length scale is not large enough. Therefore, its
modelling performance may end with a larger variance.

In balancing between them, we construct our potential
function with the dot product of two components as equation
(10):

fp = μ∗norm · σ
∗

norm (10)

where μ∗norm and σ∗norm ∈ [0, 1] are normalised results
from μ∗ and σ∗ respectively. With this combination form,
the sensor network can escape from local mean maxima.

For each Voronoi cell Vi, its corresponding mass centre
CVi

is its optimal location:

MVi
=

∫
Vi

fp(x̂)dx̂

LVi
=

∫
Vi

x̂fp(x̂)dx̂

CVi
=

LVi

MVi

C. Data selection: IVM

A full data set is constructed as Df = {D1, . . . ,Dh},
where h indicates the length of Df . Normally, the criterion
of selecting h depends on the changing speed of the latent
spatial function. In balancing between the modelling accu-
racy and computing speed, an entropy based data selection
method, the IVM [18] is introduced to select active data
points from Df .
According to the principle of the IVM [18], it is necessary

to update the posterior of the GP in a sequential mechanism.
To achieve this goal, the IVM creates two index sets, active
set I and inactive set J . I = ∅ and J = {1, . . . , h×N} are
defined as their initial. The index of data points is selected
one after another from set J to I . An update form for
computing the GP posterior estimation p̂i with μi and σi

is given (more details see [18]) as eq. (11), (12) and (13):

p̂i ∼ N (f ;μi, σi) (11)

μi = μi−1 + gni
σi−1eni

(12)

σi = σi−1 + (g2ni
− 2Gni

)σi−1eni
eTni

σi−1 (13)

where

gni
=

yni
− μi−1,ni

σ2
nI + σi−1,ni

(14)

Gni
=

1

2

(
g2ni

−
1

σ2
nI + σi−1,ni

)
(15)

ni denotes the data point indices in set J , and eni
is a

unit vector choosing the nith element. μi−1,ni
and σi−1,ni

are the nith element of μi−1 and the nith diagonal element of
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σi−1 respectively. With eq. (12), (13), the IVM can filter and
select data points to active set I while the GP updating the
posterior p̂i in sequential. The criterion of the IVM selection
is the change of information entropy, and is defined as eq.
(16) after the ith data point is included.

Hi = H(p̂i) := −

∫
p̂i(f) log p̂i(f)df (16)

p̂i is a Gaussian distribution, hence

Hi =
i

2
log(2πe) +

1

2
log |σi| (17)

The entropy change after the ith data point is selected into
active set I

ΔHi,ni
= Hi −Hi−1

=
1

2
log(2πe)︸ ︷︷ ︸
constant

+
1

2
log |σiσ

−1

i−1
| (18)

It should be noticed that ΔHi,ni
is negative when the

entropy is reducing. Therefore, the data points with the
smallest ΔHi,ni

values are selected by the IVM.

III. SIMULATION RESULTS

To simulate a 2D environment Q, an 1× 1 rectangle area
is chosen. A sensor network with N = 15 is randomly
deployed at a corner of Q (xi ∈ [0, 0.2]). The sensor noise
level σn = 0.01, the hyper-parameters σf = 0.01 and
l = 0.01 are initialised. The full data set length h = 10
and 15 active data points are set for the IVM data selection.
A latent spatial function f and its mesh graph are given
in eq. (19) and shown in figure 1. An 100 × 100 evenly
distributed grid mesh is configured for the environment Q.
The estimated latent spatial function model f∗ is illustrated
by two 100 × 100 matrices, μ∗ and σ∗. Each value from
the two matrices indicates the estimated mean value and the
uncertainty level at a particular grid point respectively.
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Fig. 1. Latent function in environment

f = 1.9{1.35 + ex−y sin[13(x− 0.6)2] sin(7y)} (19)

To illustrate the effectiveness of presented method, the
simulation results are organised in three comparison groups
and statistic data are collected from 100 tests. For the first
group, the accuracy of estimated model from the IVM and
the random selection are compared in figure 2. It can be
observed that the IVM selection method provides a faster
converging speed, smaller static error and standard deviation.
In the next two groups, the IVM is employed as a data
selection method to keep a fair comparison.
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Fig. 2. Comparison between random selection and the IVM selection

The second group compares the estimation performances
between two potential functions, fp = μ∗norm · σ

∗

norm and
fp = μ∗norm . As analysed in section II-B, using only μ∗norm
produces a smooth converging curve, and the error variance
is quite stable. However it suffers from the local minima
problem while the number of sensor nodes is insufficient
to cover the whole environment with the learnt GP kernel
length scale l. The model accuracy with the dot product form
fp = μ∗norm ·σ

∗

norm converges faster and stabler in the whole
modelling process (smaller standard deviation).
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fp = σ∗norm and fp = μ∗norm · σ
∗

norm are compared in
the last group. It can be found that the accuracy from the
uncertainty driven modelling process converges faster in the
beginning, and keeps quite close to the performance with the
combined potential function. Although these two potential
functions give similar static errors to the true latent function
f , the standard deviation from fp = σ∗norm is much larger
than the combined one.
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Figure 5 shows one of the modelling process with fp =
μ∗norm ·σ

∗

norm and the IVM selection method. In figure 5, the
estimated latent function is shown in top-left panel; Top-right
panel illustrates the sensor deployment with red circles and
selected data points with blue crosses. The hyper-parameter
learning for the kernel length scale l and the amplitude σf

is given in bottom-left and bottom-right panels respectively.
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Fig. 5. Sensor deployment and hyper-parameters learning

IV. CONCLUSION

A dot product combination form with the GP mean and
covariance information is used for the locational optimisation
criterion in the CVT framework. With the comparison in sec-
tion III, our presented potential function (eq. (10)) provides
better performance in terms of converge speed and static
error.

Introducing a data selection method, the IVM, a full
data set is implemented without adding significant extra
computational burden to the GP. The effectiveness of the
IVM in data selection is proved by comparing with a random
data selection process.

In the next step, a dynamic potential function could be
studied to provide the flexibility to the sensor network with
time variant or dynamic latent spatial function. Then the
sensor network is able to change its locational optimisation
criteria according to the real time information.
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