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Abstract—An odometry model, represented by a set of nodes
(waypoints), is considered to be the infrastructure of any
probabilistic-based localisation method. Gaussian and nonpara-
metric filters utilise an odometry model to localise robots, while
predictions are made by the filters to actively correct the robot’s
location and coordination. In this work, we present a recursive
Bayesian filter for landmark recognition, which is used to verify
the pose of a robotic wheelchair at a certain node location. The
Bayesian rule in the proposed method does not incorporate a
control action to rectify the robot’s pose (passive localisation). The
filter approximates the robot’s pose based on a feature extraction
sensor model. Features are extracted from local environmental
regions (landmarks), and each landmark is assigned with a
distinct posterior probability (signature), at each node location.
A node is verified by the robot when the covariance between the
posterior and prior probability falls bellow a threshold. We tested
the proposed method in an indoor environment where accurate
localisation results have been obtained. The experimentation
demonstrated the robustness of the filter to work for passive
localisation.

I. INTRODUCTION

Gaussian and nonparametric filters have been used widely
for robot localisation, for predicting the spatial location given
a sensory observation. In its simplest form, localisation is
primarily conducted via an odometry model. Odometry models
utilise translational and rotational displacements so as to
localise a robot within an array of predefined waypoints
or nodes. The purpose of probabilistic filters is to aid the
odometry model to make predictions by rectifying the robot’s
pose. Consequently, nodes can be reached by the robot more
accurately while refining the drift error.

In this paper we present a recursive Bayesian filter for
landmark recognition, which aims in assigning a distinct
signature at each node location. The localisation method we
propose is passive, which means that there is no control action
suggested by the filter for pose rectification. However, the
recursive update verifies the node location by updating the
robot’s pose < x, y, θ > with the current node location
< xn, yn >. This happens when the signature of a landmark is
being recognised as a feature f ∈ F . The following property
describes this notion: iff fn ≡ fn−1 ∈ F = { f1, f2, . . . , fN} :<
x, y >←< xn, yn >. More analytically, if the current feature
fn is equal to a model feature fn−1, from a set of features F
assigned for each node, then the odometry coordinates of the
robot’s pose are updated with the coordinates of the node.

II. RELATED WORK

In Bayesian localisation, [1] showed a semantic representa-
tion for robot localisation. With a single camera and odometry
information, spatial relations among object are created to
conform a distance map. The map’s metric data are estimated
using visual pattern recognition. Further, localisation is per-
formed by a Bayesian model using the topological-semantic
distance map, which overall has demonstrated accurate local-
isation accuracy. A hierarchical vision-based Bayesian local-
isation model was introduced by [2], for the estimation of a
set of colours. The model outperforms in two levels, where in
the first, lighting conditions are estimated using a switching
Kalman filter. In the second, a Bayesian model learns Gaussian
priors from the robot’s environment. In addition, a Rao-
Blackwellised particle filter is employed to maintain a joint
posterior of the robot’s position.

Passive localisation does not incorporate control actions,
suggested by a perception model to correct the robot’s posi-
tion. Previous research on passive robot localisation included
the work of [3], who presented a passive localisation method
applied on autonomous underwater vehicles embedded with
periodic sonar transmission. The key idea is based on the delay
time of the sonar beam using a single linear array. Effective
estimation of the location has been shown with a simple array
configuration. There are, however, more accurate localisation
methods that are based on active localisation. In the work of
[4], an active Markov localisation method is proposed where
partial or full control applies actions to a robot. The method
reduces the complexity of the localisation task by letting the
robot to actively interact with its environment, even if the
environment possesses a handful amount of features. The
guiding principle of active localisation is to control a robot
by minimising future expected uncertainty, using an entropy
metric of future belief distributions. Similarly, [5] presented
a fine-grained grid to approximate densities, which is able to
globally localise the robot, and to recover from failures. Also,
their method can robustly approximate models of the envi-
ronment and noisy sensors. Eventually, a filtering technique
allows the estimation of the robot’s pose in overpopulated
environments.

Recursive Bayesian filters motivated topics of robot predic-
tion and tracking. In [6], a coordinated control technique based
on recursive Bayesian filtering, incorporated with a unified



sensor model and a unified objective function, has been used
for tracking of multiple heterogeneous vehicles. A Bayesian
search-and-tracking method was applied in a marine search-
and-rescue scenario where heterogeneous vehicles performed
multi-target tracking. A recursive Bayesian estimation on a
bearings-only application presented by [7], showed how the
incorporation of terrain information can improve estimation
performance in target tracking using angle-only. They have
solved the Bayesian estimation problem using a marginalised
particle filter. An alternative work, which aims on the classi-
fication, presented by [8]. Similar to our model that is used
mainly for the recognition of landmark features, a recursive
Bayesian linear regression method was used for adaptive
classification. A trajectory of non-stationary environments is
traced to perform classification of benchmark face datasets.
The methodology has shown to outperform support and rele-
vance vector machines (SVM, RVM), and it is analogous to
Bayesian SVMs.

In the wheelchair localisation literature, [9] is referred to
a landmark tree model for self-localisation of an autonomous
wheelchair. The method utilises an image retrieval technique
and the Bayes rule to localise the wheelchair. In addition, a
path planning algorithm is introduced, which exploits a tree-
like structure to locate landmarks and destination locations.
Landmarks are recognised through an image by extracting
the shape and structure, and localisation is conducted by
traversing within the tree nodes to elicit an optimal path.
A probabilistic odometry (motion) model was introduced by
[10], for an autonomous wheelchair. Their method constructs
a set of frequency tables of the wheelchair’s pose, stored in
bins. A particle filter advises these tables to make predictions
for localisation. The method is said to be efficient and easy
to intergrade in any particle filter algorithm for real time
localisation of robots and wheelchairs.

The rest of the paper is organised as follows. Section III
presents three principal models. A recursive Bayesian model
for landmark recognition, a feature extraction model, and an
odometry model. The collaboration of all the three models
constitute the paper’s contribution. Section IV demonstrates
the localisation results. The experiments carried out in the Es-
sex robotics arena, which is an indoor environment. Ultimately,
conclusions and future works are given in Section V.

III. RECURSIVE BAYESIAN LANDMARK MODEL

Localisation is defined as the estimation of a robot’s pose
< x1, y, θ > from a sensory observation. Position and orien-
tation can be approximated given the map of the environment,
and a set of sensors that access the environment [5]. In our
study, instead of a map, localisation is conducted by providing
a set of < xn, yn > nodes n, through which the robot can
access several locations of the environment. A node-location
is verified by a recursive Bayesian landmark model, estimated
using a Laser Range Finder (LRF) − the robot’s sensory
perception that “sees” the environment.

1For the reader’s convenience, the observation state xz has no relation with
the odometry coordinate x, found in the robot’s pose < x, y, θ >.

A. Recursive Bayesian Model

The recursive Bayesian filter uses two assumptions for the
recursive estimation [11]: (i) The states follow a first order
Markov process p(xn|xn−1), (ii) The states are independent
from the observations. In our model, each state is a signature
observation z acquired by a range vector r⃗ via a LRF; thus, the
states are defined as xz. Consequently, the recursive Bayesian
updating rule is described by the posterior p(xz|zn) of Eq.
1. Over a number of recursive iterations, shown in Fig. 1(c),
the posterior is updated by the product of the prior (current
landmark observation) and the conditional model (initial land-
mark observations). The closer the prior distribution to the
conditional model is, the higher the posterior becomes.

p(xz|zn) =
p(xz|zn−1)p(z1:n−1|xz)

p(zn|z1:n−1)
(1)

· Prior The prior p(xz|zn−1) is the test instance, which is
updated recursively with the posterior p(xz|zn) (see Eq. 2).
Fig. 1(a) depicts the prior model distribution of a landmark.

p(xz|zn−1)← p(xz|zn) (2)

· Conditional The conditional p(z1:n−1|xz) defines the
knowledge of the model. It is a set of measurement (range)
distributions that reflect to a landmark’s signature as Fig. 1(b)
shows. These distributions are the training instances of the
Bayesian model described by Eq. 3.

p(z1:n−1|xz) = p(z1, z2, . . . , z1:n−1|xz) (3)

· Evidence The evidence p(zn|z1:n−1) defines a normalisa-
tion factor of the measured data distributions:

p(zn|z1:n−1) =
∫

p(xz)p(z1:n−1|xz)dxz (4)

where p(xz) = p(xz|zn−1) as xz and zn−1 are independent.

(a)

(b)

(c)

Fig. 1. (a) Prior distribution (current landmark observation), (b) Conditional
distributions (initial landmark observation model), (c) Posterior distribution.



TABLE I
MULTI-NODE ODOMETRY MODEL.

turnTo(xn, yn): ϑn = arctan2(y, x) = 2 · arctan

(
y√

x2 + y2 + x

)

ϑ ′n =
ϑn ·180

π
δθ ← (ϑ ′n− γθ )≤ θ ≤ (ϑ ′n− γθ )

-
The x, y, and θ parameters are the wheelchair’s odometry coordinates, and ϑn is the
turn-to angle pointing to next node coordinates xn, yn. ϑn is then converted from radians
to degrees. The rotational transition δθ is an angular control interval designated to stop
the robot at ϑn, which points towards < xn, yn >, using the γθ threshold.

moveTo(xn, yn): dt =
√

x2 + y2

dc =
√
(x− xn)2 +(y− yn)2

δd ← (dt − γd)≤ (dt −dc)≤ (dt + γd)

-
The parameters dt and dc are the total (t) and the current (c) Euclidean distances. The
difference between the two distances aids to estimate the destination node < xn, yn > as
the robot moves. The translational transition δd is a linear control interval designated to
stop the robot at < xn, yn > using the γd threshold.

update( ): x = xn, y = yn

n = nn+1

-
In the update step, the odometry coordinates of the robot’s pose < x, y > are updated
with current node coordinates < xn, yn >. Also, the node counter n is updated pointing
to the next coordinate pair < xn+1, yn+1 >.

B. Feature Extraction Model

The recognition of a physical landmark, a feature, is being
described by a collection of primitives. These primitives
represent the identity of each distinct landmark using a set
of vector triplets [12]. The set is a vector of three elements
[⃗rt , xt , γt ]

T , where r⃗t is the LRF vector, xt is the robot’s pose,
and γt is a recursive covariance signature, all updated at time
t. The feature triplet is given analytically by Eq. 5. r⃗t

xt
γt

=

 z1:m

< x,y,θ >
Cov f [p(xz|zn−1), p(z1:n−1|xz)]

 (5)

where z1:m is a measurement vector with m elements acquired
by the LRF (= 180 samples). The pose < x, y, θ > defines
the robot’s location and coordination relative to a global coor-
dinate frame. The covariance Cov f1:n , for feature f , extracts
a signature between the posterior p(xz|zn−1) and the prior
distribution p(z1:n−1|xz). The covariance signature, given by
Eq. 6, is being used as a threshold value γ for each landmark
to verify a feature. When the wheelchair robot approaches
a landmark, the covariance error between the prediction of
the posterior distribution and prior observation diminishes. A
covariance threshold γ then verifies whether a landmark fn at
a node < xn, yn > is being recognised.

Cov f [p(xz|zn−1), p(z1:n−1|xz)] =
S

∑
i=1

[p(xz|zn−1)i− p(xz|zn−1)] · [p(z1:n−1|xz)i− p(z1:n−1|xz)]

S
(6)

Heretofore, we have defined three parameters to characterise
a landmark feature. Eq. 7 shows a more general form of the
feature set that describes each distinct landmark.

f (zt) = f 1
t , f 2

t , . . . , f n
t = {

 r⃗1
t

x1
t

γ1
t

 ,
 r⃗2

t
x2

t
γ2

t

 , . . . ,

 r⃗n
t

xn
t

γn
t

}
(7)

C. Odometry Model
The odometry model takes into account the translational and

rotational error during locomotion [10]. Table I summarises
the node-based localisation using an odometry model. The
whole localisation process is induced in three steps as shown
in the table. The first step is the turnTo(xn, yn), where the
robot turns to the desired < xn, yn > node location. Next is
the moveTo(xn, yn) step, where the robot moves towards the
destination node < xn, yn >. In the update() step, the robot
updates its current pose to the node’s pose after reaching it.

Fig. 2 illustrates the multi-node odometry model. Several
node locations can be reached by using translation and ro-
tational kinematic transitions, δd and δθ respectively. In the
odometry model we introduce, the parameter ρ represents a
radius expanding from each node centre. Its purpose is to wide
the spatial location of the nodes, and minimise the contingency
of missing a node during localisation. In the figure, the feature
vector triples are also shown at each node location. Here, nodes
and feature vectors have the same index; it is therefore easy
to validate a location using not only the pose, but also a set
of features as described by the feature extraction model.

Fig. 2. Odometry model illustrating the linear δd and rotational δθ transitions,
as well as the feature vectors acquired at each node ni.



D. Passive Localisation Algorithm

In passive localisation the estimation of a location is de-
termined by a series of sensory observations, while control
commands with respect to linear or rotational displacements
are not incorporated [4]. Our passive localisation model is
referred as a position estimation technique rather than a po-
sition control one. Additionally, we have adopted the Markov
assumption to carry out experiments on static environments,
where the environment only affects immediately the sensor
readings. Algo. 1 demonstrates the passive localisation process
of our method, incorporating a multi-node odometry model,
and a feature extraction model as shown earlier.

Algorithm 1 Passive localisation algorithm.
1: for all nodes < xn, yn > do
2: δθn = turnTo(xn, yn)
3: while δθn ̸= θ do
4: turn(·)
5: end while
6: δdn = moveTo(xn, yn)
7: while δdn ̸=< x, y > do
8: move(·)
9: z1:m = r⃗

10: x =< x, y, θ >
11: γ =Cov [p(xz|zn−1), p(z1:n−1|xz)]
12: if δdn ∼=< x, ρ > and γ < γn then
13: stop(·)
14: < x, y >= δdn
15: end if
16: end while
17: end for

The whole localisation procedure is carried out using an
odometry model, for transiting the wheelchair robot from
node-to-node location. In Algo. 1, line 1 iterates through an
array of nodes indicated as pairs of coordinates or poses
< xn, yn >. Lines 2-5 perform a rotation pointing to <
xn, yn >. δθn, acquired from the turnTo() function (see Table
I), holds the transition angle, and θ is the current robot’s
angle. After a successful rotation to < xn, yn >, lines 7-16
perform a translation towards < xn, yn >. δdn, acquired from
the moveTo() function holds the < xn, yn > node, whereas
< x, y > is the current robot’s pose. The while statement in
line 7 runs until the robot reaches the node location, which
is the condition to be met. Lines 9-11 acquire the feature
extraction triplet. The LRF vector r⃗, line 9, assigns in the
observation z an array of samples m. Next, x is updated with
the pose, and γ with the covariance threshold of the recursive
Bayesian model. Lines 12-15 validate whether the next node
δdn approaches the x pose and radius ρ , as well as whether
the current covariance γ approaches the covariance of the next
node γn. If this condition is met, the robot’s pose < x, y >
is updated with the next node coordinate pair found in δdn,
and the translational while statement breaks. Thereafter, the
algorithm is repeated for the node location < xn+1, yn+1 >.

(a) (b) (c)

(d) (e)

Fig. 3. The primary experimental environment. (a) Outdoor illustration, (b)
Outdoor map, (c) Outdoor simulation. Indoor counterpart indicating the node
and landmark locations. (d) Node locations, (e) Landmark locations.

IV. EXPERIMENTAL RESULTS

The Essex robotic arena was the main experimental hall
where the experimental procedure took place. The primary
environmental setup illustrated in Fig. 3 was used for the
conduction of the experiments. We have built an indoor
counterpart of the outdoor environment shown in Figs. 3(d)
and 3(e). Instead of a wheelchair, the experimental work was
carried out using an Activmedia Pioneer robot for testing
purposes. Later experiments will be based on using the actual
Essex wheelchair.

A. Odometry Model Performance

We performed five experimental runs to test the recursive
Bayesian landmark model in the counterpart (indoor) environ-
ment shown in Figs. 3(d) and 3(e). Table II contains the error
performance acquired from each run and node location n. An
error is estimated as the difference between an ideal node,
acquired earlier, and the robot’s current pose when reaching
this node. The errors are subject of the recursive Bayesian
landmark model, and the odometry model incorporated with
the radius ρ . The average values in the table indicate that the
maximum node error for a 5 run performance within 6 nodes
was less than 260mm. The radius ρ was adjusted initially at
250mm meaning that each node can tolerate a 0.5m diameter
to verify a successful location.



(a) (b)

(c)

Fig. 4. Recursive Bayesian feature approximations. (a) Prior model distributions (raw), (a) Posterior model distributions (histogram), (c) Covariance error.

TABLE II
ERROR PERFORMANCE ACQUIRED AT NODE n FOR 5 RUNS. ERROR

VALUES ARE IN MILLIMETERS.

Nodes Runs
1 2 3 4 5 Average

1 244.0 217.3 240.1 251.3 241.1 238.76
2 261.0 244.2 230.1 264.3 254.5 250.82
3 236.9 241.4 254.0 264.3 253.3 249.98
4 246.1 268.1 264.9 263.4 263.6 261.22
5 242.4 237.7 248.5 254.7 267.3 250.12
6 252.8 241.7 247.1 254.2 260.1 251.18
Average 247.2 241.7 247.4 258.7 256.6

B. Feature Model Performance

The landmark features have a distinctive distribution as Fig.
4(a) typifies. These are the prior models acquired at each node
location n using a LRF. The priors are being given to the recur-
sive Bayesian model not as raw range data, but as histograms.
We have used a six-bin histogram for each model, which is
said to speed up the online feature recognition process. The
conditional distributions undergo as well the same process of
converting the range distributions into histograms. Fig. 4(b)
depicts the posterior histogram distributions estimated by the
recursive Bayesian model for each node. Ultimately, we would
like to use the recursive model to estimate the presence of a
landmark. This happens as follows.

As shown earlier in Eq. 6, our feature model estimates
the covariance between the posterior p(xz|zn−1) and the prior
p(z1:n−1|xz) distribution. Each node has been assigned with a
distinct covariance threshold γn, signified as the landmark’s
signature. When the robot approaches the next node n the
covariance error diminishes, and γn then verifies whether a
landmark is relatively close. Fig 4(c) depicts this notion of
a landmark being approached at each node. Actually, when
the robot enters into a node’s radius ρ , and approaches to
the node’s centre, the covariance error γ is being compared
with the covariance threshold γn to verify the node location.
The initial fluctuations shown in Fig. 4(c) are being filtered
for the first 30 time steps, so as to avoid inaccurate landmark
verification. A time step is equal to a 100ms delay required
by the thread to run the localisation algorithm.

Overall, Fig. 4(c) demonstrates a robust feature recognition
method with the covariance errors degrading significantly as
the robot approaches to a landmark. This outcome finalises
our passive localisation method using an odometry model,
incorporated with a recursive Bayesian feature model for
landmark recognition. Since the kinematics of a wheelchair is
almost identical to the robot’s kinematics, we believe that the
overall experimental performance of a wheelchair should be
relatively similar to the one demonstrated by the robot. In fact,
wheelchairs appear to have more accurate wheel encoders,
which means that their odometry is much more precise.



V. CONCLUSIONS AND FUTURE WORK

In this work, an alternative passive localisation method
has been introduced based on a probabilistic concept. We
presented an node-based odometry model for localisation,
and a recursive Bayesian filter for landmark recognition. The
fusion of these two approaches constitutes the contribution of
this work. A multi-node odometry model has been presented
is Section III-C, consisting of a node array where each
node represents a set of coordinates of a given location. For
localisation, a node-to-node transition required a rotational
and a translational displacement of the robot. A successful
node location was verified by using a recursive Bayesian
feature model (Section III-B), for the recognition of a
landmark found at each node. In Section IV, we performed
several runs in an indoor environment so as to show
how effectively passive localisation can work. The overall
localisation algorithm presented analytically in Section III-D,
while its experimental performance was carried out using an
ActivMedia Pioneer robot.

Despite the fact that the primary idea was to utilise a
robotic wheelchair, this however remains a prospective appli-
cation. Future works will focus on active localisation methods,
incorporated with the feature extraction model presented in
this paper. Such an architecture would have to introduce a
posterior p(x| f (z), u) = p(x|[⃗r, x, γ]T , u), which describes
the probability of a robot being at pose x given a feature
extraction vector f (z), and an action u.
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