
Program Counter as an Integrated Circuit Metrics for Secured Program
Identification

Kofi Appiah, Xiaojun Zhai, Shoaib Ehsan,
Wah M Cheung, Huosheng Hu, Dongbing Gu,

and Klaus McDonald-Maier
School of Computer Science & Electronic Engineering

University of Essex, Colchester, UK
{xzhai,kappiah,sehsan,wmcheu,hhu,dgu,kdm}@essex.ac.uk

Gareth Howells
School of Engineering and Digital Arts

University of Kent
Canterbury

UK
W.G.J.Howells@kent.ac.uk

Abstract—Integrated Circuit Metrics is mainly concerned
with the extraction of measurable properties or features of
a given hardware device, capable of uniquely identifying the
system’s behaviour. This paper presents features that can be
extracted from software executing on a device and identify
the very software in execution. The main contribution of this
paper is in two folds. The ability to extract features whiles
the software is in execution as well as correctly identifying the
software to divulge any tampering or malicious exploitation.
Our aim is to use program counter values generated during
program execution to train a k-means algorithm optimized
for vector quantization, and later use the system to associate
program counter values with an application.

Keywords-Program Counter; SOM; Program Identification;
ICmetrics;

I. INTRODUCTION

Integrated Circuit metrics (ICmetrics) technology is based
on the fact that electronic devices, depending on user inputs
and uses, would normally function under unique conditions.
Based on internal and external sensors, they sense different
environmental condition, trigger the execution of different
software, perform different tasks and even interact differ-
ently with different users. Similar to (biometrics) that are
closely linked or can be used to characterized any particular
human being, be it Iris, DNA or fingerprint; ICmetrics is the
device equivalent for characterizing an electronic device.

This paper is focused on the extraction of measurable
ICmetrics features capable of identifying a program in
execution. The extracted features are robust enough for
classification purposes. An interesting characteristic feature
of the ICmetric used in this paper is the ability to extra while
the application or software is still in execution. The feature
is easy to extract and yet hard for an intruder to re-generate.

The paper is organised as follows. Section II is a review of
previous classification algorithms and other related ICmet-
rics work. This is followed by the approach we have used
in extracting measurable features in section III. Section IV
describes the hardware setup used for experimental purposes.
Details of all experiments conducted on the chosen algorithm
with empirical and preliminary results are presented in

section V, with conclusions and proposed future work in
section VI.

II. RELATED WORK

Papoutsis et. al. [1] present a novel technique for normal-
ising sets of features, highly multi-modal for the purposes
of generating encryption key based on ICmetrics. The work
also demonstrates how cluster-finding techniques can be
used with ICmetric to generate a secured encryption system.
In [2] Kovalchuk et. al. demonstrate the use of ICmetrics in
securing the transmission of sensitive medical data between
patients and medical staff. The paper further discusses the
advantages and challenges in using ICmetric as encryption
key generator. A challenge exposed by the paper is the
inability to use traditional pattern recognition techniques to
classify ICmetric features.

The use of PC demonstrates that whiles some address
spaces are only used by a particular application, several
other applications share address spaces; making it difficult
to distinguish between them. The aim of this paper is to:

• Use robust traditional pattern recognition techniques as
proposed in [2] to classify PC values,

• Based on the classification technique used, be able to
distinguish between programs that share the same PC
address spaces and

• Use only PC sequence and frequency analysis as a
strong ICmetrics candidate to dynamically identify an
application.

Effectively, addressing most of the major challenges envis-
aged by previous research work conducted with the use of
PC values as ICmetrics.

Changes in program execution may not be completely ran-
dom [3], but rather falls into repeating behaviour. Huffmire
and Sherwood [3] present a model for the automatic iden-
tification of program behaviour. They defined a phase as
an interval (in time space) within a program that have
similar behaviour. A phase is identified by analysing the
execution history of the program. Rather than classifying
data resides in memory (offline processing), Kasetty et. al

1



[4] introduced a framework for time series classification that
can be implemented efficiently, updated in constant time and
space, and deal with high data arrival rates. Their algorithm
uses Symbolic Aggregate Approximation to summarize data
in minimal space and yet captures the local behaviour in
time space.

III. OUR APPROACH

Our aim is to design a system with dynamic classification
techniques capable of identifying an application or software
as it executes on the hardware. Using the Program Counter
(PC) as ICmetric feature, the system should be able to distin-
guish between applications and software that share address
spaces. We also demonstrate the use of traditional pattern
recognition techniques as our classification tool, a drawback
in the work presented in [2]. We begin our algorithmic
design with sample features and associated characteristics
of interest, and further refine those features to achieve
the aim of this work. The following sections describe the
components of our system into details.

A. Signature Extraction

This section is mainly concerned with the interpretation
of the raw PC values in a form that can uniquely identify
any particular program or application. Depending on the
platform and size of memory used, the PC values can be
significantly huge. A typical execution of the angle conver-
sion program [5] on the platform described in section IV
can have PC values ranging from 134218632 to 134223590.

 

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1.3423

1.3423

1.3423

1.3423

1.3423

1.3423

1.3423

1.3423
x 108 L25

Executed Instruction

P
C

 V
al

ue
s

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1.3423

1.3423

1.3423

1.3423

1.3423

1.3423

1.3423

1.3423
x 108 S25

Executed Instruction

P
C

 V
al

ue
s

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1.3422

1.3422

1.3422

1.3422

1.3422

1.3422

1.3422
x 108 BC

Executed Instruction

P
C

 V
al

ue
s

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1.3422

1.3422

1.3422

1.3422

1.3422

1.3422

1.3422

1.3422

1.3422

1.3422
x 108 SR

Executed Instruction

P
C

 V
al

ue
s

Figure 1. Sample output of Program Counter values from 4 different
applications, each with 5, 000 samples. The variances for the applications
are 607 for L25, 1.0e4 for S25, 2.3e4 for BC and 4.2e4 for SR

As depicted in figure 1, each of the four applications
have different access to memory (PC values) in terms of
time and space. Thus, even when applications share or have
overlapping PC values, the similarity might not occur at the
same time during execution. We normalize the PC values

into a set of continuous values ranging from zero to one (i.e
0 ≤ K ≤ 1), where K is the normalised representation for
the PC value. Given x1, . . . , xk as the set of PC values Ki

is expressed as

Ki =
xi

max(xi)
∀i ∈ (1 . . . k) (1)

where max(xi) is the maximum PC value.

B. Training Sub-System

After successfully representing the PC values in a form
usable as our ICmetric, the next step is to design a system
capable of distinguishing between different applications. At
the minimum, the system should be able to infer to a degree
of certainty that the extracted PC signature has previously
been observed and belongs to a particular application. We
refer to that as True Positive. When the signature has not
been previously observed, the system is expected to throw a
True Negative; thus an unknown signature. We also want to
minimize the False Negative rate; situations where known
signatures would be flagged as unknown, as well as False
Positive, the assignment of unknown signatures to a known
application.

A fundamental pattern recognition and clustering pro-
cess, in which intrinsic inter- and intra-pattern relationships
among the stimuli and responses are learnt without the pres-
ence of a potentially biased or subjective external inuence is
presented in Kohonen’s Self Organizing Map (SOM) [6], and
would be adopted in this work as the basis for our classifier.
We utilize the k −means nature of the SOM, to partition
the extracted PC signatures into a user-specified number of
clusters, k.

Now that the clustering algorithm has been identified
and defined, we will have to tune our ICmetric data (PC
signatures), to conform with the required algorithmic inputs.
The algorithm operates on a set of N−dimensional vectors
for both inputs and network weights; where N is fixed for
any particular network. The task here is to

1) Partition the PC signatures into N dimensional vec-
tors,

2) The size of the vectors N , should be the same for all
applications and

3) The vector should not over-fit or under-fit any appli-
cation.

The size N of the vector, if set too large will over-fit the
application that it represents. Similarly, if it is set too small,
it will under-fit the application. Thus choosing the right size
of N is very important. Again, if it is set too large it would
require storing large volume of data before analysis can be
conducted to infer the application in execution. That clearly
undermines the purpose of this work. The best value of N , is
the minimum number of PC signature values that represent
one phase of the executing program. A phase is identified by
analysing the execution history of the program. The value

2



of N in this work has been set to 1000, after empirically
examining the test data. Results of using other values will
be discussed in section V.

PC values are grouped into sets of 1000 data points before
converted into signatures. To enable continuous ICmetric
analysis, the system presented here requires just 1000 PC
values at a time to infer its corresponding application.
Because the system is based on SOM – and a variant of
the k − means algorithm, the value of k should also be
set. The value of k is set depending on the total number of
software or applications under investigation, and the number
of distinct phases in any particular application. At minimum,
the value of k should be equal to the number of applications
under investigation; thus when each of the application has no
more than one repetitive phase. During the training phase,
the entire PC values are divided into parts each of size
1000. Each part is then converted into the corresponding
signature, �Ki for the normalised signatures and �Bi for the
binary signatures. Typically, an application which generated
3000 PC values during execution will have three different
normalised signatures (�K1, �K2, �K3) for training, each vector
with size 1000.

During training, the vectors are presented individually
to the network in a random order. Euclidean distances
between the input vector �Ki and all the network neurons
are computed and the neuron with the minimum distance
is chosen as the winning neuron. The winning neuron is
updated to reflect the input as described in equation 2. The
same training data is used until there is little or no changes
in the network values; thus when the network converges.

Δwk = η(Ki − wk), (2)

where η ∈ (0, 1) is the learning rate and wk is the winning
neuron.

C. Recall and Identification

After training the k neurons with the input data, the next
step is to associate each of the network neurons with an ap-
plication. This is accomplished in this work by using Vector
Quantization[7]. Its purpose is to reduce the cardinality of
the representation space, in particular when the input data
is real-valued. In this work, we use Vector Quantization to
assign labels to the trained neurons (or cluster centroids) in
the network as follows:

• Assign labels to all the input training data. The label is
the identifier for the application from which the training
data has been extracted from.

• Find the neuron (centroid) in the network with the
minimum distance to the labelled input data.

• For each input data �Ki maintain the application label
Ai, the corresponding neuron wj and the distance
measured. The distance is maintained as a tie breaker
for applications that share similar address space.

After estimating the corresponding neuron for each input,
the steps involved in labelling the network neurons are as
follows:

1) For each network neuron wj , estimate the number of
applications Ai (where i ∈ 1 . . . T for T different
applications) that are associated with the neuron wj .

2) If only one application Ak is associated with a neuron
wj , and the number of data points exceed 10% of the
total number of application data points, the neuron is
exclusively assigned to Ak.

3) ∀Ai with more than 10% of its data points associated
with wj , create a codebook with an entry for the
neuron wj , and the corresponding applications Aj

i ,
each with its distance range – thus minimum distance
and maximum distance to the neuron.

Condition 2 is used to identify odd and unusual network
neurons. Thus if less than 10% of a particular application’s
data points are associated with a neuron, the chances are
that they are less frequent characteristics of that application.
Condition 3 is very important when two or more applications
share the same address space. If that is the case, then
the distance measures for different applications would be
different and it is used as the tie-breaker. The importance of
this is demonstrated in section V.

IV. HARDWARE SETTING

For this study, we have used the Keil MCB-
STM32F200 evaluation board based on the STMicroelec-
tronics STM32F207IG series of ARM Cotex - M3 processor.
The platform has a 120MHz processor with 1MB Flash and
128KB RAM on-chip memory. This provides the attached
host computer with unique stream of trace data in the form
of executing profiling and code coverage. The PC values
are first saved into appropriate files and then converted
from their native Hexadecimal (Hex) into Decimal (Dec)
for further analysis. The PC value extraction from the saved
files and conversion from Hex to Dec is achieved with the
use of MathWorld MATLAB. It should be pointed out that
the data extraction is intrusive, and yet has little or no effect
on the PC values, as the complete profile of the program
execution is saved.

V. EXPERIMENTAL RESULTS

To evaluate the performance of our system of identifying
executing programs with their PC values, we have used
seven different programs. Four of the seven programs have
been taken from [5]; the automotive package of benchmark
algorithms –MiBench. Two are taken from the Open Source
Computer Vision Library (OpenCV [8]) and the last taken
from [9]. All the seven programs have been implemented
on the Keil MCBSTM32F200 evaluation board and their
corresponding PC values extracted from the tracing log
generated via the JTAG debugger. The programs taken from
[5] are the Angle Conversion (AC) with 649141 PC values,

3



Prog TP + TN(%) FP(%) FN(%)
AC 78.76 1.53 20.31
BC 96.89 0 2.67
CF 38.46 38.46 23.08
RN 100 0 0
SR 89.29 0 10.71
S25 100 0 0
L25 93.69 0 6.31

Tot 88.01 1.56 10.43

Table I
A TABLE SHOWING THE CLASSIFICATION SCORE FOR THE TEST

PROGRAMS. THE VECTOR SIZE USED FOR THE NETWORK WEIGHT IS

SET TO 1000.

the Bit Count (BC) with 448029 PC values, the Cubic
Function (CF) with 51230 PC values and the Square Root
(SR) with 279435 PC values.

The two programs chosen from [8] are the Sobel edge
detector (S25) with 207671 PC values and the Laplacian
edge detector (L25) with 222789 PC values. The last pro-
gram is a random number generator (RN) with 54013 PC
values. The PC values for all the seven programs have
been divided into two equal parts for the training and test
dataset. For example the training set for the AC program
has 324570 PC values, which is further converted into 325
different feature vectors, each of size 1000. In table I, Prog
is the program label and (TP + TN) represents all points
that are correctly identified by the system. False Positive
(FP) represents values that are incorrectly associated with
wrong programs and False Negative (FN) are PC values
which could not be associated with any program. Overall,
the classifier can correctly identify programs with more than
85% certainty.

VI. CONCLUSION

We have presented a system of program identification with
the use Program Counter as the ICmetrics data. The system
uses an optimised k-means algorithm for the classification.
We have also demonstrated the need to reduce the raw
Program Counter values into normalised and binary forms.
Analysis conductors has shown that the systems is capable
of identifying an executing program with more than 85%
certainty. The problem with the system is with the choice of
the vector size. This can be resolved if another ICmetric can
be used to determine when the execution changes from one
phase to the other, this forms the basis of our future work.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the support of the
UK Engineering and Physical Sciences Research Council
under grant EP/K004638/1 and the EU Interreg IV A 2 Mers
Seas Zeen Cross-border Cooperation Programme SYSI-
ASS project: Autonomous and Intelligent Healthcare System
(projects website http://www.sysiass.eu/).

REFERENCES

[1] E. Papoutsis, G. Howells, A. Hopkins and K. McDonald-
Maier, Integrating Multi-Modal Circuit Features within an
Efficient Encryption System, Third International Symposium
on Information Assurance and Security, 2007.

[2] Y. Kovalchuk and K.D. McDonald-Maier and W.G.J. Howells,
Overview of ICmetrics Technology Security Infrastructure for
Autonomous and Intelligent Healthcare System, International
Journal of u- and e-Service, Science and Technology, 2011.

[3] Huffmire, Ted and Sherwood, Tim, Wavelet-based phase clas-
sification, Proceedings of the 15th international conference on
Parallel architectures and compilation techniques, 2006.

[4] Kasetty, Shashwati and Stafford, Candice and Walker, Gregory
P. and Wang, Xiaoyue and Keogh, Eamonn, Real-Time Clas-
sification of Streaming Sensor Data, Proceedings of the 2008
20th IEEE International Conference on Tools with Artificial
Intelligence - Volume 01, 2008.

[5] Guthaus, M.R. and Ringenberg, J.S. and Ernst, D. and Austin,
T.M. and Mudge, T. and Brown, R.B.,MiBench: A free,
commercially representative embedded benchmark suite, IEEE
International Workshop on Workload Characterization, 2001.

[6] Yin, Hujun, The Self-Organizing Maps: Background, Theories,
Extensions and Applications, Computational Intelligence: A
Compendium,Studies in Computational Intelligence, vol. 115,
2008.

[7] Jegou, H. and Douze, M. and Schmid, C., Product Quantization
for Nearest Neighbor Search, IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 33, 2011.

[8] OpenCV Developers Team, Open Source Computer Vision
Library, March, http://opencv.org/, 2013.

[9] Y. Kovalchuk and W.G.J. Howells and H. Hu and D. Gu
and K.D. McDonald-Maier, A practical proposal for ensuring
the provenance of hardware devices and their safe operation,
Proc. of Institute of Educational Technology System Safety
Conference, 2012.

4


