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Structured Abstract: 

Purpose – The main purpose of this paper is to investigate two key elements of localization and mapping of Autonomous Underwater Vehicle (AUV), i.e. 

to overview various sensors and algorithms used for underwater localization and mapping, and to make suggestions for future research. 

Design/methodology/approach – The authors first review various sensors and algorithms used for AUVs in the terms of basic working principle, 

characters, their advantages and disadvantages. The statistical analysis is carried out by studying 35 AUV platforms according to the application 

circumstances of sensors and algorithms.   

Findings – As real-world applications have different requirements and specifications, it is necessary to select the most appropriate one by balancing 

various factors such as accuracy, cost, size, etc. Although highly accurate localization and mapping in an underwater environment is very difficult, more 

and more accurate and robust navigation solutions will be achieved with the development of both sensors and algorithms. 

Research limitations/implications – This paper provides an overview of the state of art underwater localisation and mapping algorithms and systems. 

No experiments are conducted for verification. 

Practical implications – The paper will give readers a clear guideline to find suitable underwater localisation and mapping algorithms and systems for 

their practical applications in hand. 

Social implications – There is a wide range of audiences who will benefit from reading this comprehensive survey of autonomous localisation and 

mapping of UAVs. 

Originality/value – The paper will provide useful information and suggestions to research students, engineers and scientists who work in the field of 

autonomous underwater vehicles. 
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1. Introduction 

For decades, Autonomous Underwater Vehicles (AUVs) have been widely used for many tasks, ranging from 

underwater search and rescue, mapping, climate change assessment, marine habitat monitoring, shallow 

water mine countermeasures, pollutant monitoring, etc. Navigation plays a significant role in the application 

of AUVs and consists of two fundamental aspects: localisation and mapping. Localization provides AUVs 

with their position and orientation information so that they can find way to go. In contrast, mapping provides 

AUVs with environmental information for their path planning, obstacle avoidance and goal seeking. This 

paper aims to review the state of the art in these two key elements.  

       The key elements involved in localization and mapping of AUVs lie in two aspects, namely hardware 

and software. In this paper, hardware means sensors while software represents algorithms utilized in AUV 

navigation. To a large extent, the sensors’ accuracy and the selection of data processing algorithms determine 

the overall accuracy of AUV navigation. When an AUV has only GPS/INS sensors on-board, the accuracy of 

its position estimation and environment mapping will depend on the accuracy of both GPS and INS sensors, 

as well as the sensor fusion algorithms that are adopted, typically Kalman filters rather than triangulation. 

Therefore, gaining sufficient knowledge of sensors is the prerequisite of developing the localization and 

mapping systems for AUVs. This is also the reason for Section 2 to summarize sensors accuracy for 

underwater localization and mapping. 

      During last decades, various algorithms have been proposed to solve underwater localization and 

mapping problems according to specific sensors used. Grasping a comprehensive picture of what and how 

algorithms are applied for underwater localization and mapping will be quite instructional for algorithm 

development in the application of AUVs. As can be seen in this paper, especially in Section 3 and 4, most of 

localization algorithms are based on triangulation and Kalman filter when Underwater Acoustic Positioning 

System (UAPS) are used. Recently, various sensor fusion algorithms have been developed to integrate 

several sensors such as GPS, INS and DVL. Once localization is conducted, mapping is realized by utilizing 

sonar sensors such as multi-beam sonar and side-scan sonar. After the year 2000, SLAM algorithms have 

been developed for autonomous robots, which in turn have been applied in AUVs (Ribas et al., 2006), 

(Leonard and Feder, 2001) and (Tena Ruiz et al., 2004).    

      Up to now, several review papers on the navigation of AUVs have been presented. (Leonard et al., 1998) 

surveyed the navigation methods for AUVs and categorised them into three groups: (1) dead-reckoning and 

inertial navigation systems; (2) acoustic navigation; (3) geophysical navigation techniques. However, the 

review discussed the general SLAM instead of underwater SLAM since no SLAM algorithm had been used 

in AUVs at that time.  (Kinsey et al., 2006) surveyed advances in AUV navigation in the aspects of sensor 

technology, underwater navigation methodologies and future challenges. The structure in (Kinsey et al., 

2006) is similar to ours, but with less comprehensive statistical analysis of sensors and algorithms used in 

underwater navigation. This paper intends to provide a comprehensive review on various sensors and 

algorithms used in AUVs according to their application situation, pros and cons, as well as statistical 

analysis. 

      The rest of the paper is organized as follows. Section 2 overviews different types of sensors used for 

underwater localization and mapping in terms of basic working principle, characters, their advantages and 

disadvantages.  Section 3 summarizes various algorithms used for underwater localization and mapping 

according to their application situations, advantages and limitations, etc. By studying the major AUV 

application platforms published in literature, Section 4 provides the statistic graph of the AUV platforms 

according to the usage of different sensors and the utilization of various algorithms. Section 5 draws the 

conclusion from what has been discussed in the paper and makes suggestions for future research. 

 

2. Sensors Used for Underwater Localization and Mapping 

To deal with dynamical changes in the real world, various sensors are deployed on UAVs for navigation and 

goal seeking. Since sensor characters determine the system architecture and navigation algorithms, it is 

necessary to understand the characteristics of various sensors used for localization and mapping prior to 
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system design and development. The popular sensors include, but not limited to, GPS (Global Positioning 

System), INS (Inertial Navigation System), Doppler Velocity Log (DVL), Mechanically Scanning Imaging 

Sonar (MSIS), sonar, visual sensor, and Underwater Acoustic Positioning System (UAPS), etc. This section 

will outline these sensors briefly. 

2.1    GPS/INS 

GPS (Global Positioning System) is a space-based global navigation satellite system (GNSS) that provides 

location and time information in all weather, anywhere on or near the Earth (Wikipedia, 2012a). A small GPS 

receiver module is able to gain location and time information with accuracy being 1-10 meters. However, 

GPS suffers from various errors including numerical errors, atmospherics effects, ephemeris errors, multipath 

errors and other effects (Grewal et al., 2007).  

       INS (Inertial Navigation System) is a dead reckoning navigation system that consists of a computer, 

motion sensors (accelerometers) and rotation sensors (gyroscopes) to continuously calculate the position, 

orientation, and velocity (direction and speed of movement) of a moving object without the need for external 

references (Wikipedia, 2012b). The main advantages of inertial navigation over other forms of navigation 

include (Grewal et al., 2007): (i) It is autonomous and does not rely on any external aids or on visibility 

conditions. It can operate in tunnels or underwater as well as anywhere else. (ii) It is inherently well suited 

for integrated navigation, guidance, and control of the host vehicle. (iii) It is immune to jamming and 

inherently stealthy. It neither receives nor emits detectable radiation and requires no external antenna that 

might be detectable by radar.  
GPS is capable of improving its accuracy if it is integrated with an INS to compensate for intermittent 

reception caused by either wave action or deliberate submergence. Therefore, integrated GPS/INS systems 

have been applied to aircraft and space shuttle guidance and navigation (Barnes et al., 1996, Braden et al., 

1990, Gray and Maybeck, 1995), balloon navigation (Jekeli, 1992),  missile systems (Ornedo et al., 1998), 

land vehicles (Martin and Vause, 1998), and mobile robots (Barshan and Durrant-Whyte, 1995, Sukkarieh et 

al., 1998). In these applications, GPS data are continuously available in short intervals, and INS data are used 

to navigate between GPS fixes. Similar to these applications, integrated GPS/INS system can also be applied 

to AUVs working in shallow sea without a long period of submergence. When AUVs are surfaced, they take 

advantage of GPS to localise themselves accurately, while they are in underwater, INS replace GPS to 

localise though with relatively low accuracy compared to the circumstance on the surface (Yun et al., 1999).  
 

Although GPS/INS integrated system can achieve relatively high accuracy of localization, it is limited to 

shallow water environment with short period of working time. Since INS has accumulated errors, its 

localization error will continue to increase if it is not corrected by GPS for a long time. 

2.2    DVL 

DVL has three or four downward looking beam transducers that are typically mounted at about 30°to the 

instrument's vertical axis. The Doppler sensor measures the apparent bottom velocity along each of three or 

four beams and processes the four responses to compute a vector of velocities in the instrument frame 

according to the Doppler Effect (Rigby et al., 2006). The velocity vector in the instrument frame is then 

rotated to the world frame by multiplying it with a rotation matrix composed of roll, pitch and yaw angles 

with respect to the world frame. The velocities can then be integrated to compute bottom track position. 

However, the integration process makes the calculated position error unbounded, which results in the fact 

that DVL is rarely used alone for underwater navigation. Therefore, DVL is often fused or combined with 

other sensors such as INS (Hui and Fengle, 2002, Zhao and Gao, 2004) and UAPS (Rigby et al., 2006).  

2.3    MSIS 

MSISs perform scans in a 2D plane by rotating a fan-shaped sonar beam through a series of small-angle steps 

(Ribas et al., 2008). For each emitted beam, an echo intensity profile is returned from the environment. 

Gathering all this information within a complete 360°produces an acoustic image of the surrounding 
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environment. The beam usually has both vertical and horizontal beam widths, and the vertical beam width is 

larger than horizontal one. It takes several seconds for MSIS to complete one 360°scanning rotation, during 

which the MSIS motion will distort the image. Therefore, it is necessary to correct the distorted image by the 

vehicle motion. When MSIS is used for localization and mapping in AUVs, it is often used for providing the 

filtering algorithm with the observation part, either represented in the form of feature extracted from the 

image (Ribas et al., 2008) or in the form of template used in scan matching (Hernández et al., 2009).   

2.4    Side-scan Sonar and Multi-beam Sonar 

Sonar (SOund Navigation And Ranging) sensors use sound propagation to achieve navigation, object 

detection and communication. Sonar works better in underwater than on land since sound transmits faster in 

water than in the air. Thus, Sonar is the most widely used range sensor for underwater vehicles.  There are 

two types of frequently used sonars for underwater localization and mapping, namely multi-beam sonar and 

side-scan sonar. They share some common characters, though with some differences.  

       As shown in                                   (a) Multi-beam Sonar                                   (b) Side-scan Sonar 

Figure 1 (a), a multi-beam sonar is an instrument that can map more than one location on the ocean floor 

with a single ping and with higher resolution than those of conventional single-beam sounders (Instruments, 

2000). Unlike the single-beam echo sounder which can only trigger one beam of sound for one ping, a multi-

beam sonar can perform the job of single-beam at several different angles for one ping, which significantly 

makes the scanning much faster and more accurate than a single beam sounder. Generally, multi-beam sonar 

is installed on the hull of a vessel looking down toward the seafloor and used for mapping, which produces a 

high accuracy of location information of the vessel. Also, some researchers employ forward-looking multi-

beam sonar for obstacle avoidance or localization (Petillot et al., 2001). 

      Side-scan sonar (see                                   (a) Multi-beam Sonar                                   (b) Side-scan 

Sonar 

Figure 1(b)) is similar to that of multi-beam sonar, but is dragged by the ship to near the ocean floor instead 

of being installed on the hull of the ship. This is due to the fact that the sonar device obtains a higher 

resolution when it is close to the sea floor (Survey, 2010). It is is used to create images of the sea floor and 

debris that lies on it. Side-scan sonar can be used in marine or underwater fields for various purposes (Tena 

Ruiz et al., 2004). The collected image data from side-scan sonar is processed by some algorithms so that 

extracted features could match with a priori map for AUV to localise.  

       Although multi beam and side-scan sonar are not simultaneously installed on the same AUV in most 

cases, some researchers such as (De Moustier and Matsumoto, 1993) combined these two sonars and 

believed that a combination of them could be a very effective tool to quantify sea bottom types on a regional 

basis and develop automatic seafloor classification routines for mapping. 

 

          
                                  (a) Multi-beam Sonar                                   (b) Side-scan Sonar 

Figure 1: Working sonars (Oceanic Imaging Consultants, 2012). 
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2.5    Visual sensor 

Video camera and laser-based vision system are the two main visual based sensors used for localization and 

mapping in an underwater environment because of their low cost and rich information. Although video 

camera is limited to short range due to low visibility and lighting factors in underwater circumstances, it is 

widely applied by researchers conducting underwater localization and mapping experiment and practise 

(Carreras et al., 2003, Salvi et al., 2008, Zhang et al., 2004).  
 

A laser-based vision system is usually composed of a laser projector and a camera, which cooperate with 

each other to recognise the 3D feature of objects. Compared to a single camera, it is not subject to the low 

visibility and bad lighting condition of underwater environments, as the laser projectors can emit very 

powerful laser beam which can hardly be weakened by water. Therefore, a laser-based vision system can 

realise more accurate localization than a single camera (Karras et al., 2006).  

2.6    Underwater Acoustic Positioning System 

Underwater Acoustic Positioning Systems (UAPS) measure positions relative to a framework of baseline 

stations, which must be deployed prior to operations. The location of baseline transponders either relative to 

each other or in global coordinates must then be measured precisely using triangulation. UAPS are generally 

categorised into four broad types: Long Baseline (LBL) Systems, Short Baseline (SBL) Systems, Ultra Short 

Baseline (USBL) Systems and GPS Intelligent Buoys (GIB). The former three baseline systems are defined 

by the distance between acoustic baselines, i.e. the distance between the active sensing elements. 

2.6.1 LBL Systems  

 

The baseline length of LBL systems is from 100 to 6000+ meters. LBL systems use a sea-floor baseline 

transponder network and derive the position with respect to the network. The transponders are typically 

mounted in the corners of the operations site. The position is generated from using 3 or more time of flight 

ranges to/from the seafloor stations using triangulation. LBL systems yield very high accuracy of generally 

better than 1 m and sometimes as good as 0.01m along with very robust positions (Foley and Mindell, 2002). 

One of the typical applications of LBL for localization and navigation of AUVs can be seen in (Matos et al., 

1999), where a LBL based navigation system was successfully developed for an AUV.  

2.6.2 SBL Systems  

 

The baseline length of SBL systems is from 20 to 50 meters. SBL systems operate on a similar principle as 

LBL, but the receiving hydrophones are usually mounted at fixed locations on the vessel floating on the 

water surface. Then AUVs obtain their position by measuring the time of arrivals (TOA) between a 

transponder attached on the AUV and the hydrophones on the vessel. Since the vessel is subject to pitch, roll 

and yaw movements due to water current, the calculated position of the underwater object has to be corrected 

using a vertical reference unit (VRU) and a heading reference unit (HRU) (Vickery, 1998). In a contrast to 

the widely used application of USBL in underwater navigation, quite few SBL systems were applied to this 

field.  

2.6.3 USBL  Systems 

The baseline length of USBL systems is less than 10cm. USBL is also known as Super Short Baseline 

(SSBL). Unlike LBL and SBL systems, which calculate positions by measuring multiple distances and then 

applying triangulation, the USBL transducer array is used to measure the target distance from the transducer 

pole by using signal run time, and the target direction by measuring the phase shift of the reply signal as seen 

by the individual elements of the transducer array. The combination of distance and direction fixes the 

position of the tracked target relative to the surface vessel(Surveyor et al., 2013). Like SBL systems, the 

calculated position of the AUV has to be corrected using VRU and HRU. Therefore, USBL is generally 

integrated with other dead reckoning sensors such as DVL and INS for the accurate localization and 
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navigation of AUV, by adopting filtering algorithms such as Kalman filter, Extended Kalman filter and 

Particle Filter etc.(LI et al., 2008, Morgado et al., 2006, Rigby et al., 2006)  

2.6.4 GIB systems 

 

The GIB system consists of four surface buoys equipped with DGPS receivers and submerged hydrophones. 

Each of the hydrophones receives the acoustic impulses emitted periodically by a synchronized pinger 

installed on-board the underwater platform and records their TOA (Alcocer et al., 2006). The TOA is then 

converted to distances by multiplying it with the underwater speed of sound. The position of the underwater 

platform can be calculated either by triangulation or EKF-based triangulation (Alcocer et al., 2007).  

        In order to summarize the characters of aforementioned sensors, Table 1 is made to show the 

characteristics of various sensors used for underwater localization and mapping. Based on this table, it is easy 

to draw a conclusion about the major advantages and disadvantages of these sensors which can be seen in 

Table 2.  

 

Table 1: Character of various sensors used for underwater localization and mapping 

 

Table 2: Advantages and disadvantages of various sensors 

Sensors Data format Cost Weight Accuracy 
Deployment 

Difficulty 

Working 

Depth 

Power 

Consumption 

GPS/INS 
Satellite time; 

Inertial information 
Low Light Low Easy 

 

Shallow 

 

Low 

DVL Velocity High Light-Heavy Medium Medium 
 

Deep 

 

High 

MSIS Sonar image Medium Light Medium Medium 
 

Medium 

 

Medium 

Side-scan Sonar Sonar image Medium Heavy Medium Medium 
 

Deep 

 

Medium 

Multi-beam Sonar Sonar image Medium Light Medium Medium 
 

Deep 

 

Medium 

Camera Visual image Low Light Low Easy 
 

Shallow 

 

Low 

Laser-based Vision 

System 

Range and Visual 

image 
High Medium High Medium 

 

Deep 

 

Medium 

LBL systems Range High Heavy High Difficult 
 

Deep 

 

High 

USBL systems Range and Angle High Heavy High Medium 
 

Medium 

 

Medium 

SBL systems Range High Heavy High Medium 
 

Medium 

 

Medium 

GIB 
Satellite time, 

Range 
High Heavy High Medium 

 

Medium 

 

Medium 
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3. Algorithms used for Underwater Localization and Mapping 

After sensor data has been obtained from sensors described above, algorithms should be designed and 

executed to calculate and present the location and mapping information which will be used for navigation of 

AUVs. Since different sensors have their own characteristics, the formulations of their corresponding 

algorithms vary. This section will summarize the various algorithms used for AUVs over the past, and 

analyse the advantages and disadvantages of each type of them. These algorithms can be classified into: 

trilateration and triangulation, sensor fusion, scan matching and SLAM. 

3.1    Trilateration and Triangulation 

Lateration is the simplest algorithm used for determining the position of an AUV, given several distances 

from the vehicle to other beacons whose location is known in advance.  The AUV position can be calculated 

by solving a non-linear optimization problem whose objective function is the minimization of the error 

between the actual ranges and the expected ranges from the vehicle to the beacons. For a 2D localization 

problem, the minimum number of known beacons for lateration is 3, which produces the name of the 

localization approach - trilateration.  For a 3D localization problem, the minimum number is 4. When angles 

between beacons are involved, the approach is called Triangulation. Several triangulation algorithms have 

been proposed, such as Geometric Triangulation, Iterative Search, Newton-Raphson Iterative Search and 

Geometric Circle Intersection (Cohen and Koss, 1993), triangulation using three circle intersection (Fuentes 

Sensors Advantages Disadvantages 

GPS/INS 
Low cost, light, easy to deploy, require no 

external aid (INS). 

Only suitable for shallow 

environment, low accuracy. 

DVL 
Directly provide velocity, requires no 

external aid. 

Too heavy for small AUVs, high cost 

and high power consumption. 

MSIS 
Relatively low cost, light weight suitable 

for small AUVs.  

Suffer from distortion caused by 

vehicle motion. 

Side-scan Sonar 
Provide rich information about the 

environment, accurate mapping. 
Too heavy for small AUVs, high cost. 

Multi-beam 

Sonar 

Provide complete swath coverage of the 

surveyed area. 
Beam limited in the near-nadir region. 

Camera 
Low cost, rich information about the 

environment, easy to deploy. 

Subject to low visibility and bad 

lighting condition, only suitable for 

shallow environment. 

Laser-based 

Vision System 

Not subject to the low visibility and bad 

lighting condition. High accuracy. 
High cost. 

LBL systems 
High position accuracy independent of 

water depth over large areas. 

Complex, expensive, difficult to 

deploy, require comprehensive 

calibration at each deployment. 

USBL systems 
No need to deploy transponders on the 

seafloor, low system complexity. 

Detailed system calibration required, 

absolute position accuracy depends on 

additional sensors-gyro and VRU. 

SBL systems 
No need to deploy transponders on the 

seafloor. 

Detailed offshore calibration of 

system required, absolute position 

accuracy depends on additional 

sensors-gyro and VRU. 

GIB 

No need to deploy transponders on the 

seafloor, able to obtain global location, 

calibration-free with accuracy similar to 

LBL systems. 

Pre-deployment is required. 
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et al., 1995), and Generalized Geometric Triangulation Algorithm (Esteves et al., 2003). Lateration and 

angulation work quite well as long as the ranges and angles are properly and stably given by range sensors. 

This is also the reason for why they are widely used in UAPS since all types of UAPS has pre-deployed 

beacons with known either absolute or relative positions. However, there are at least two common restrictions 

to these algorithms: 1) areas of the plane with less than three (for 2D and four for 3D) visible beacons are 

unsuitable for robot localization; 2) the algorithms will fail to calculate the robot position if the vehicle and 

the beacons all lie in the same circumference. In particular, for 3D localization, the four beacons should not 

be in the same plane, otherwise it is impossible to obtain 3D position of the vehicle.  

3.2    Sensor Fusion 

Generally speaking, fusing data from multiple sensors is able to provide more accurate and robust 

localization and mapping results than using only individual sensors separately. Throughout the literature, the 

most widely applied algorithms for sensor fusion are Kalman Filter (Welch and Bishop, 1995) and their 

variants, due to their easiness, real-time ability and robustness to implement. For underwater navigation, 

sensor fusion is always related to INS which is typically considered as the core sensor fused with other 

sensors such as GPS, DVL and both GPS and DVL. Therefore, a brief review of various Kalman filtering 

based algorithms used for underwater navigation is presented as follows by taking INS/GPS, INS/DVL and 

INS/GPS/DVL as examples: 

3.2.1 Kalman Filter 

A Kalman Filter estimates the state of a dynamic system with two different models namely kinematic and 

observation models. The kinematic models describe the state transition of the system, while observation 

models represent the relationship between the environment and the state of the system. By iteratively 

calculating the Kalman equations regarding the kinematic model and the observation model, it provides 

optimal estimation of the system state. Kalman filter solves problem where both the system process and 

observation model are linear. However, almost all the dynamic process in the real world is non-linear, 

therefore, instead of being used directly in practice, Kalman filter is often considered as the basic theoretic 

framework for its variants that are more practically utilized. 

3.2.2 Extended Kalman Filter 

Extended Kalman Filter (EKF) is the most successful variant of Kalman Filter as it is able to achieve good 

accuracy of state estimation in most of practical circumstances where system dynamic and observation 

models are non-linear. EKF performs calculation of Kalman Filter by linearizing the estimation around the 

current estimate using the first order of partial derivatives (also known as Jacobians) of the process and 

measurement functions (Welch and Bishop, 1995). Like its popular use in other applications of state 

estimation, EKF has been vastly employed for sensor fusion in underwater navigation. For example, (Faruqi 

and Turner, 2000) utilized EKF technique for the integration of GPS and INS. In their system, the errors of 

position, velocity, attitude, accelerometer bias, gyro drifts, GPS clock time and frequency bias are the system 

states that should be estimated; the typical INS equations including integral of acceleration and gyro rate 

compose the dynamic model and raw pseudo range and pseud-range-rate data from GPS are utilized as 

measurements to the filter. EKF has also been utilized for the integration of INS/DVL (Hui and Fengle, 2002) 

and the fusion of INS/GPS/DVL (Zhao and Gao, 2004).  

      It should be noticed that there is a fundamental disadvantage of EKF, that is, due to the linearization in 

dynamic and observation models, the filter may quickly diverge if the initial estimate of the states is wrong or 

if the models are not accurately built. Furthermore, the higher the nonlinearities are, the larger the estimation 

errors will be (Thrun et al., 2005). 

3.2.3 Unscented Kalman Filter 

Instead of only taking first order approximation of Taylor series expansion like EKF,  Unscented Kalman 

Filter (UKF) uses a deterministic sampling approach to capture the  mean and covariance estimates with a 

minimal set of sample points namely sigma points. In the general case, these sigma points are located at the 

mean and symmetrically along the main axis of the covariance. It has the 3rd order (Taylor series expansion) 
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accuracy for Gaussian error distribution of any non-linear system (Wan and Van Der Merwe, 2000). UKF is 

claimed to have obvious advantage over EKF  in terms of estimation accuracy although EKF is slightly faster 

than UKF in practice. Another advantage of UKF over EKF is that it does not require the computation of 

Jacobians, which are difficult in some circumstances (Thrun et al., 2005). (Bao and Zhou, 2008, Shen et al., 

2007, Shin, 2001, Zhang et al., 2005) adopted UKF in the algorithms integrating GPS and INS. 

3.2.4 Adaptive Kalman Filter 

It is known that the optimality of estimation algorithm in basic KF, EKF and UKF is closely related to the 

accuracy of a priori knowledge about the process and measurement noise (Mehra, 1970). However, in these 

3 algorithms, it is assumed that the process covariance matrix (Q) and the measurement noise covariance (R) 

are known a priori and remain unchanged during the continuous iteration. But in most practical applications, 

this assumption is not true, which will result in estimation divergence when the actual covariance matrix is 

far away from the unchanged one. Therefore, it is necessary for Q  and R to be adaptively determined.  

      Generally, there are two approaches that have been proposed for adaptive Kalman filer: multiple model 

adaptive estimation (MMAE) and innovation adaptive estimation (IAE)(Mohamed and Schwarz, 1999). Both 

utilize the information in the innovation sequence but with different implementation. The innovation is 

represented by the difference between the actual measurement and its predicted value. In the MMAE 

approach (Magill, 1965, White et al., 1998), a bank of Kalman filters runs in parallel with different models 

for the statistical filter information matrices Q and R. Each filter of the bank have its  own estimate, with a 

weight that is calculated based on the innovation. Then the adaptive optimal state estimate can be obtained as 

the weighted sum of the estimates produced by each of the individual Kalman filters.   

      For the IAE approach, the covariance matrices R and Q are adapted as the measurements evolve with 

time by taking the innovation sequence into account. According to the specific formats of using the 

innovation sequence, IAE can be categorized into three types which are moving estimation window based 

IAE (Mehra, 1970, Mehra, 1971), Maximum Likelihood based IAE (Mohamed and Schwarz, 1999) and 

Fuzzy Logic based IAE (Loebis et al., 2004, Sasiadek and Wang, 1999, Sasiadek et al., 2000). Due to its 

simplicity and effectiveness, Fuzzy logic based IAE have been widely adopted in the researches on INS/GPS 

integration, such as (Xu et al., 2005, Zhang et al., 2008, Zhang and Wei, 2003) etc..  

3.3    Scan Matching 

Scan matching aims to find the translation and rotation of a scan contour in such a way that a maximum 

overlap occurs with either a known map (i.e., position estimation) or a previous scan (i.e., motion estimation) 

(Martínez et al., 2006). According to (Martínez et al., 2006), the methods of scan matching can be classified 

into three categories: feature-based techniques, compact data methods and point matching techniques.  Figure 

2 chronologically gives the specific classification of the scan matching algorithms and their related references. 

Among all the scan matching methods, the Iterative Closest Point (ICP) algorithm is the most popular one 

(Besl and McKay, 1992) because of its simplicity and effectiveness. Based on the basic ICP algorithm, 

several its variants were subsequently proposed to improve the performance in terms of time effeciency and 

accuracy, such as IDC (Lu and Milios, 1997), NDT (Biber and Straßer, 2003), MbICP (Minguez et al., 2005), 

pIC (Montesano et al., 2005) and PSM (Burguera et al., 2007). 

While most of the scan matching algorithms focus on motion estimation for terrestial robots either with 

laser range readings or sonar range readings, few of them are related to AUV navigation except MSISpIC 

(Hernández et al., 2009) and (Burguera et al., 2010). As an extension of the pIC (Montesano et al., 2005) 

algorithm, MSISpIC proposed a scan grabbing algorithm using range scans gathered with a MSIS to combine 

with pIC for localization of the AUV. Although the experiments show satisfactory results, the environment is 

not long engouth to give more convincing effects. In addition, the experiment could not improve the 

efficiency of MSISpIC in a cluttered environment since the environment used for experiments is semi-

artificial. 
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Figure 2: Classification of scan matching algorithms and related references 

3.4    SLAM 

It can be noticed that all the aforementioned algorithms mainly focus on localization problems without taking 
mapping problems into account. However, the autonomy of AUVs typically demands a map of the 
environment for path planning. Therefore, finding a solution to the mapping problem is also necessary for 
autonomous navigation of AUVs. It is normal that localization and mapping problem can be solved 
independently. However, the simultaneous localization and mapping (SLAM) algorithm enables a AUV to be 
placed at an unknown location in an unknown environment so that it incrementally builds a consistent map of 
the environment while simultaneously determining its location within this map (Durrant-Whyte and Bailey, 
2006).   
      Throughout last two decades, various SLAM algorithms have been proposed and applied successfully to 
solve the SLAM problem. Table 3 summaries the most popular SLAM algorithms widely used in the 
literature, in the aspects of their related references which firstly proposed the corresponding algorithm, the 
optimizer the algorithm utilizes, the map representation method that the algorithm is suitable for and the 
advantages and disadvantages of the algorithm.         

Table 3: Summary of major SLAM algorithms 

Algorithm Optimizer Map representation Advantages Disadvantages 

EKF-SLAM(Leonard 

and Durrant-Whyte, 

1991, Moutarlier and 

Chatila, 1989) 

EKF Feature-based map Earliest and most 

influential, applies to online 

implementation. 

Linearize only once, 

quadratic update time, 

feature number 

limitation, need for 

sufficiently distinct 

landmarks. 

Fast-SLAM 

1.0(Montemerlo et al., 

2002) 

Rao-

Blackwellized 

Particle Filer 

Feature-based map 

and Grid Based map 

Implementation time 

logarithmic in the number 

of features, cope with non-

linear motion models, full 

and online SLAM, simple, 

fast and easy to implement. 

Slower convergence 

speed than EKF-SLAM, 

lack of long-range 

correlations, generating 

samples inefficiently. 

Scan Matching 

Feature based techniques  

Compact data methods 

Point matching techniques 

Corners (Shaffer et al., 1992) 

Line segments (Reina and Gonzalez, 2000) 
Lines (Reina and Gonzalez, 2000) 

 Edges (Weber et al., 2002) 

Histograms (Weiß et al., 1994) 

Principle eigenvectors (Crowley et al., 1998) 

 
Motion fields (Gonzalez and Gutierrez, 1999) 

 

Iterative Closest Points (ICP) (Besl and McKay, 1992) 

 
Iterative Dual Correspondence (IDC) (Lu and Milios, 1997) 

 
Normal Distribution Transform (NDT) (Biber and Straßer, 2003) 

 
Metric-based Iterative Closest Point (MbICP)(Minguez et al., 2005)  

 
Probabilistic Iterative Correspondence (pIC) (Montesano et al., 2005) 

 
GA-ICP (Martínez et al., 2006) 

Polar Scan Matching (PSM) (Burguera et al., 2007) 

Polar Scan Matching (PSM) ((Diosi and Kleeman, 2007) 
Polar Scan Matching (PSM) ((Diosi and Kleeman, 2007) MSISpIC(Hernández et al., 2009) (Burguera et al., 2010) 
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Algorithm Optimizer Map representation Advantages Disadvantages 

Fast-SLAM 2.0 

(Montemerlo et al., 

2003) 

Rao-

Blackwellized 

Particle 

Feature-based map 

and Grid Based map 

More efficient than Fast-

slam 1.0, needs fewer 

particles than Fast-SLAM 

1.0. 

More difficult to 

implement than Fast-

slam 1.0. 

Sparse Extended 

Information Filter 

SLAM(Thrun et al., 

2004) 

Sparse 

Extended 

Information 

Filter 

Feature-based map Online and efficient, update 

loop is constant time. 

Linearize only once, Less 

accurate than EKF or 

Graph-SLAM. 

UKF-

SLAM(Andrade-Cetto 

et al., 2005) 

Unscented 

Kalman Filter 

Feature-based map Better accuracy of 

linearization of non-linear 

model than EKF-SLAM 

Not require computation of 

Jacobians. 

Slightly slower than 

EKF-SLAM. 

Graph-SLAM(Thrun 

and Montemerlo, 

2006) 

Any least 

squares 

technique 

Feature-based map 

and topological map 

Solves full SLAM, able to 

acquire much larger maps 

than EKF-SLAM, linearize 

more than once, revise past 

data association, more 

accurate map than EKF. 

Offline SLAM, require 

inference when 

calculating data 

association probability. 

 

Underwater SLAM has many more challenging issues compared to land SLAM, due to the unstructured 

nature of the underwater scenarios and the difficulty to identify reliable features. Many underwater features 

are scale dependant, sensitive to viewing angle and scale. Therefore, fewer research works have been 

conducted on applying SLAM algorithms for underwater navigation of AUVs until now. In underwater 

SLAM implementations, imaging sonar (Ribas et al., 2006) is widely used, the most common filtering 

technique is the EKF (Mahon and Williams, 2004, Ribas et al., 2008) and point features (He et al., 2009, 

Leonard and Feder, 2001, Williams and Mahon, 2004) are commonly used to represent the map. Some 

approaches use side-scan sonar (Tena Ruiz et al., 2004) or optical cameras (Aulinas et al., 2011, Salvi et al., 

2008). The use of EKF based SLAM is able to handle uncertainties properly; however, the computational 

cost associated with EKF grows with the size of the map. In addition, linearization errors accumulate in long 

missions, increasing the chance of producing inconsistent mapping solutions.  
 

4. Statistics of AUV platforms 

In order to grasp the whole picture of AUV applications in terms of the usage of sensors and utilization of 

algorithms, the statistical analysis on different AUV platforms is presented in this section. In total, 35 AUV 

application platforms are studied. Table 4 lists their references, affiliations, platform name, core sensors, the 

localization and mapping algorithms in the chronological order.  

       Figure 3 shows the ratio of sensors used in 35 AUV application projects, which largely indicates the 

percentage of the specific sensor used on AUV platforms. It can be clearly seen that INS and DVL are the 

first and second most frequently used sensors. The reason for this phenomenon may be attributed to the fact 

that INS and DVL are the most suitable sensors to provide the dead reckoning information for underwater 

vehicles due to their self-contained characteristics. The dead reckoning information from INS and DVL can 

then either be fused with other sensors by application sensor fusion algorithms or be used for the prediction 

part in the SLAM framework. It should be also noticed that the percentage of LBL, USBL and MSIS 

demonstrates that they play important roles in the localization for some AUVs. 

       Unlike the sensors whose types are almost fixed within several kinds, the types of algorithms used for 

locolization and mapping of AUVs are more diverse than that of sensors. Figure 4 gives the ratio of 

algorithms used in 35 AUV application projects. Not surprisingly, due to its simpleness and real-time 

features, EKF are the most popular algorithm used for both sensor fusion and filtering.  Triangulation is also 

used frequently since many AUV platforms take advantage of acoustic navigation systems such as USBL, 

LBL and SBL most of which utilize triangulation to calculate the location of AUVs. As the most typical 

algorithm, EKF-SLAM  has the use percentage more than other SLAM algorithms such as FastSLAM 
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(Woock and Frey, 2010), ESEIF SLAM (Walter et al., 2008), constant time SLAM (Newman et al., 2005) 

and MHTF SLAM (Tena Ruiz et al., 2001). 

        It can also be concluded that most of localization algorithms are triangulation and Kalman filter (when 

UAPS are used), including EKF based sensor fusions to integrate several sensors such as GPS, INS and DVL 

before 2000s. When localization is completed, mapping is then realized by utilizing sonar sensors such as 

multi-beam sonar and side-scan sonar. After the year 2000, SLAM algorithms have been successfully applied 

in AUVs , exemplified by (Ribas et al., 2006), (Leonard and Feder, 2001) and (Tena Ruiz et al., 2004). 

Table 4: Applications of AUV platforms 

Reference Affiliation Platform Core sensors 
Localization and 

mapping Algorithms 

(Butler and den Hertog, 

1993) 

ISE Research (Canada) Theseus INS/DVL Sensor Fusion (EKF)  

(Egeskov et al., 1994) Technical University of 

Denmark (Denmark) 

MARIUS AUV INS, LBL, Depth Cell, Echo 

sounder  

Triangulation and EKF 

(Bellingham et al., 1994) MIT Sea Grant College 

Program (USA) 

Odyssey II INS, LBL, USBL, Side Scan 

Sonar 

Triangulation and EKF 

(An et al., 1997) Florida Atlantic University 

(USA) 

OEX AUV DGPS/INS, Doppler sonar Sensor Fusion (Heuristic 

Fuzzy filtering) 

(Opderbecke, 1997) French Research Institute for 

Exploitation of the Sea (France) 

Nautile, Cyana 

AUV 

USBL EKF 

(Yuh et al., 1998) University of Hawaii (USA) SAUVIM AUV DGPS, DVL, Depth Sensor, 

INS. 

Sensor Fusion (EKF) 

(Larsen, 2000) Marindan A/S (Denmark) MARIDAN  A

UV 

Synthetic LBL,DVL, 

INS,GPS 

Sensor Fusion (EKF) 

(Yoerger et al., 2000) Woods Hole Oceanographic 

Institution (USA) 

ABE AUV LBL 
Triangulation and KF 

(Austin et al., 2000) Woods Hole Oceanographic 

Institution (USA) 

REMUS AUV LBL Triangulation 

(Newman and Durrant-

Whyte, 1998, Williams 

and Mahon, 2004, 

Williams et al., 2000) 

University of Sydney 

(Australia) 

Oberon IMU, Imaging Sonar, 

Camera 

EKF-SLAM 

(Tena Ruiz et al., 2001) Heriot-Watt University (UK) RAUVER Multi-beam sonar Multiple Hypothesis 

Tracking Filter (MHTF) 

based SLAM 

(Yun et al., 2001) Naval Postgraduate School 

(USA) 

SANS AUV  INS/GPS Sensor Fusion (EKF) 

(Sherman et al., 2001) Scripps Institution of 

Oceanography (USA) 

Spay Glider GPS GPS related algorithm 

(Baccou and Jouvencel, 

2002) 

University of Montpellier 

(France) 

Taipan AUV Single beam Sonar Kalman Filter 

(Blain et al., 2003) Hydro-Québec's research 

institute (Canada) 

Hydro-Québec 

ROV 

Fibre gyro, DVL, 

accelerometers, GPS 

Sensor Fusion (EKF) 

(Jalving et al., 2003) Norwegian Defence Research 

Establishment (Norway) 

HUGIN AUV DVL, INS, GPS Sensor Fusion (EKF) 

(Jalbert et al., 2003) Autonomous Undersea Systems 

Institute (USA) 

SAUV II GPS, compass, Altitude 

sensor, depth sensor, speed 

sensor. 

GPS related algorithm 

(Asada et al., 2004) University of Tokyo (Japan) r2D4 AUV INS, Side-scan Sonars  Inertial Navigation 

equations 
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Reference Affiliation Platform Core sensors 
Localization and 

mapping Algorithms 

(Loebis et al., 2004) University of Plymouth and 

Cranfield University (UK) 

Hammerhead 

AUV 

GPS and INS 
Adaptive Kalman Filter 

(Zhao and Gao, 2004) Harbin Engineering University 

(China) 

Any AUVs GPS/INS/DVL EKF 

(Newman et al., 2005) Oxford University (UK) Odyssey III DVL/INS, 16 element 

Synthetic Aperture Sonar 

Constant Time SLAM 

(Spiewak et al., 2006) Lirmm Montpellier (France) H160 GPS, DVL Sensor Fusion (EKF) 

(Schofield et al., 2007) Rutgers University (USA) Slocum glider 

 

GPS, attitude sensor, depth 

sensor, and altimeter 

GPS related algorithm 

(Yeo, 2007) Hafmynd company (Iceland) Gavia AUV INS/DVL, GPS, LBL Sensor Fusion (EKF) 

(Walter et al., 2008) Massachusetts Institute of 

Technology (USA) 

HAUV AUV DVL, DIDSON imaging 

sonar 

Exactly Sparse Extended 

Information Filter 

(ESEIF) SLAM 

(Ribas et al., 2008) Universitat de Girona (Spain) Ictineu AUV DVL, Compass, MSIS, INS 
EKF SLAM 

(Armstrong et al., 2009) University of Idaho (Russia) AUV IMU, acoustic range, 

ransponders 

EKF 

(Hernández et al., 2009) Universitat de Girona (Spain) Ictineu AUV DVL, Compass, MSIS, INS 
Scan Matching 

(Probabilistic Iterative 

Correspondence) 

(Mallios et al., 2010) Universitat de Girona (Spain) Ictineu AUV DVL, Compass, MSIS, INS 
Scan Matching and EKF 

SLAM. 

(Morgado et al., 2010) the Institute for Systems and 

Robotics,  Lisbon (Portugal) 

Any AUVs USBL/INS 
Sensor Fusion (EKF) 

(Woock and Frey, 2010) 
Fraunhofer Institute of 

Optronics, System Technologies 

and Image Exploitation IOSB 

(Germany) 

TIETeK AUV DVL, IMU and Side-Scan 

Sonar 

FastSLAM and EKF 

SLAM 

(Augenstein and Rock, 

2011) 

Stanford University (USA) ROV Ventana Monocular vision 
FastSLAM 

(Liu et al., 2011) Northwestern Polytechnical 

University (China) 

Any AUVs INS/DVL Sensor Fusion (UKF) 
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Figure 3:  Ratio of sensors used in 35 AUV application projects 
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Figure 4: Ratio of algorithms used in 35 AUV application projects 

 

5. Conclusion 

Localization and mapping are considered as the most fundamental two aspects of AUVs navigation. This 

paper outlines the two key elements in underwater localization and mapping for AUVs, namely sensors and 

algorithms. Various sensors used for AUVs have been reviewed in terms of basic working principle, 

characters, the advantages and disadvantages of these sensors. Then, a variety of algorithms used for 

underwater localization and mapping are explained according to their application situations, advantages and 

limitations, etc. Additionally, 35 AUV platforms are statistically analysed based on the application 

circumstances of sensors and algorithms that are practically used.   
Although a great deal of research work has been conducted to realize autonomous localization and 

navigation for AUVs, various challenging issues remains to be addressed, including (i) The dynamic and 

unstructured characteristics of underwater environments require sensors with a high resolution and accuracy. 

This is very challenge. (ii) If the environmental feature is not intuitive, it is necessary to apply proactive 

SLAM to explore useful information by deploying artificial landmarks. (iii) Since high accurate sensor 

systems such as LBL, USBL and SBL have a large size and high cost, it is impractical to use these sensor 

systems for localization of small bio-inspired vehicles such as robotic fish. Consequently, it is highly 

desirable to conduct research on improving the accuracy of SLAM for the small AUVs. 

In spite of the difficulties existing in realizing highly accurate SLAM for AUVs, we believe more and 

more accurate and robust localization solutions will be achieved in the future with the development of both 

sensors and SLAM algorithms. 
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