Research Repository

Photobiology of Symbiodinium revisited: Bio-physical and bio-optical signatures

Hennige, SJ and Suggett, DJ and Warner, ME and McDougall, KE and Smith, DJ (2009) 'Photobiology of Symbiodinium revisited: Bio-physical and bio-optical signatures.' Coral Reefs, 28 (1). 179 - 195. ISSN 0722-4028

Full text not available from this repository.

Abstract

Light is often the most abundant resource within the nutrient-poor waters surrounding coral reefs. Consequently, zooxanthellae (Symbiodinium spp.) must continually photoacclimate to optimise productivity and ensure coral success. In situ coral photobiology is becoming dominated by routine assessments using state-of-the-art non-invasive bio-optical or chlorophyll a fluorescence (bio-physical) techniques. Multiple genetic types of Symbiodinium are now known to exist; however, little focus has been given as to how these types differ in terms of characteristics that are observable using these techniques. Therefore, this investigation aimed to revisit and expand upon a pivotal study by Iglesias-Prieto and Trench (1994) by comparing the photoacclimation characteristics of different Symbiodinium types based on their bio-physical (chlorophyll a fluorescence, reaction centre counts) and bio-optical (optical absorption, pigment concentrations) 'signatures'. Signatures described here are unique to Symbiodinium type and describe phenotypic responses to set conditions, and hence are not suitable to describe taxonomic structure of in hospite Symbiodinium communities. In this study, eight Symbiodinium types from clades and sub-clades (A-B, F) were grown under two PFDs (Photon Flux Density) and examined. The photoacclimation response by Symbiodinium was highly variable between algal types for all bio-physical and for many bio-optical measurements; however, a general preference to modifying reaction centre content over effective antennae-absorption was observed. Certain bio-optically derived patterns, such as light absorption, w ere independent of algal type and, when considered per photosystem, were matched by reaction centre stoichiometry. Only by better understanding genotypic and phenotypic variability between Symbiodinium types can future studies account for the relative taxonomic and physiological contribution by Symbiodinium to coral acclimation. © 2008 Springer-Verlag.

Item Type: Article
Subjects: Q Science > QP Physiology
Q Science > QR Microbiology
Divisions: Faculty of Science and Health > Biological Sciences, School of
Depositing User: Jim Jamieson
Date Deposited: 09 Oct 2011 00:41
Last Modified: 17 Aug 2017 18:17
URI: http://repository.essex.ac.uk/id/eprint/966

Actions (login required)

View Item View Item