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Abstract— Multiobjective Evolutionary Algorithm based on
Decomposition (MOEA/D) decomposes a multiobjective opti-
misation problem into a number of single-objective problems
and optimises them in a collaborative manner. This paper
investigates how to use Tabu Search (TS), a well-studied single
objective heuristic to enhance MOEA/D performance. In our
proposed approach, the TS is applied to these subproblems with
the aim to escape from local optimal solutions. The experimental
studies have shown that MOEA/D with TS outperforms the
classical MOEA/D on multiobjective permutation flow shop
scheduling problems. It also have demonstrated that use of
problem specific knowledge can significantly improve the algo-
rithm performance.

Index Terms— Decomposition, multiobjective optimisation,
Tabu search.

I. INTRODUCTION

AMultiobjective optimisation problem (MOP) can be
stated as follow:

minimise F (x) = (f1(x), . . . , fm(x))

subject to x ∈ D (1)

where x is a potential solution, D is the discrete search
space, and F(x) consists of m scalar objective functions
f1(x), . . . , fm(x). Very often, an improvement in one objec-
tive will cause a degradation of another. No single solution
can optimise all of the objectives at the same time. A decision
maker has to balance these objectives in an optimal way. The
concept of Pareto optimality is commonly used to best trade
off solutions.

Given two solutions x, y ∈ D, x is said to dominate y if
and only if fi(x) ≤ fi(y) for every i and fj(x) < fj(y)
for at least one index j ∈ {1, . . . ,m}. x∗ is called Pareto
optimal to (1) if no other solution dominates x. The set of
all the Pareto optimal solutions is called the Pareto set (PS),
the set {F (x)|x ∈ PS} is called the Pareto front (PF).

The goal of multiobjective evolutionary algorithms
(MOEAs) is to produce a number of solutions to approx-
imate the PF in a single run. Such approximation can be
useful for a decision maker to understand a problem and
make a final decision. Along with Pareto dominance-based
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MOEAs and hypervolume-based MOEAs, decomposition-
based MOEAs (MOEA/D [1]) have been widely accepted as
a major approach in the area of multiobjective evolutionary
computation. MOEA/D decomposes the MOP into a number
of subproblems. Each subproblem can be a single-objective
problem or a simpler multiobjective problem; then a popu-
lation based method is used to solve these subproblems in a
collaborative way.

Some advanced single-objective methods of local search,
such as iterative local search (ILS), greedy randomized
adaptive search (GRASP) [2], tabu search (TS) [3] and
guided local search (GLS) [4] are able to escape local optimal
solutions and obtain a reasonably good solution. These
single-objective local search methods have been well studied
and documented. It is worthwhile to study how to use them
in MOEAs. Since MOEA/D optimises a number of single-
objective optimisation subproblems, it provides a very natural
framework for using single-objective local search techniques.
Actually, some efforts have been made to hybridise single-
objective search methods with MOEA/D. Examples include
MOEA/D with ant colony optimisation (ACO) [5], MOEA/D
with simulated annealing (SA) [6] and MOEA/D with guided
local search (GLS) [7].

This paper proposes a combination of MOEA/D with tabu
search (TS), called MOEA/D-TS. Our major motivation is to
use TS to help MOEA/D escape from local Pareto optimal
solutions. TS is an advanced neighbourhood search that
uses attributive memory structures to guide the search away
from local optima, i.e., a short-term memory to prevent the
reversal of recent moves and longer-term frequency memory
to reinforce attractive components. This type of memory
records information about solution attributes that change in
moving from one solution to another.

In MOEA/D-TS, subproblems are optimised in parallel.
Each subproblem has a different weight vector (i.e., search
direction), a memory and a single solution. For a subproblem
trapped in a local optimal solution, TS starts with its current
solution x and uses its memory information as the guided
information to explore the neighbourhood N (x) of solution
x. Then, TS selects the best neighbouring solution x′ ∈ N (x)
to replace the current solution x even if it does not improve
the objective function value with the aim of escaping from
the attraction region of the current solution. This process
is repeated for a number of iterations or until the local
optimisation of TS does not yield a better solution.

The rest of this paper is organised as follows. Section II
presents the proposed MOEA/D-TS algorithm. Section III
describes multiobjective permutation flow shop scheduling



problem. In Section IV, the experimental results are pre-
sented and discussed. Section V demonstrated the effect
of some algorithmic components on the performance of
MOEA/D-TS. Finally, Section VI concludes the paper and
outlines some avenues for future research.

II. THE PROPOSED ALGORITHM: MOEA/D-TS

This section introduces the major ideas and techniques
used in our proposed algorithm.

A. Algorithmic Framework

MOEA/D-TS first decomposes the MOP into N sin-
gle objective subproblems by choosing N weight vectors
λ1, . . . , λN . In this paper, we adopt the weighted sum ap-
proach [8] to construct subproblems. The objective function
of subproblem is:

minimise gws(x|λ) =

m∑
i=1

λifi(x)

subject to x ∈ D
(2)

where λ = (λ1, . . . , λm) is a weight vector with
∑m
i=1 λi =

1 and λi ≥ 0 for all i = 1, . . . ,m. Moreover, a subprob-
lem has tabu memory structure η, which stores its learned
knowledge by the TS during the local search phase.

When the quality of a solution is very poor, the application
of local search on it may waste computational effort [9].
Thus, local search should be applied to only good solutions.
Motivated by this observation, MOEA/D-TS introduces a
dynamic selection scheme of initial solutions (i.e., subprob-
lems) for local search. For choosing promising subproblems,
we define and compute a utility πi for each subproblem i
[10]. TS selects subproblems based on their utilities.

During the search, MOEA/D-TS maintains:
• a population of N points x1, . . . , xN ∈ D, where xi is

the current solution to the ith subproblem;
• FV 1, . . . , FV N , where FV i is the F -value of xi, i.e.
FV i = F (xi) for each i = 1, . . . , N ;

• π1, . . . , πN : where πi is the utility of subproblem i.
• η1, . . . , ηN : where ηi is the tabu memory for subprob-

lem i, storing its learned knowledge.
• EP , it is an external archive containing all the nondom-

inated solutions found so far.
• gen: the current generation number.

MOEA/D-TS works as follows:
Step 1: Initialization

Step 1.1 Compute the Euclidean distances between
any two weight vectors and then find the T closest
weight vectors to each weight vector. For each i =
1, . . . , N , set B(i) = i1, . . . , iT where λi1 , . . . , λit
are the T closest weight vectors to λi.

Step 1.2 Generate an initial population x1, . . . , xN

by uniformly randomly sampling from the search
space.

Step 1.3 Set EP= φ, gen = 0 and πi = 1 for all
i = 1, . . . , N .

Step 2: Genetic Search: for i = 1, . . . , N do
Step 2.1 Reproduction: Randomly select two in-

dexes k, l from B(i) , and then generate a new
solution y from xk and xl by using genetic opera-
tors.

Step 2.2 Update of Neighbouring Solutions: For
each index j ∈ B(i), if g(y|λj) ≤ g(xj |λj), then
set xj = y and FV j = F (y).

Step 2.3 Update of EP : If no vectors in EP
dominate F (yi), add F (yi) to EP and remove
from EP all the vectors dominated by F (yi).

Step 3: gen = gen+ 1.
Step 4: Termination: If a problem specific stopping

condition is met, stop and output EP.
Step 5: Local Search: If gen is a multiplication of 25,
do the following:

Step 5.1 Update Utility: Compute ∆i, the relative
decrease of the objcetive for each subproblem i
during the last 25 generations, update

πi =

{
1, if ∆i > 0.001
(0.95 + 0.05 ∆

0.001 )πi, otherwise;
(3)

Step 5.2 Selection of Subproblems: By using 10-
tournament selection based on πi, select [N5 ]−m
indexes and add them to I .

Step 5.3 Tabu Search: For each i ∈ I , conduct a
single objective Tabu search starting from xi for
subproblem i to generate a new solution yi. Then
update B(i) and EP with yi.

Step 6: Return to Step 2
Since major computation overhead is caused by TS, there-

fore, we only conduct TS every 25 generations and on some
selected subproblem in Step 5. In Step 5.1, the relative
decrease ∆ is defined as

∆ =
old function value-new function value

old function value
(4)

and computed for each subproblem i in order to update its
utility. In 10-tournament selection in Step 5.2, the index with
the highest πi value from 10 uniformly randomly selected
indexes are chosen to enter I . We do this selection [N5 ]−m
times.

TS (Step 5.3) detailed in Procedure 1 starts from the
current solution xi of the i-th subproblem and uses its
memory information ηi as the guided information during
the search. Then, TS explores the neighbourhood N (xi) of
xi. Any solution x′ ∈ N (xi) can be reached from xi by
a single move from x′. TS moves from a solution to its
best admissible neighbour, even if this move deteriorates
the objective function. To avoid cycling, TS uses the tabu
memory ηi to forbid or tabu (for a number of iterations)
any moves which can take the search back to some solutions
recently explored. The Tabu status of a move is overridden
when certain criteria (aspiration criteria) are satisfied. An
example of aspiration criteria is to allow moves that produce
solutions better than the currently-known best solutions.



In the above top-level description, the details of some
steps are problem-specific. In the following, we take the
multiobjetive permutation flow shop scheduling problem as
an example to show how these steps can be implemented.
We would like to point out that our implementation is not
unique. There are several possible ways to instantiate the
above framework.

Procedure 1 TabuSearch(xi, wi, ηi)

Inputs:
xi:Current solution.
wi:Search direction.
ηi:Tabu memory.

Output: The best solution found Sbest

1: S ← xi; //initialise starting solution
2: Sbest ← xi; //initialise best solution
3: AL← g(xi|wi); //initialise Aspiration level
4: repeat
5: Generate neighbour solutions N∗ ⊂ N (S)
6: Find best S∗ ∈ N∗
7: if move S to S∗ is not on ηi or g(S∗|wi) < AL then
8: Accept move and update the best solution.
9: Update tabu memory and aspiration level.

10: end if
11: if F (S∗) is not dominated byF (S) then
12: Update external population EP
13: end if
14: until stopping condition is satisfied
15: return best solution

III. THE PERMUTATION FLOW SHOP SCHEDULING
PROBLEMS

A. Problem Formulation

This paper considers the permutation flow shop scheduling
problem (PFSP). The PFSP schedules n jobs with given
processing times on m machines where the sequence
of processing a job on all machines is identical and
unidirectional for each job. All jobs are available at time
zero. Each job can only be processed on at most one
machine and each machine can process only one job at any
time. Pre-emption is not allowed, i.e., once the processing
of a job has started on a machine, it must be completed
without interruption at that machine. Different jobs have the
same processing order on all machines.

Definition 1. (PFSP): Given a set of n jobs, {J1, . . . , Jn},
m machines, {M1, . . . ,Mm}, and a m×n matrix P = [pij ]
such that pi,j denote the processing time of job j on machine
i. The PFSP is to find an optimal permutation π of n jobs
processed on m machines, subject to feasibility constraints.

B. Optimisation Objectives

The multiobjective PFSP in this paper is to minimise the
total completion time, the total tardiness, and the total flow
time. These three objectives are formally defined below.

1) Makespan: This objective is the completion time of the
last job (i.e., the makespan, denoted by Cmax). In order to
find the makespan of a job schedule π, one needs to compute
the completion time for the n jobs in all the k machines.
Given a permutation π = (π(1), . . . , π(n)) ,the completion
time Ci,π(j) of job π(j) on a machine Mi can be computed
using the following set of recursive equations.

C1,π(j) =
∑m
j=1 p1,π(j) j = 1, . . . , n

Ci,π(1) =
∑m
i=1 pi,π(1) i = 1, . . . ,m

Ci,π(j) = max{Ci,π(j−1), Ci−1,π(j)}+ pi,π(j)

i = 2, . . . ,m;
j = 2, . . . , n

(5)

Then, the makespan is given by

Cmax(π) = max{C1,π(1), . . . , Ci,π(j)}

Finally, the first objective is defined as

minCmax(π) (6)

2) Maximum Tardiness: For the PFSP with due date, the
tardiness is the deadline for the completion of a job. The
tardiness Tj of job j is defined as:

Tj = max{Cj − dj , 0}

where Cj and dj is the completion time and due date of job
j, respectively.

The second objective is then defined by

minTmax(π) (7)

with
Tmax(π) = max{Tπ(1), . . . , Tπ(n)}

3) Total Flow Time: The total flow time F is equal to
the sum of completion times of jobs. This is an important
performance measure in flow shop scheduling. The third
objective is defined as

minF (π) (8)

with

F (π) =

n∑
j=1

Cπ(j)

C. Structural Properties

It is well known that algorithm performances can be
improved by exploiting problem specific properties. Several
structural properties have been studied for the PFSP. In [11],
Nowicki and Smutnicki have introduced block properties and
successfully applied them to a tabu search algorithm.

The description of block properties requires the notion of
critical path and block. Thus, we introduce the definition of
critical path and block in section III-C.1 first and then the
block properties.
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Fig. 1: The network N(π) for m = 4, n = 6 and π =
(5, 2, 3, 1, 6, 4). The critical path is marked by thin lines;u∗ =
(2, 5, 5)

1) Critical Path and Block: Consider a network N(π)
with vertex valuations for a permutation π ∈ D. Each
vertex (i, j) ∈ N(π) represents the job π(j) on machine i
and its valuations is the processing time pi,π(j). Each path
u ∈ N(π) from (1, 1) to (m,n) is represented by a sequence
(u0, u1, . . . , um−1, um) with u0 = 1 and um = n satisfying
u0 ≤ u1 . . . ≤ um−1 ≤ um, and is made of vertices
(1, u0), . . . , (1, u1), (2, u1), . . . , (2, u2), . . . , (m,um−1), . . . ,
(m,um). The length of the path l(u), is given by the sum
of the valuations of all vertices of the path. Mathematically,
it is expressed as

l(u) =

m∑
i=1

uj∑
j=ui−1

pi,π(j) (9)

Definition 2 (Critical Path). A path u∗ =
(u∗0, u

∗
1, . . . , u

∗
m) is called a critical path of π if it is

the longest path in N(π), i.e. l(u∗) = arg max
u∈N(π)

(l(u))

Definition 3 (Block). Based on the critical path u∗, a
sequence of jobs Bk = (π(u∗k−1), π(u∗k−1 + 1), . . . , π(u∗k)
is called the kth block in π, k = 1, 2, . . . ,m. Next, the kth
internal block is defined as a subsequence of Bk:

B∗k =

 Bk − {π(u∗1)}, if k = 1;
Bk − {π(u∗k−1), π(u∗k)}, if 1 < k < m;
Bk − {π(u∗m−1)}, if k = m.

(10)
It worth noting that by the definition the last job in block

Bk is simultaneously the first in its neighbour Bk+1, k =
1, 2, . . . ,m− 1.

As an example, Fig.1 shows a schedule of n = 6 jobs
and m = 4 machines. The permutation π = (5, 2, 3, 1, 6, 4)
and its critical path u∗ = (2, 5, 5) which generate three
blocks: B1 = (5, 2), B2 = (2, 3, 1, 6) and B3 = (6, 4), and
three relevant internal blocks B∗1 = (5), B∗2 = (3, 1) and
B∗3 = (4).

J1 J2 J3 J4 J5 J6 J7Parent 1

J1 J4 J3 J2 J5 J6 J7Offspring

J4 J6 J3 J1 J7 J2 J5Parent 2

Fig. 2: Two point crossover operator

2) Block Properties: Block properties (BPs) are some
general properties associated with the graph representation
of scheduling problems with the makespane criterion [12].
This section introduce two BPs proposed by Nowicki
[11] and Grabowski [13] [14] that are associated with the
neighbourhood structure.

Block Property 1 [11] Shifting a job within the internal
block does not generate a better neighbour.

Block Property 2 [13] [15] Suppose πv is generated by
move v = (x, y), where jobs π(x) and π(y) are in the p-th
and l-th internal blocks of π(x), respectively. Then it has

Cmax(πv) ≥ Cmax(π) + pπ(x)l − pπ(x)p (11)

IV. EXPERIMENTAL STUDIES

A. The Implementation of MOEA/D-TS for PFSP

In order to apply the MOEA/D-TS to the PFSP, the
following components need to be defined.

1) Solution representations: There are several forms
of representing candidate solutions for scheduling
problems.This paper represents a candidate solutions as a
permutation or sequence of n job π = (π(1), . . . , π(n)),
which makes it easy to maintain the feasibility of solutions
throughout genetic search and local search.

2) Genetic operators: Since the PFSP is a sequencing
problem with n job, various genetic operators proposed
for travelling salesman problems and other scheduling
problems are applicable. In [16], Murata and Ishibuchi have
conducted a study of various genetic operators for single-
objective PFSP to minimise the makespan. In their study,
the two-point crossover and insertion mutation operators
were regarded as the best genetic operators for this problem.
For this reason, we adopt these genetic operators, which are
illustrated in Fig.2 and Fig.3, respectively.

3) Tabu Search: In order to use TS in the proposed
framework of MOEA/D-TS, moves, neighbourhood, tabu
memory (its structure and management), aspiration criterion,
and diversification must be defined.
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Fig. 3: Insert operation, which is used by genetic search
as mutation operator and by local search as neighbourhood
structure.

Moves and neighbourhood: The insert move operates
on a permutation π of jobs. It removes a job placed at a
position in this permutation and inserts it in another position
in the permutation. More precisely, let v = (a, b) be a pair
of position in the permutation π, a, b ∈ 1, 2, . . . , n, a 6= b.
The pair v = (a, b) defines a move in π. Consequently, the
move v generates a neighbouring permutation πv from π in
the following way

π = (π(1), . . . , π(a− 1), π(a), π(a+ 1), . . . ,

π(b− 1), π(b), π(b+ 1)), . . . , π(n))
(12)

πv =


(π(1), . . . , π(a− 1), π(a+ 1), . . . ,
π(b− 1), π(b), π(a), π(b+ 1)), . . . , π(n)), if a < b

(π(1), . . . , π(a− 1), π(b), π(a), π(a+ 1),
. . . , π(b− 1), π(b+ 1)), . . . , π(n)). if a > b

(13)
The insertion neighbourhood of π consists of all the

neighbouring permutations πv obtained by a move from a
given set U , and denoted as N (U, π) = πv ∈ U . Typically,
the ”original complete” insertion neighbourhood is generated
by the move set U = {(a, b)|a, b ∈ {1, 2, . . . , n}, b 6∈
{a, a − 1}} of size (n − 1)2. It is worth noting that the
condition b 6∈ {a, a − 1} is added to avoid redundancy of
moves. Such a large-size set would assist TS to avoid being
trapped in a bad local optimum, however, its sizes drastically
increases with the number of jobs. It is quite time consuming
to evaluate all moves especially when we repeatedly evaluate
neighbourhoods in TS.

Structural properties described in section III-C can assist
us to reduce the original complete neighbourhood as follow:
• According to property 1, generating neighbours by

shifting a job within an internal block are not interesting
(note we are only interested in blocks of size greater
than or equal to two). Consequently, the original com-
plete insertion move set U can be reduced by removing
such non-improving moves. Hence, the computation
time is further decreased.

• According to property 2, when generating neighbours
by shifting job between blocks, we can define and

obtain a lower bound LB on the makespan Cmax for
neighbour solutions πv , which defined as LB(πv) =
Cmax(π) + pπ(a)l − pπ(a)p. Here obviously, if pπ(a)l ≥
pπ(a)p, then LB(πv) ≥ Cmax(π), which implies that
Cmax(πv) ≥ Cmax(π). As a result, we can know that
πv is not better than π without explicitly evaluating πv .
Therefore, non-promising neighbours can be excluded
and the computational effort for the search of neigh-
bourhood is reduced.

Obviously, utilising these structural properties will im-
prove the algorithm performance. The computation time will
decrease and the search toward promising regions of the
search space will be promoted.

Tabu Memory and its Structure: Tabu memory, denoted
by η, is an essential element in TS. TS makes a systematic
use of it to exploit knowledge beyond that contained in the
objective function and the neighbourhood N . Short-term and
long-term memory are employed in the form of recency
based and frequency based memory in this work. Short-term
memory contains information that to some extend forbids the
search from returning to a previously visited solution during
the recent past seach, while long-term memory contains
information that helps achieve global diversification of the
search.

Because each move consists of (a, b) pair of positions, we
represent the tabu memory by using a square matrix of order
n illustrated in Fig.4; where n is the number of jobs. The
upper triangle of the matrix is allocated for recency-memory
to store tabu tenure value of a v = (a, b), while the lower
triangle matrix is allocated for frequency-memory to record
the number of times the v = (a, b) is encountered.

Since TS conducts on various subproblems with different
local search directions, it might be good to use a different
tabu memory ηi for each subproblem i.

Managment of Tabu Memory: Each time a move v is
performed to go from solution π to πv by removing a job
at position a and inserting it at position b, the pair (x, y) of
jobs is added to memory. The values of the pair (x, y) of
jobs are determined as follow:

(x, y) =

{
(π(a), π(a+ 1)), if a > b

(π(a− 1), π(a)), if b < a
(14)

This tabu mechanism is based on the idea that after
removing a job from a position to another, any move that
would restore the relative order of the job and its former
neighbour should be declared tabu for number of iterations.

Each time the pair (x, y) is added to the memory, the
corresponding element in the upper triangle of η is set to
the current iteration number plus tabu tenure k, while the
corresponding element in the lower triangle is increment by
1. At any moment, it is easy to verify if a given move is tabu
or not by simply comparing the current iteration number with
that recorded in the the upper triangle of matrix η.

The Aspiration criterion: The above tabu mechanism
is sufficient to prevent the algorithm from being trapped in
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Fig. 4: Tabu memory structure. Upper triangle is used to
store recency information while lower triangle is used to store
frequency information.

short-term cycling. Meanwhile, such a mechanism may for-
bid solutions that are not yet visited. To fix this shortcoming,
a standard and simple aspiration criterion is introduced. A
tabu move is allowed if the move leads to a solution whose
evaluation is better than that of the best solution found so
far by the algorithm.

Diversification: Like other local search algorithms, TS
tends to spend most of its time in a restricted region of the
search space. Therefore, it is required to diversify the search
process, i.e., force the search toward unexplored regions of
the search space. The use of frequency information is used
to conduct diversification, which integrates diversification
directly into the regular searching process. To achieve this
we replace a move value with the following penalty function:

MoveV alue′ = MoveV alue+ d× Penalty (15)

where Penalty value is frequency information obtained
from the lower triangle of memory η, and d is adjustable
diversification parameter. Larger d value correspond to more
diversification and vice versa.

We refer interesting readers to [17], [18] for extensive
discussion on various diversification strategies for TS.

B. Parameter Settings

The initial population is generated at random and the
population size N is regulated by a parameter H . More
precisely, λ1, . . . , λN are all the weight vectors in which
each individual weight takes a value from

{
0
H ,

1
H , · · · ,

H
H

}
.

Therefore, the number of such vectors is N = Cm−1
H+m−1.

Table I lists the value of N and H . The setting of T , which
determines the number of weight vectors in the neighbour-
hood of each weight vector, follows the recommendation in
[19]. T is set to 3 and 10 for 2-objective and 3-objective test
problems, respectively. All Pareto optimal solutions obtained
during the genetic and local searches are recorded in an
external population EP.

In MOEA/D-TS, local search is used every 25 generations
and based on the proposed dynamic selection scheme in II,
each fitness comparison performed inside the local search
procedure is considered as an evaluation for fair comparison.
For tabu search, the number of iteration inside TS is set to
30, the value of the penalty factor d is set to be 7 and the tabu
tenure k is randomly and uniformly selected within a range
tmin = 3 and tmax = 20. For genetic search, the crossover
probability Pc and the mutation probability Pm are 0.85 and
0.5, respectively.

The maximum number of evaluation maxEval, listed in
Table I, is used as stopping condition for each algorithms.
It is worthwhile noting that large test problems need more
computational workload because the size of the search space
exponentially increases with the number of jobs. Thus, we
perform computation experiments with more computation
workload for 80-job test problems.

TABLE I: Parameter Setting for the Test Problems of the
PFSP

Test
maxEval N(H) TProblem

2/20 1.0× 105 200 (199) 3
2/40 1.0× 105 200 (199) 3
2/60 1.0× 105 200 (199) 3
2/80 2.0× 105 200 (199) 3
3/20 1.0× 105 300 (23) 10
3/40 1.0× 105 300 (23) 10
3/60 1.0× 105 300 (23) 10
3/80 2.0× 105 300 (23) 10

C. Assessment Metrics

The following performance metrics are used in assessing
the performance of the algorithms in our experimental stud-
ies.

1) Set Coverage (C-metric): Let A and B be two approx-
imations to the PF of a MOP; the C(A,B) metric is defined
as the proportion of solutions in B that are dominated by at
least the sole solution in A:

C(A,B) =
|{b ∈ B|∃a ∈ A : a dominates b}|

|B|
(16)

The value of C(A,B)=1 means that all solutions in B are
dominated by some solutions in A, and C(A,B)=0 implies
that no solution in B is dominated by a solution in A.

2) Inverted Generational Distance (IGD-metric): Let P ∗

be a set of uniformly distributed points in the objective space
along the PF. Let A be an approximation to the PF. The IGD
from P ∗ to A is defined as follows:

IGD(P ∗, A) =

∑
v∈p∗ d(v,A)

|P ∗|
(17)

where d(v,A) is the minimum Euclidean distance between
v and the points in A. The smaller the value of IGD, the
closer the solutions are to the Pareto optimal front. The IGD
requires the true Pareto optimal fronts in advance. Thus, we
used the composite Pareto optimal front of each test problem



in [9] 1 as a true Pareto optimal front in calculation of IGD
in our experiments.

D. Results and Discussion

MOEA/D-TS is compared with a classical MOEA/D on 2-
objective and 3-objective PFSP test instances. A set of nine
test instances, with 20, 40, 60 and 80 jobs on 20 machine,
proposed in [9]1 are used in our experimental studies. All
the experiments have been carried out on identical computers
(Intel Core i7 2.80GHz CPU and 8GB RAM). The program-
ming language is Java. All the statistics are based on 50
independent runs.

TABLE II: Best, average and worst values of the IGD-metric
of the solutions found by MOEA/D and MOEA/D-TS

Test MOEA/D MOEA/D-TS
Problem Best Avg. Worst Best Avg Worst

2/20 25.9 45.6 86 1.6 7.1 12.2
2/40 97.8 134.5 168.7 25.8 42.8 59.3
2/60 185.7 260.4 407.3 53.9 81.5 127.2
2/80 135.4 213.2 290.4 23.77 48.22 75.97
3/20 63.7 106.8 172.1 17.6 26.7 35.8
3/40 314.4 490.8 1108.2 109.8 162.9 270.9
3/60 620.5 1175.8 2827.8 254.6 390.6 590.8
3/80 1014.8 2071.7 3259.9 454.5 749.9 1218.4

TABLE III: Average set coverage between MOEA/D (A) and
MOEA/D-TS (B)

Test C(A,B) C(B,A)Problem
2/20 0.008 0.789
2/40 0.004 0.982
2/60 0.0 1.0
2/80 0.0 1.0
3/20 0.025 0.767
3/40 0.007 0.953
3/60 0.011 0.930
3/80 0.049 0.946

TABLE IV: The average number of the solutions found by
MOEA/D and MOEA/D-TS. The numbers in parentheses
represent the standard deviation.

Test MOEA/D MOEA/D-TSProblem
2/20 19.4(3.3) 39.1(2.6)
2/40 22(5.9) 52.1(7.5)
2/60 19.4(4.5) 48.8(6.5)
2/80 18.5(5.8) 39.3(5.2)
3/20 122.6(23.6) 402.9(31.2)
3/40 131(33.5) 580.5(57.1)
3/60 114.4(27.8) 559.3(61.2)
3/80 128.9(30.8) 579.6(87.9)

Table II summarises the best, average and worst values
of IGD-metric of the final approximations obtained by
each algorithm over 50 runs for each test instance. Table
III shows the means of the C-metric values of the final

1The set of reference solutions & test problems are obtained
from: http://www.ie.osakafu-u.ac.jp/∼hisaoi/ci lab e/research/pdf file/
multiobjective/MOGLS

approximations obtained by the two algorithms. Table IV
summarizes the number of non-dominated solutions obtained
by the two algorithms. Fig. 5 plots the distribution of the final
approximation with the lowest IGD value among 50 runs of
each algorithm for each bi-objectives test instance.

We make the following remarks:

• Table II shows that the final non-dominated solutions
obtained by MOEA/D-TS is better than those obtained
by MOEA/D in terms of the IGD-metric for all the
eight test instances. The results reflect the extend of
enhancement MOEA/D-TS made to that MOEA/D and
the ability of TS to escape Pareto local optimal area and
obtain solutions closer to the PF with good spread over
the PF. Taking instance 2/60 as example, this instance
has an IGD value of 260.4 when the MOEA/D was
used and 81.5 when the MOEA/D-TS was used.

• It is evident from Table III that the final solutions
obtained by MOEA/D-TS are better than those obtained
by MOEA/D, in term of C-metric, for all the test
instances. For instance, on average 93% of the final
solutions obtained by MOEA/D on the 3/60 prolem
instance are covered by those generated by MOEA/D-
TS, while only 1.1% vice versa.

• We can see from Table IV that MOEA/D-TS is inferior
to the classical MOEA/D in term of the number of
obtained solutions for all the test problems. These
results suggest that MOEA/D-TS tends to find more
solutions with higher quality than MOEA/D.

• Fig.5 clearly indicates the difference between the final
approximations obtained by the two algorithms on bi-
objective test problems with 20, 40, 60 and 80 jobs.5.
The results shown in this figure are consistent with the
observation on the IGD and Set Coverages performance
metrics. Moreover, Fig.5 reveals that the larger the
number of decision variable is, the larger the difference
between MOEA/D and MOEA/D-TS, which implies the
search ability of MOEA/D-TS in large search spaces.

Overall, we can claim that MOEA/D-TS is more efficient
and can produce better approximations than MOEA/D on
these PFSP test instances.

V. EFFECT OF ALGORITHMIC COMPONENTS AND
SENSITIVITY ANALYSIS IN MOEA/D-TS

A. Effect of Algorithmic Components

1) Effect of longer term structure: Diversification rules
that drive the search into new regions is automatically created
in TS (to some extent) by short-term memory functions, but
the diversification is particularly reinforced by longer term
memory. The short-term memory alone may be enough to
achieve solution superior to those found by conventional
local search methods, but long-term structures are often
necessary for solving harder problems. This is why we
incorporate long-term memory into MOEA/D-TS to help
subproblems in avoiding being trap in local Pareto optimal
solutions.
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Fig. 5: Plot of non-dominated solutions with the lowest IGD value found by the two algorithms in 50 runs on bi-objective
test instances with 20, 40, 60 and 80 jobs.

TABLE V: Comparison of three measures of the solutions
found by MOEA/D-TS with and without long-term mem-
ory (LTM) on 80-job problem. The number in parentheses
represent the standard deviation.

Measure MOEA/D-TS
with LTM without LTM

IGD-metric 48.22(8.2) 86.66(14.3)
C-metric 0.413 0.389
|EP | 31.95(6.2) 26.1(6.7)

To study the effect of using longer term structure, in
terms of the quality and diversity of solutions, we have
tried, on 80-job test instance, two variants of MOEA/D-TS
with the same parameter settings except the incorporation of
long-term memory. We have found that, on average among
50 independent runs as shown in Table V, MOEA/D-TS
with long-term memory obtained lower IGD-metric values,
therefore the final solutions are very good approximation to
the PF. Moreover, the average number of solutions obtained
is increased when using long-term memory. This indicate that
the search has driven toward unexplored region in the search
space.

2) Effect of structural properties: Does problem-specific
knowledge such as structural properties has a significant
impact on the performance of MOEA/D-TS? To answer this

TABLE VI: Comparison of three measures of the solutions
found by MOEA/D-TS with and without block properties
(BPs) on 40-job problem. The number in parentheses repre-
sent the standard deviation.

Measure MOEA/D-TS
without PBs with PBs

IGD-metric 102.5(12.4) 51.7(10.5)
C-metric 0.025 0.926
|EP | 31.55(7.3) 50.8(5.9)

question, we have tried, on 2-objective 40-job test instance,
two variants of MOEA/D-TS with the same parameter set-
tings in Section IV-B except the use of structural properties.
We have found that on average among 50 independent runs as
shown in Table VI MOEA/D-TS using structural properties
has lowered the IGD value, therefore the final obtained
solutions are a very good approximation to the PF. This
is consistent with the observation on C-metric, where on
average 92% of the final solutions generated by MOEA/D-
TS using original insertion are dominated by those generated
by MOEA/D-TS using structural properties, and only 2%
vice versa. Moreover, MOEA/D-TS with block properties
is inferior to MOEA/D-TS without in term of the number
of obtained solutions for the bi-objective 40-job instance
in Table VI. Clearly, these advantages come from incorpo-



rating structural properties. This means that incorporating
such problem knowledge is very necessary in MOEA/D-TS.
Therefore, we can conclude that problem knowledge help
to improve the performance of the proposed MOEA/D-TS
algorithm.

3) Choice of Scalarizing Function: The choice of an
appropriate scalarizing function plays a very important role in
MOEA/D. Several studies (e.g. [20], [21]) have demonstrated
the effect of the choice of scalarizing functions on MOEA/D.

In this section, we examine the dependency of the perfor-
mance of TS on the specification of a scalar function. We
use the empirical attainment function (EAF) [22] to visually
identify the algorithms’ behaviour graphically. We compare
two versions of MOEA/D-TS, one using the weighted sum
approach of (2) and the other one using the weighted min-
max approach [8]. For the latter, the scalar objective function
of subproblem is:

minimise gws(x|λ) = maxi∈{1,...,m}λifi(x)

subject to x ∈ D
(18)

where λ is the same as of (2). We use the weighted min-max
approach because it has a similar property to that of weighted
Tchebycheff approach, which need a reference point [6].
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Fig. 6: Location of differences between min-max (left)
and weighted sum (right) scalarizing functions for the bi-
objective 40-job test problem.

Fig. 6 shows the location of differences between the
EAFs over 100 runs of MOEA/D-TS with each scalarizing
function. In each plot, the lower line corresponds to the best
attainment surface associated to the solutions found with
the minimum propbability, any solution below it was never
attained. The upper line corresponds to the worst attainment
surface associated to the solutions dominated with probability
one, the region above this line was always attained. Thus, any
difference would be within these two lines. The dashed line
corresponds to the median attainment surface, which is given
to facilitate the comparison of the two sides of the plot.

We can observe from Fig. 6 that MOEA/D-TS using min-
max (left) performs better towards the minimisation of the
second objective, whereas MOEA/D-TS using weighted sum
performs better in the centre and towards the minimisation

of first objective. Clearly, the search strategies behave differ-
ently with the change of the scalarizing function.

In general, the results presented indicate a strong depen-
dency between the performance of TS and the choice of
scalarizing functions. Therefore, these dependencies need to
be taken into account when designing and implementing local
search methods for MOEA/D.

4) Use of Utility for Selecting Local Search Solutions:
In MOEA/D, there is no selection strategy to help identify
good solutions (i.e. subproblems) for local search. A straight
forward strategy is the random selection of subproblems for
the application of local search. The random selection may
lead to the selection of inappropriate initial solutions. In this
paper, we have proposed the use of utility π to help select
good solutions for the application of local search.

In this section, we demonstrate the improvement of
MOEA/D-TS due to the proposed utility strategy. We com-
pared two versions of MOEA/D-TS on instances with 40
and 80 jobs. The mean IGD values obtained using the
random based selection are 50.97 and 65.09. While the utility
based selection obtained 41.76 and 49.42. Clearly, MOEA/D-
TS with the utility based selection perform better than the
MOEA/D-TS without.

B. Sensitivity Analysis

1) The Size of Tournament Selection: In this paper, we
use the tournament selection based on the utility function for
choosing initial solutions for local search. In this section, we
study the influence of the increase in the selection pressure
(i.e., the increase in the tournament size) on the performance
of MOEA/D-TS. We tested MOEA/D-TS with tournament
sizes of 1, 2, 10 and 20 on test instances with 40 and 80
jobs. Experimental results are summarised in Fig. 7.
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Fig. 7: Effect of the specification of the tournament size.

From this figure, we can see that the performance of
MOEA/D-TS was improved by increasing the selection pres-
sure of initial solutions for local search. This is attributed to
the selection of appropriate initial solution for local search
at different search stages. Note that, when the tournament
size was specified as 1, initial solutions were randomly
chosen from the population. In this case, the performance of
MOEA/D-TS was degraded and this reflects the importance
of utility function in selection of local search solutions.

2) Population Size (N) and the Number of Uniform Weight
Vectors (H): In MOEA/D-TS, the population size N is
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Fig. 8: Plot of non-dominated solutions with the lowest IGD-
metric value found by MOEA/D-TS with H = 7 (top) and
H = 23 (bottom) for 3-objective test instances with 20 jobs.

controlled by the user defined parameter H . In this sec-
tion, we study the influence of H on the performance of
MOEA/D-TS. We tested MOEA/D-TS with a smaller H = 7
(36 uniform weight vectors) and a larger H = 23 (300
uniform weight vectors) for 3-objective PFSP test problem
with 20 jobs. Fig. 8 shows the distribution of non-dominated
solutions found by MOEA/D-TS with H = 7 and H = 23.
We can observe from this figure that MOEA/D-TS with the
larger value of H performed better than that with the smaller
values of H w.r.t diversity. Clearly, one can understand that
more uniform weight vectors are needed in MOEA/D-TS
when the size of PF is very large. However, a very large
value of H will increase the computation time in MOEA/D-
TS.

VI. CONCLUSIONS

In this paper a single-optimisation local search method,
TS, has been integrated with the MOEA/D framework. At
some points during the search process when search on single-
objective subproblems get stuck in local optimal solutions,
TS is used to escape from these solutions. The search
history and TS strategy are utilised. We have used the
multiobjective permutation flow shop scheduling problems
as test problems. Our experimental results on the PFSP test
instances indicated that our proposed MOEA/D-TS is a very
effective technique that outperforms the classical MOEA/D.

We have also shown that using a strategy for escaping
Pareto local optimal solutions in MOEA/D is necessary for
improving algorithm performance. As future work, the tuning
parameters of the MOEA/D-TS will be investigated, and the
MOEA/D-TS will be extended to handle other combinatorial
optimisation problems.
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