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Abstract

We present N-gram GP, an estimation of distribution algorithm for the evolution
of linear computer programs. The algorithm learns and samples the joint probability
distribution of triplets of instructions (or 3-grams) at the same time as it is learning
and sampling a program length distribution. We have tested N-gram GP on symbolic
regressions problems where the target function is a polynomial of up to degree 12
and lawn-mower problems with lawn sizes of up to 12 × 12. Results show that the
algorithm is effective and scales better on these problems than either linear GP or
simple stochastic hill-climbing.

1 Introduction

Estimation of distribution algorithms (EDAs) are powerful population-based searchers
where the variation operations traditionally implemented via crossover and mutation in
evolutionary algorithms are replaced by the process of sampling from a distribution. The
distribution is modified generation after generation, by using information obtained from
the more fit individuals in the population. The objective of these changes is to increase
the probability of generating individuals with high fitness. This paper introduces N-gram

GP, an EDA for the evolution of linear computer programs.
EDAs are reviewed in [12, 13]. Different algorithms use different models for the proba-

bility distribution that controls the sampling. For example, population-based incremental
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learning (PBIL) [2] and the uniform multivariate distribution algorithm (UMDA) [17, 18]
assume that the distribution is factorised into a product of univariate marginals, i.e., each
variable in a chromosome is assumed to be independent of other variables. So, these al-
gorithms need to store and adjust only a linear array of probabilities. This works well
for problems without significant interactions between variables. Partial solutions of or-
der greater than one are disrupted, however, making it difficult to solve problems where
the fitness function has significant interactions between variables. Naturally, higher order
models are possible. For example, the MIMIC algorithm of [6] uses second-order statistics.
It is also possible to use flexible models where interactions of different orders are captured.
For example, the Bayesian optimisation algorithm (BOA) [21] uses Bayesian networks to
represent generic sampling distributions, while the extended compact genetic algorithm
(eCGA) [9] clusters genes into groups where the genes in each group are assumed to be
linked but groups are considered independent. The sampling distribution is then taken to
be the product of the distributions modelling the groups.

There have been several prior applications of probabilistic model-based evolution (EDA-
style) to tree-based GP. The first EDA-type GP system was inspired by PBIL [2] and was
called probabilistic incremental program evolution (PIPE) [25]. In PIPE, the population is
replaced by a hierarchy of probability tables organised into a tree. Each table represents the
probability that a particular instruction be at that particular location in a newly generated
program tree. At each generation a population of programs is generated. The generation of
a program starts by choosing a root node based on the probabilities of the root table, and it
then continues recursively down the hierarchy of probability tables until all branches of the
tree are complete. The probability hierarchy is updated on the basis of the fitness of the
programs in the population, so as to make the generation of above average fitness programs
at the next generation more likely. A positive feature of PIPE is that the probabilities of
choosing each primitive can vary with its depth (and, more generally, position) in the tree.
This makes it possible, for example, for terminals to become more and more probable as a
node’s depth increases. A limit of PIPE, however, is that the primitives forming a tree are
chosen independently from each other, so it is impossible for PIPE to capture dependencies
among primitives. Another limitation is that trees are limited to a preset depth. In [26]
an algorithm called extended compact GP (eCGP) was proposed which effectively extends
the eCGA algorithm [9] to trees. The algorithm assumes that all trees to be created by
sampling will fit within a maximal tree. It partitions the nodes in this maximal tree into
groups. The nodes in a group are assumed to be linked and their co-occurrence is modelled
by a full joint distribution table. Like for eCGA, the probability of generating a particular
individual (a tree in the case of eCGP) is given by the product of the probabilities of
generating each group of genes using the groups’ joint distributions. An advantage of the
system is that, unlike PIPE, it capture dependencies among primitives. In [32] an EDA
called estimation of distribution programming (EDP) was proposed that, in principle, can
capture complex dependencies between nodes in a program tree and nodes directly above it
(or to its left), through the use of a conditional probability table. Like for eCGP and PIPE,
programs are tree-like and are assumed to always fit within an ideal maximal full tree. A
conditional probability table is necessary for each node in such a tree. So, to keep the size
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of data structures under control, the system was only tested by modelling the dependency
of each node on its parent node. I.e., the model captured pairwise dependencies. A hybrid
between EDP and GP was proposed in [33]. A hierarchical BOA is used as the main
mechanism to generate new deme members in a system called MOSES (Meta-Optimising
Semantic Evolutionary Search) [14], which combines multiple strategies and uses semantics
to restrict and direct the search. BOA was also used to evolve programs in [15] using a
specialised tree representation.

Various other systems have been proposed which combine the use of grammars and
probabilities.1 We mention only a few here (an extended review is available in [30]) since
this paper focuses on grammar-less GP approaches. For example, [23] used a stochastic
context free grammar to generate program trees. The probability of application of each
rewrite rule was adapted using a standard EDA approach so as to increase the probability
of application of successful rules. The system could also be run in a mode where rule
probabilities are contextual to the depth of the non-terminal symbol to which a rewrite
rule is applied, thereby providing a higher degree of flexibility. Slightly more general
is the approach taken in PEEL (Program Evolution with Explicit Learning) [28], where
a probabilistic L-system is used where rewrite rules are depth- and location-dependent
and have associated probabilities of application which are adapted by an Ant Colony
Optimisation (ACO) algorithm [7]. ACOs are characterised by pheromone update rules
which strongly resemble the model update rules in EDAs. A feature of PEEL is that
the L-system’s rules can automatically be refined via splitting and specialisation. Other
programming systems based on probabilistic grammars which are optimised via ant systems
include ant-TAG [1, 27] (which uses a tree-adjunct grammar as its main representation)
and generalised ant programming (GAP) [10] (which is based on a context free grammar).
Other systems which learn and use probabilistic grammars include grammar model based
program evolution (GMPE) [29], the system described in [3, 4] and Bayesian automatic
programming (BAP) [24].

While there is a significant amount of work in this area, we are unaware of any appli-
cations of EDA-style ideas to linear GP. This paper starts filling this gap, by proposing an
EDA-type GP system capable of evolving machine-language-type programs [19, 20, 5].

The paper is organised as follows. We present our method in Sec. 2. In Sec. 3 we
thoroughly evaluate it against hill climbing and standard linear GP. In Sec. 4 we analyse
how N-gram GP solves problems and what it learns during evolution. We provide our
conclusions in Sec. 5.

2 N-gram GP

An n-gram is a group of n items from a longer sequence. For example, a b, b c and c d are
all 2-grams from the sequence a b c d, while a b c and b c d are 3-grams. The items in the
sequence can be of a variety of types, including words from natural language, base pairs

1In fact, there is a fundamental equivalence between probabilistic grammars and other probabilistic
approaches (see [30] for a detailed explanation).
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in a DNA fragment, and phonemes in a speech recording. Very often n-grams are used
for the purpose of modelling the statistical properties of sequences, particularly natural
language [31, 22, 16]. In particular, an n-gram model assumes that the probability of a
particular symbol appearing in a sequence depends only on what appeared before that
symbol and in its vicinity in the sequence. More formally, if we imagine that a particular
sequence x1, x2, . . . is an instantiation of a family of stochastic variables X1, X2, . . . , the
assumption is that, for any k-gram, Pr{Xi = xi|Xi−1 = xi−1, . . . , Xi−k+1 = xi−k+1} is
independent of i and is sufficient to correctly capture the probability of Xi taking the
value xi in a particular sequence.

In this work we will use an n-gram distribution to generate linear computer programs.
That is, our sequences are sequences of instructions from the assembly language of a
register-based CPU, as in linear GP [19, 20, 5, 8].

In this paper we will limit our attention to the case of 3-grams. So, if P =
{p1, p2, . . . , pN} is the primitive set, our model of the language can then be represented
by a matrix M (3) = (ml,m,n) with elements ml,m,n = Pr{Xi = pn, Xi−1 = pm, Xi−2 = pl},
where the indices l, m, and n range over the set {1, . . . , N}. From this matrix we derive
two further matrices, M (2) = (ml,m) and M (1) = (ml), with elements ml,m =

∑

n ml,m,n

and ml =
∑

m ml,m, respectively. So, the elements of these matrices are marginals of the
distribution Pr{Xi = pn, Xi−1 = pm, Xi−2 = pl}.

Note that, in general, by definition Pr{Xi = xi, Xi−1 = xi−1, . . . , Xi−k+1 = xi−k+1}
= Pr{Xi = xi|Xi−1 = xi−1, . . . , Xi−k+1 = xi−k+1}×Pr{Xi−1 = xi−1, . . . , Xi−k+1 = xi−k+1}.
So, the elements of M (3) are proportional to Pr{Xi = pn|Xi−1 = pm, Xi−2 = pl}, the ele-
ments of M (2) are proportional to Pr{Xi−1 = pm|Xi−2 = pl}, and, finally, the elements of
M (1) are proportional to the priors Pr{Xi−2 = pl}.

Assuming that the matrices M (1), M (2) and M (3) are available, one can then use them to
generate sequences of instructions with the same statistical properties as the language the
n-gram model is supposed to represent. The process starts by sampling the primitive set P
using probability distribution M (1) to obtain the first instruction of a program. The second
instruction is drawn by using the distribution prescribed by the row of M (2) corresponding
to the first primitive. The third and all subsequent instructions are then drawn using the
appropriate entries from M (3). (See Alg. 1 for more details.)

How does this process terminate? If one of the instructions in the primitive set P is
an EXIT instruction of some type, the construction process can naturally terminate when
such an instruction is drawn. The program length distribution is then determined by the
probability of drawing EXIT instructions. An alternative, which gives more control on
program length, is to dispense with the EXIT instruction and instead explicitly represent
and update a program length distribution. In this case before the process of constructing
a program is started a program length is drawn from this distribution. Programs are then
grown up to the prescribed length. In this paper we take this second approach.

One option when explicitly representing the length would be to add an extra dimension
to our N-gram model, making it possible to learn different 3-gram distributions for different
length classes. However, this is problematic. The matrix M (3) is of size N3, where N is the
size of the primitive set. However, extending the model to 4 dimensions implies an increase
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in the number of parameters to be learnt by two or more orders of magnitude, which is a
distinct disadvantage. So, we decided in this initial research to focus on a system where
program length is independent from program primitives. That is, we assume that the joint
distribution of 3-grams and length is a product of the form M (3) × PL, where PL is the
length distribution. The construction of new programs, therefore, proceeds as shown in
Alg. 1.

So far we have assumed that somehow the distributions M (3) and PL were available.
Now we look at how we construct such models. We do this using a standard EDA approach
with minor modifications as shown in Alg. 2. We start by initialising the distributions PL

and M (3). If we have no prior information on the problem to be solved (we assumed this
in all experiments reported in the paper), the most natural initialisation is the uniform
distribution. If `max represents the maximum program size we are interested in, then all
entries of PL are initialised to 1/`max. Similarly, all the entries of M (3) are initialised to
1/N3. Then, after projecting M (3) to obtain its marginals, we proceed to construct a new
population. This is, for the most part, created by sampling from our model (the distribution
M (3) × PL). However, occasionally (on average once per generation) the best individual
seen so far in the run is reintroduced to guarantee stability in the estimated distribution.
Note that, following standard EDA practice, to maintain diversity and ensure that the
search continues even after many entries of M (3) converge to 0, we perform point mutation
(at a low per-locus rate) on the individuals returned by the genProgram routine. Like in
many EDAs, the population then undergoes a step of truncation selection, where the best
individuals are stored in a set elite which is then used to update the program distribution;
in this work we used the top 1/5 of the population for elite.

The update of the distribution is performed independently for PL and M (3) as shown
in Alg. 3. We use an additive update rule for updating PL and M (3). Note that the
arrays are not explicitly zeroed before they are updated. In this way the model used to
produce individuals at one particular generation can depend also on successful individuals
discovered in previous generations in the run. How much the current elite influences the
model depends on two learning rates, ηM and ηL. If desired, these can be made arbitrarily
big. When ηM � 1 and ηL � 1 effectively PL and M (3) are entirely determined by the
current elite and not the previous history of the run.

3 Experimental Results

3.1 Problems and Primitive Sets

We used two families of test problems: Polynomial and Lawn-Mower. In this section we
briefly describe these problems and the primitive sets used to solve them.

Polynomial is a symbolic regression problem where the objective is to evolve a function
which fits a polynomial of the form x+x2+· · ·+xd, where d is the degree of the polynomial,
in the range [−1, 1]. In particular we considered degrees d = 5, . . . , 12 and we sampled the
polynomials at the 21 equally spaced points x = −1, x = −0.9, . . . , x = 1.0. Fitness (to
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Algorithm 1 Program generation algorithm of N-gram GP.

genProgram( M (1), M (2), M (3), PL)

1: Select program length, ` > 0 based on the probabilities stored in the distribution PL

{Perform a roulette wheel selection on the entries of PL}
2: Select the first instruction, x1, based on the probabilities stored in M (1) {via roulette

wheel}
3: If ` > 1 select the second instruction, x2, based on the probabilities stored in the

x1-th row of M (2), which we indicate with M
(2)
x1

{Again this is done via roulette wheel

selection on M
(2)
x1

}
4: for i = 3 to ` do
5: Select xi based on M

(3)
xi−2,xi−1

{M
(3)
xi−2,xi−1

is the xi−2-th row in the xi−1-th page of
M (3)}

6: end for
7: return x1, x2, · · · , x`

Algorithm 2 N-gram GP main loop.
N-gram-GP

1: Initialise the distributions PL and M (3)

2: repeat
3: Compute marginals of M (3) to obtain M (1) and M (2)

4: for i = 1 . . . popsize do
5: With probability 1/popsize, pop[i]= best individual found so far
6: With probability 1−1/popsize, pop[i]=mutate(genProgram(M (1),M (2),M (3),PL))

7: end for
8: elite = truncationSelection( pop )

9: updateProbabilities( PL, M (3), elite )

10: until Solution found or max number of iterations exhausted
11: return best individual found

be minimised) was the sum of the absolute differences between target polynomial and the
output produced by the program under evaluation over these 21 fitness cases. Polynomials
of this type have been widely used as benchmark problems in the GP literature. However,
we are unaware of any experiments with degrees as high as the ones we consider here.

For this problem we considered two primitive sets: PlusTimesSwapR1R2, that is partic-
ularly suitable for the solution of this problem, and AllOpsSwapR1R2 which is a superset
of PlusTimesSwapR1R2 containing two spurious primitives. These primitive sets are de-
tailed in the first two columns of Table 1. The instructions refer to three registers: the
input register RIN which is loaded with the value of x before a fitness case is evaluated and
the two registers R1 and R2 which can be used for numerical calculations. R1 and R2 are
initialised to x and 0, respectively. The output of the program is read from R1 at the end
of its execution.
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Algorithm 3 Learning in N-gram GP.

updateProbabilities( PL, M (3), elite )

1: for i = 1 . . . |elite| do
2: x = elite[i]
3: ` = length( x )

4: PL,` = PL,` + ηL/`max

5: for j = 3 . . . ` do
6: M

(3)
xj−2,xj−1,,xj = M

(3)
xj−2,xj−1,xj + ηM/N3

7: end for
8: end for
9: M (3) = M (3)/

∑

l,m,n M
(3)
l,m,n

10: PL = PL/
∑

l PL,l.

Table 1: Primitive sets used in our experiments (% represents protected division, which
returns its first argument if the second argument is zero).

Polynomial Lawn

ID PlusTimesSwapR1R2 AllOpsSwapR1R2 Mower

0 R1 = RIN R1 = RIN Mow

1 R2 = RIN R2 = RIN Left

2 R1 = R1 + R2 R1 = R1 + R2 Right

3 R2 = R1 + R2 R2 = R1 + R2

4 R1 = R1 * R2 R1 = R1 * R2

5 R2 = R1 * R2 R2 = R1 * R2

6 Swap R1 R2 Swap R1 R2

7 R1 = R1 - R2

8 R2 = R1 - R2

9 R1 = R1 % R2

10 R2 = R1 % R2

Lawn-Mower is a variant of the classical Lawn Mower problem introduced by Koza
in [11]. As in the original version of the problem, we are given a square lawn made up
of grass tiles. In particular, we considered lawns of size d × d with d = 5, . . . , 12. The
objective is to evolve a program which allows a robotic lawnmower to mow all the grass.
In our version of the problem, at each time step the robot can only perform one of three
actions (see Table 1): move forward one step and mow the tile it lands on (Mow), turn left by
90 degrees (Left) or turn right by 90 degrees (Right). In the original problem fitness (to be
minimised) was measured by the number of tiles left non-mowed at the end of the execution
of a program and, so, whether or not the lawnmower keeps visiting other tiles after finishing
the job was not considered a relevant part of the problem. This makes the problem rather
easy to solve and uninteresting if the GP system is allowed to grow large enough programs.
So, to make the problem more difficult, we implemented two further constraints. First, we
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limited the number of instructions allowed in a program to a small multiple of the number
of tiles available in the lawn (more precisely 4 × d2). Second, we required the lawnmower
to be energy efficient, using the corrections to the fitness function which encouraged the
evolution of rapidly-mowing programs and programs that stop immediately after having
cut the last grass patch:

fitness =

{

0.0001 × extraMoves if all tiles mowed
0.1 × progLength + numUnmowedTiles otherwise

where extraMoves is the number of moves made after the last tile was mowed.

3.2 Other Algorithms used for Comparison

In order to evaluate the strengths and weaknesses of N-gram GP, we tested it against two
other techniques: simple stochastic hill climbing and a traditional linear GP system. All
algorithms were given the same number of fitness evaluations (20,000 in all experiments
reported in the paper) and were individually optimised (by doing a large sweep of their
parameter space) to maximise their performance on our test problems. These parameters
are detailed in Table 2.

The hill climber is initialised by choosing a random program length between 1 and
`max and then generating a random program of that length. From then on, the algorithm
repeatedly attempts to improve over the best individual seen so far by randomly mutating
it. The algorithm has two equally probable mutation operations to choose from. The first
is point mutation which is applied to the primitives of the best program with a mutation
rate of p/` where ` is the length of the current best program and p is a parameter (p = 2
in our experiments). This form of mutation cannot change program length. The second
form of mutation is effectively subtree mutation applied to linear sequences. I.e., a random
mutation point is chosen in the parent individual, all of the instructions following the
mutation point are excised, and they are replaced by a newly generated random sequence.
As a result, the offspring program can have a length which is different from the parental
length.

Our linear GP system works as follows. It initialises the population by repeatedly cre-
ating random individuals using the same distribution as for the initialisation of the hill
climber, and evaluating their fitness. Then a typical steady state evolutionary loop starts.
At each iteration the algorithm decides whether to create a new individual via mutation or
crossover. If mutation is chosen, a parent individual is selected via tournament selection
(with tournament size 2), and an offspring is generated using the same algorithm as for
the hill climber (i.e., we use point mutation 50% of the time, and subtree mutation the
other 50% of the time). If crossover is chosen, we select two parents (again, via tournament
selection) and, then, we apply homologous two-point crossover with 50% probability, and
subtree crossover with 50% probability. Subtree crossover involves the selection of one
crossover point in each parent, and the swap of the instructions following the crossover
points. Homologous crossover requires choosing the same crossover points in both par-
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Table 2: Parameter settings for hill-climber, linear GP and N-gram GP.
Parameter Hill-Climber Linear GP N-gram GP

Fitness evaluations 20,000 20,000 20,000
Independent runs 1,000 1,000 1,000
`max Polynomial Problem 100 100 100

Lawn-Mower 4 × d2 4 × d2 4 × d2

Point mutation rate (per primitive) 2
`

1
`

0.25
`

Population size 1 500 10
Generations 20,000 40 2,000
Crossover rate (per individual) n/a 0.9 n/a
Mutation rate (per individual) 1 0.1 1
Tournament size n/a 2 n/a
Truncation selection ratio n/a n/a 5
ηM learning rate n/a n/a 8
ηL learning rate n/a n/a 0.075

ents. Irrespective of the genetic operation chosen, the individual picked for replacement is
selected via a negative tournament.

3.3 Performance Results

Fig. 1(a) shows a comparison of the success rate obtained by the hill climber, the N-gram
GP and the linear GP on Polynomial problems of degrees from 5 to 12, when using the
PlusTimesSwapR1R2 primitive set. It is apparent how the use of a small set of suitable
primitives makes the problem solvable for all techniques tested. Unsurprisingly, the simple
hill-climber does well on the relatively easy instances, but its performance is unsatisfactory
for d bigger than 9 or 10. On the contrary, the performance of the linear GP never
really drops to unacceptable levels. Furthermore, both linear GP and the hill-climber
do marginally better than the N-gram GP for small d. On the more difficult problems,
however, N-gram GP shows much better performance. Furthermore, its performance drops
more slowly than the other techniques as d increases, suggesting better scalability on these
problems.

As illustrated in Fig. 1(b), the use a larger-than-necessary primitive set
(AllOpsSwapR1R2) makes the problem harder, because the size of the search space in-
creases enormously without a corresponding increase in the size of the solution space. In
these conditions, a searcher would need more time and resources to identify solutions.
However, in this work, all problems, searchers and primitive sets are compared using the
same number of fitness evaluations, leading to generally poorer performance. Despite this
general trend, all observations we made for Fig. 1(a) appear to be valid here. In particular,
again, the N-gram GP system shows superior scalability and higher performance on the
harder problems.

Finally, let us consider the Lawn-Mower problem. Again the simple hill-climber is the
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Figure 1: Success rate of hill climber, N-gram GP and linear GP on Polynomial problems
of degrees from 5 to 12, when using the PlusTimesSwapR1R2 primitive set (a) and the
AllOpsSwapR1R2 primitive set (b). Parameters are as detailed in Table 2.
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Figure 2: Success rate of hill climber, N-gram GP and linear GP on Lawn-Mower problems
with lawn sizes from 5 × 5 to 12 × 12. Parameters are as detailed in Table 2.

weakest of all searchers. Linear GP is marginally superior to N-gram GP for small problem
sizes. However, its performance rapidly degrades, becoming unacceptable for problems of
size d = 11 or bigger. On the contrary, N-gram GP’s performance degrades much more
gracefully, leading it to being still able to solve problems of size d = 12 in about one third
of runs.

4 Analysis and Discussion

The results from Sec. 3.3 clearly show that N-gram GP outperforms hill-climbing and
often also linear GP, so the N-gram GP is obviously learning something during a run. The
question, then, is what is being learned, and how is that happening? Presumably, if there
is learning going on, it is in the proportions being stored in the M (i) and PL arrays. To
better understand this learning, we will examine the kinds of bias that develops in these
matrices in successful runs.

Of particular interest is whether (and how) N-gram GP learns longer patterns when
limited to only keeping statistics on the occurrence of triplets. Even though N-gram GP
can only learn triplets, there can obviously be correlations across multiple triplets; if wxy
and xyz both have high probabilities, then the 4-tuple wxyz is a likely outcome if one
starts with wx. To what degree does N-gram GP utilise this opportunity? How long are
the patterns that it learns? What role does repetition play in those patterns?

To address these questions, we took successful runs, and generated probability trees
based on the distribution matrices, cataloguing programs that were generated with high
probabilities. In every instance that we explored, there were clear patterns of instructions
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captured in the distribution matrices. In Sec. 3.3, the runs were halted once the goal
was discovered. The distribution matrices often were not strongly converged when the
goal was first found, so for this section we allowed runs to continue for a fixed number of
fitness evaluations, regardless of when the target was discovered. This gave the distribution
matrices the opportunity to continue converging after finding the goal, making it clearer
what was in fact being learned. To make it easier to present long sequences of instructions,
and to see patterns in those sequences, we will present programs as sequences of the integer
IDs of the instructions, using the IDs given in Table 1.

4.1 Polynomial

To simplify our analysis of the polynomial regression problems, we will consider each
sequence of instructions as a mapping from one state of the system to another. Since the
state in the regression problems is fully determined by the contents of the registers, we can
represent that state as an ordered tuple. In the two register problems, for example, we can
use an ordered pair (r1, r2) to represent the values of R1 and R2, respectively. Consider, for
example, the pair of instructions represented by 53, namely R2 = R1 * R2 followed by R2

= R1 + R2. If we start the system in state (a, b) (where a and b represent arbitrary initial
values) and execute this pair of instructions we end in the state (a, a(b + 1)).

It turns out that polynomials of the form x + x2 + · · · + xd can be easily constructed
in a highly patterned way using our simple instruction set. In one run, for example,
with the degree 7 target (x + x2 + · · · + x7), the evolved distribution matrices have a
high probability of generating sequences containing repetitions of the instruction pair 53
such as the solution 1535353535352. Here the initial instruction (1) loads x into R2,
which, because R1 is initialised to contain x, means that our state is (x, x) after that first
instruction. The first pair 53 then maps this to (x, x + x2), the second to (x, x + x2 + x3),
and so on until the last 53 pair yields the state (x, x + x2 + x3 + x4 + x5 + x6). The final
pair is 52 which has a similar effect, but leaves the result in R1, so we have the final state
(x + x2 + · · ·+ x7, x2 + x3 + x4 + x5 + x7), which has our target function in R1.

This solution is actually somewhat brittle because it depends crucially on getting the
final 52 pair at the end, while having 53’s everywhere else. This is reflected in the proba-
bility matrices, where the probability of following 35 with a 3 is 66%, while the probability
of following 35 with a 2 is only 1.3%. Contrast this with the probabilities following the
pair 53, where the probability of a 5 is greater than 99.999%. Consequently the system
has learned that the sequence 53 should always be followed by a 5, where the sequence 35
should usually be followed by 3, but occasionally by a 2 instead.

A somewhat more robust solution found on another run is 3412412412412412412. Here
the only “novelty” is the initial 3, which ensures that both registers have a copy of the
argument x at the beginning. Then the pattern 412 generates the sequence of polynomials
x, x + x2, x + x2 + x3, . . . , x + x2 + x3 + x4 + x5 + x6 + x7 in R1. This solution is also
interesting in that it in fact generates every polynomial of the form x + x2 + · · ·+ xd, and
all that is necessary to generate polynomials of other degrees is to increase or decrease the
number of 412 triplets appropriately.
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One might reasonably assume that the probability of generating the sequence 412 must
be very high in this solution, perhaps approaching 1. It is, however, 83% which, while
quite high, certainly is not high enough to ensure long repeated sequences of 412 triples.
Looking at the length distribution for this run, it turns out that the length 91 is far and
away the most likely length in this run (an order of magnitude more likely than any other
length in PL). 91 instructions is obviously far more than necessary to solve this problem,
so a successful 91 instruction program based on the 412 pattern is going to have to “get
lucky” and have some instructions re-write R1 to x towards the end, leaving just the right
number of 412 triples at the end. This, however, requires that there is some reasonable
chance of “escaping” runs of 412, which presumably accounts for the lower than expected
probability for this key triplet. If this run had settled on a shorter length, one might expect
the probability of generating the 412 sequence to be higher.

Tests with functions with more complex structure, e.g., the polynomials of the form
xd + 2xd−1 + 3xd−2 + · · · + d x (not reported due to space limitations), show that N-gram
GP is capable of learning correlations that allow it to construct important sequences that
are considerably longer than the triplets actually tracked in the distribution matrices. For
example, in one case, N-gram GP solve a problem by learning a sequence of 9 instructions
and setting triplets probabilities in such a way to ensure that this sequence was generated
with roughly 63% probability, which is over 500,000 times more likely than choosing it at
random from a uniform distribution of sequences of seven instructions. N-gram GP is thus
clearly capable of capturing and using long distance correlations despite only tracking the
distribution of 3-grams.

4.2 Lawnmower

In contrast to the polynomial regression problems discussed above, the lawnmower prob-
lem requires much less precision in the sequence of instructions, and consequently the
distribution matrices do not converge as strongly on a specific sequence.

One representative run, for example, is capable of generating a whole variety of se-
quences of instructions, with much less obvious patterning, including sequences such as
0000000001002 . . ., 0000000020202 . . ., and 2001122020020 . . . . Still, while there are not
clear sequences of instructions, there are definite trends in the distribution of instructions.
There is a high probability (74%) of starting with a Mow instruction, and given an initial Mow
instruction, again a high probability (75%) of following that with a second Mow instruc-
tion. In general Mow instructions are very likely throughout, as we would expect, while
other combinations are quite uncommon. A Mow-Right pair has effectively no chance of
being followed by a Left, which seems reasonable as a Right-Left sequence is effectively
a NO-OP; in fact a Mow-Right pair is almost always followed by another Mow.

As an indication of the trends in the evolved distribution matrices, there are five initial
sequences of length 8 that have a cumulative probability of at least 0.0001 of being gener-
ated: 00000000, 00000200, 00002000, 00020000 and 00200000. Mow instructions obviously
dominate, with at most one other instruction in each case (which is in fact always a Right).

13



So, it would appear the in the lawnmower problem, instead of learning specific sequences
of instructions to mow the lawn, N-gram GP develops stochastic space filling strategies.

5 Conclusions

We have presented N-gram GP, an estimation of distribution algorithm for the evolution
of linear computer programs. The algorithm learns and sample the joint probability of
3-grams of instructions at the same time as it is learning and sampling a program length
distribution.

This work presents some interesting features. Firstly, although several authors have
extended estimation of distribution algorithms to evolve computer programs, virtually all
have done so for the tree representation. Here, for the first time, we explore the application
of EDAs to linear-GP-type representations. The second distinctive feature of this work is
that we explictly represent the program length distribution to be used during the search.
With tree-based representations this is not used, since the primitive set always includes
terminals, which, if drawn with sufficiently high frequency can terminate the construction
of programs. A disadvantage of relying on term selection is that the probability of drawing
terminals is totally under the control of evolution. Thus the user has no control over
the size of the evolved programs, which, if unchecked, can easily become excessive. So,
often hard limits on program depth or length must be artificially enforced, producing
an undesirable bias. Here, by explicitly modelling the size distribution we instead have a
natural way of limiting the search to programs of manageable size, without introducing any
undesired bias. Finally, previous work has tended to use different probability distributions
for different positions (or loci) in a tree, thereby expanding significantly the size of the
parameter space in which the model lives. This is not a problem per se, but one must keep
in mind that the more parameters a model has the more information must be collected
from the search space to properly set those parameters, while still avoiding over-fitting.
In N-gram GP we borrow from the field of natural language processing, using n-grams to
represent regularities in the language necessary to solve a problem. This means that we
use the same distribution for all loci (except the first two, of course) in a program. This
leads to a much smaller model space where models can thus reliably be identified with less
sampling, and a higher degree of regularity in the evolved solutions.2

In our tests with two problem classes, polynomial regression of high degree and lawn-
mower problems with large lawn sizes, the N-gram GP system has been a very effective
solver. Furthermore, its scalability has been significantly better than the simple hill-climber
and linear GP, leading it to routinely solve problems of a difficulty which is way beyond
what can be tackled by the other two algorithms tested.

2Regular solutions to a problem are normally more compact and easier to interpret. However, whether
or not highly regular solutions exist for a particular problem, or are easier to find than irregular ones,
depends on the problem. If there is regularity, N-gram GP can exploit it.
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