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Abstract

The rapid serial visual presentation protocol can be used to show im-
ages sequentially on the same spatial location at high presentation rates.
We used this technique to present aerial images to participants looking for
predefined targets (airplanes) at rates ranging from 5 to 12 Hz. We used
linear support vector machines for the single-trial classification of event-
related potentials from both individual users and pairs of users (in which
case we averaged either their individual classifiers’ analogue outputs be-
fore thresholding or their electroencephalographic signals associated to the
same stimuli) with and without the selection of compatible pairs.

We considered two tasks — the detection of targets and the identifica-
tion of the visual hemifield in which targets appeared. While single users
did well in both tasks, we found that pairs of participants with similar
individual performance provided significant improvements. In particular,
in the target-detection task we obtained median improvements in the area
under the receiver operating characteristic curve (AUC) of up to 8.3%
w.r.t. single-user BCIs, while in the hemifield classification task we ob-
tained AUCs up to 7.7% higher than for single users. Furthermore, we
found that this second system allows not just to say if a target is in on the
left or the right of an image, but to also recover the target’s approximate
horizontal position.
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1 Introduction

Brain-Computer Interfaces (BCIs) convert electroencephalographic (EEG) sig-
nals from the brain into commands that allow users to control devices without
the help of the usual peripheral pathways. Traditionally, BCIs have been de-
veloped with the aim of helping people with limitations in their motor control
or their ability to communicate [1, 2, 3]. However, some forms of BCIs have
recently started focusing on the augmentation of human abilities (e.g., speed) of
able-bodied users, both individually and in groups by means of collaborative or
cooperative BCIs (cBCIs) [4, 5, 6, 7, 8]. The latter work by merging EEG signals
(or the corresponding control commands) from multiple users with the aim of
controlling a single device.

Some of these forms of BCI focus on augmenting visual perception capabilities
to speed up the process of finding pictures of interest in large collections of im-
ages [9, 10, 6, 11]. These systems would find applications, for instance, in counter
intelligence and policing, where large amounts of images need to be viewed and
classified daily by analysts looking for possible threats or, more generally, tar-
gets [10]. Apart from detecting such targets accurately and at high speeds, it
stands to reason that current triage systems would benefit from techniques, such
as the one we will present in this paper, that could establish the position of
targets within the images.

It has been shown that the combination of the Rapid Serial Visual Presen-
tation (RSVP) protocol (which sequentially displays images in the same spatial
location at high presentation rates, e.g., 10 Hz [12]) with BCIs can effectively
reduce triage time without a detriment in target detection accuracy [7, 13, 11].
Even at such a rapid pace of presentation, observers can detect target configura-
tions and these elicit Event-Related Potentials (ERPs) in the brain. In particular,
if targets are reasonably rare, a P300 ERP (a large positive wave typically peak-
ing 300–600 ms after stimulus onset) is likely to be produced in response to them
as conditions are effectively those of the “oddball” paradigm (i.e., in a situation
where a low proportion of stimuli of interest are placed within a sequence of un-
interesting or distractor stimuli) [14, 15]. Together, the selective differences in
the potentials produced by target and non-target stimuli are sufficient to build
BCIs that are capable of identifying images containing targets [9] with a reason-
able accuracy — particularly when multiple observers are pooled together with
collaborative forms of BCI [6, 5].

The P300 is one of the most widely used ERPs for controlling BCIs (both
in traditional and the newer paradigms mentioned above), together with event-
related synchronization and desynchronization [16] and Steady-State Visual
Evoked Potentials (SSVEP) [2, 17], but it is just one the many components
that have been identified in EEG signals. Another ERP that can be exploited in
BCIs [18] and of particular interest for this work is the N2pc (a small negative
asymmetric component preceding the P300) which, in the literature, has predom-

3



inantly been related to processes associated with selective attention [19, 20, 21].
The N2pc ERP is elicited when participants are given a search template or object
to look for and the search display shows at least one distractor (i.e., non-target)
item apart from the target.

The usual approach to increase the signal-to-noise ratio in BCIs, which are
highly contaminated by noise and artifacts, is to average signals from different
trials to isolate the ERP of interest [22]. For example, in their N2pc-driven
BCI, Awni et al performed averages across 3 repetitions of the stimuli (trials).
They reported large variations in classification accuracy across participants when
discriminating between left and right targets (different-colored numbers in a cir-
cle) [18].

However, it is not always possible to average across multiple trials (e.g., a
person cannot make the same decision several times), or it might not be practical
(e.g., when designing BCIs for healthy users, where speed is a key factor). In this
type of situations, aggregating signals from a number of users has proven to be
useful, thus creating a “multi-brain” or cBCI (e.g., [4, 23]).

The field of collaborative BCIs is relatively new, and the issue of what is the
best way to form groups has not been considered yet. The general opinion based
on studies about group decision making is that bigger groups lead to better or
more accurate decisions [24]. However, Kao and Couzin [25] showed that in many
contexts where this “crowd wisdom” effect is not present, small groups can max-
imize decision accuracy, depending on correlations between the behavior of the
members. In visual perception experiments, Bahrami et al found that observers
performed better in pairs, provided that they had similar visual sensitivities and
were able to communicate freely [26].

With respect to collaborative BCIs, it has been shown that groups are able
to accelerate responses w.r.t. non-BCI decisions (e.g., key presses), and bigger
groups lead to higher accuracies [4, 23, 27, 8]. However, when compared to non-
BCI users, non-BCI decisions might prove to be more accurate than those reached
by means of cBCIs [23, 28].

As we mentioned above, BCIs have been used for the automatic detection of
targets in images by means of the EEG with reasonably good results [10, 29].
In [5], we reported on preliminary work on the collaborative classification of
aerial images by means of the RSVP paradigm at different presentation rates
(5–15 Hz) and varying the number of targets that participants were asked to look
for. By pairing observers (in all possible ways from a pool of five), we were able
to speed up the process of revising the images and obtained noteworthy higher
accuracies than with single observers. This work was extended in [6], where we
tested 10 participants and used them to form groups of 2 and 3 observers. We
found statistically significant differences between groups and single-user BCIs.
However, no form of selection was applied when forming groups.

Several forms of combining evidence from multiple individuals have been con-
sidered [30, 31]. Whether one form or another performs best may depend on
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the field of application. In [5, 6], we found that the best way of integrating in-
formation from multiple participants for our P300-based cBCI is to average the
outputs of individual support-vector machines (SVMs), each specialised to clas-
sify the data of one participant. Tests with directly averaging the ERPs from
each participant suggested that this is a suboptimal strategy. However, we did
not test this strategy in a left vs right classification (the N2pc has a relatively
low latency jitter, so averaging this ERP across participants might work better
than for the P300).

The work presented in this report uses the stimulation protocol proposed
in [5, 6]. Also, a subset of the participants used for this study were originally
tested in such prior work. However, as we indicated above, in this paper we have
applied the concept of collaborative BCIs (in its two possible embodiments) to
the localisation of targets within images. In addition, we will explore the effects
of selecting the participants which form the groups in collaborative BCIs, both
for left vs right classification and target vs non-target classification. Selection
will be done on the basis of performance similarity.

2 Methods

2.1 Participants and setup

Due to the nature of RSVP, participants were screened for any personal or family
history of epilepsy. We gathered data from 9 volunteers with normal or corrected-
to-normal vision (age 24.7±3.9, three females). They all read, understood and
signed an informed consent form approved by the Ethics Committee of the Uni-
versity of Essex.

Participants were comfortably seated at approximately 80 cm from an LCD
screen where the stimuli were presented. EEG data were acquired with a BioSemi
ActiveTwo system with 64 electrodes mounted in a standard electrode cap fol-
lowing the international 10-20 system plus one electrode on each earlobe (all
impedances <20 kΩ). The EEG was referenced to the mean of the electrodes
placed on the earlobes. The initial sampling rate was 2048 Hz. Signals were
band-pass filtered with cutoff frequencies of 0.15 and 25 Hz before downsam-
pling to 64 Hz. A form of correction for eye-blinks and other ocular movements
was performed by applying the standard subtraction algorithm based on corre-
lations [32] to the average of the differences between channels Fp1 and F1 and
channels Fp2 and F2.

2.2 Experimental design

The images for our experiments consisted of 2,400 aerial pictures of London.
Images were converted to grayscale and their histograms were equalised. Pic-
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ture size was 640×640 pixels. Pictures were shown to participants in sequences
(or bursts) of 100 images with no gaps between two consecutive stimuli (Inter-
Stimulus Interval, ISI=0 ms). Within a burst, 10 images were “target” images,
and they differed from the non-targets in that a randomly rotated and positioned
plane had been (photo realistically) superimposed as exemplified in figure 1(left).
Non-target pictures did not contain planes, as illustrated in figure 1(right).

Approximately 60% (144 out of 240) of our target images contained a lateral
target (i.e., a target that appeared on the left or right side of the picture). More
specifically, we had 59 Left Visual Field (LVF) target pictures and 85 Right
Visual Field (RVF) target pictures. The epochs associated with these images
were analysed with particular attention, as lateral-target images were expected
to generate N2pc components as well as P300s. We hope that the former would
allow the system to localise the plane within target-containing pictures. Targets
that did not appear on either side of an image were considered central targets.

We tested RSVP protocols with 4 different “levels of difficulty” which differed
in the presentation rate. Each level consisted of 24 bursts which were presented
in order of increasing presentation rate at 5, 6, 10 and 12 Hz. Hence, bursts
of 100 images lasted between 20 seconds (for the slowest presentation rate) and
8.33 seconds (for the fastest).

Participants were instructed to try to minimise eye blinks and general move-
ments during a burst in order to obtain EEG signals with as few artifacts as
possible. They were assigned the task of mentally counting the planes they saw
within each burst and were instructed to report the total at the end of a burst
(to encourage them to stay focused on the task). Participants could rest after
bursts and were free to decide when to start the next sequence. Bursts started
upon the participant clicking on a mouse button. Experiments lasted no more
than 90 minutes.

2.3 Feature selection and classification

We mainly focused on two types of ERPs: the N2pc and the P300. Of course,
we expected both to be rarer (or have a reduced amplitude) in response to non-
targets than in the case of targets. Also, we did not expect them to be always
present together even for targets.

The experimental protocol we used for the two classification tasks (left vs
right and target vs non-target) was the same (see section 2.2). However, given
the differences in the known characteristics of P300s and N2pcs, we used different
feature-sets in order to best detect and exploit each ERP. These will be described
in the following two sub-sections.

Collaborative classification with and without group-member selection will
then be discussed in sections 2.3.3 and 2.3.4.
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Figure 1: Examples of target (left) and non-target (right) images used in our
experiments. The target plane in the image on the left has been highlighted for
presentation purposes.

2.3.1 Electrodes for left vs right classification

Following the onset of each lateral-target picture on the screen, we extracted
200 ms epochs of EEG signal from approximately 200 ms to 400 ms after stim-
ulus onset (the temporal window where the N2pc most often occurs according
to the literature). Including samples at the epoch’s limits (200 and 400 ms, re-
spectively), this resulted in 14 samples per channel at the 64 Hz sampling rate
used. The data were referenced to the mean value of the 200 ms interval before
stimulus onset.

Following previous literature on the N2pc component (e.g., [21]) and due
to the small size of the set of lateral-target images (with the associated poten-
tial overfitting risks), we decided to use only four differences between pairs of
electrodes (PO7−PO8, P7−P8, PO3−PO4 and O1−O2) for left vs right dis-
crimination. Concatenating these electrode differences yields the feature-vector
representation of each epoch used for classification. This includes only 14×4 = 56
elements.

We divided the epochs in our set of 144 LVF and RVF pictures into two:
65% of the epochs (corresponding to 55 RVF and 38 LVF images) were used as
a training set — which itself was used for 10-fold cross-validation to find the
optimal C value when training the SVMs — and the remaining 35% were used
as an independent test set.
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2.3.2 Electrodes for target vs non-target classification

For the classification of target and non-target images we extracted 300 ms epochs
of EEG signals (from 300 ms to 600 ms after stimulus onset), resulting in 20
samples per channel at the 64 Hz sampling rate used.

We used only centro-posterior-occipital electrode sites, as these are typically
where P300s are most prominent. Based on our previous studies, we used 28
electrodes (Oz, POz, Pz, CPz, CP1–6, TP7–8, P1–10, P7–8, PO3–4, O1–2), so,
for the purpose of classification, epochs were represented with 560 features. As
before, epochs were referenced to the average voltage in the 200 ms interval before
stimulus onset.

For each participant, we used the training set (including 1,200 trials) to find
the optimal C parameter for a linear SVM classifier. This was done via 10-fold
cross-validation. Each classifier was trained to distinguish between the target and
non-target conditions. Once the optimal SVM had been found, this was tested
on the epochs from the independent test set.

2.3.3 Collaborative classification

We used two methods to merge signals from multiple participants in our cBCIs.
First, we averaged the feature vectors across pairs of participants and trained a
new SVM classifier for each group (Single Classifier cBCI, SC-cBCI). Since we
had already tried this method in previous work and found it to be sub-optimal for
P300-based classification [6], we used it only for N2pc detection. In our second
method, we averaged the outputs of the individually tailored classifiers from each
member of the group, thus creating a Multiple Classifier cBCI (MC-cBCI). We
report the results for this method for both the P300-based cBCI and the N2pc-
based cBCI.

In order to assess the performance and behaviour of the classifiers, we recorded
the analogue output scores of the SVMs, with which we then computed the
Receiver Operating Characteristic (ROC) curve for each participant. Finally, we
condensed the information contained in each ROC curve into a single performance
figure: the Area Under the Curve (AUC) [33, 34].

2.3.4 Group-member selection

In relation to the selection of group members, we used a method where pairs are
formed according to the similarity in performance of individual participants, using
different levels of similarity. More specifically we allowed pairs of participants to
work as a group if the absolute difference of their AUC values — a value that we
term dissimilarity index — was below a threshold δ. More formally, participants
i and j formed a pair if

|AUCf
i − AUC

f
k | × 100% ≤ δ,

8



where AUCf
x represents the AUC value for participant x (with x = 1, ..., 9) at a

presentation rate of f Hz (with f = 5, 6, 10, 12). We created groups by setting
the threshold δ at 5, 10, 15 and 20% and considered only the cBCIs from pairs
of subjects for which the dissimilarity index was below the threshold.

Of course, this selection process reduces the number of groups that can be in-
cluded in the analysis (from the 36 possible groups of two participants). However,
given that cBCIs are conceived with the aim of augmenting human capabilities,
it is reasonable to select participants based on their individual performance when
forming groups. For comparison, we have included the results when no group
selection is performed and all pairs are considered (δ = 100%).

3 Results

In this section we will report results quantifying the performance and behaviour
of single-user BCIs (sBCIs) and cBCIs for the single-trial classification of LVF
vs RVF (for images that are already known to contain a target, the location of
which is unknown) and for target detection. In Section 4 we discuss these results.

3.1 Left vs right classification

3.1.1 Performance on lateral targets

In N2pc literature, it is common to refer to the two brain hemispheres as “con-
tralateral” (i.e., the opposite hemisphere to the visual field where the target
appears) or “ipsilateral” (i.e., the same hemisphere to the visual field where the
target appears) with respect to the appearance of a lateral target. In particular,
when plotting grand averages (averages of participant-by-participant averages),
these show the differences between contralateral and ipsilateral ERPs. Figure 2
shows these grand-averaged differences across all lateral-target epochs from the
training set, for different presentation rates, measured at electrode sites PO7 and
PO8. In order to compute it, we obtained the contralateral waveform as the
average of the epochs recorded from channel PO7 (on the posterior-occipital left
region of the scalp) for all RVF targets with the epochs recorded from channel
PO8 (on the posterior-occipital right region of the scalp) for all LVF targets.
Similarly, the ipsilateral epoch consists of the average of the epochs recorded
from channel PO7 for LVF targets with the epochs recorded from channel PO8
for all RVF targets for each participant.

Also following the N2pc conventions, we plotted these using an inverted ordi-
nate axis, so higher means more negative. When the presentation rate is increased
(up to 10 Hz), the latency of the N2pc (as measured by the time when it reaches
its peak) is shortened. We can also see from this figure how peak amplitudes
decrease as presentation rates increase.
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Figure 2: Difference plot of the contralateral minus the ipsilateral grand-averages
at channels PO7 and PO8 across all lateral targets from the training set. Ampli-
tudes are measured in µV.

The first row of table 1 shows the median AUC values obtained for left vs right
classification for single-user BCIs for each level of difficulty. Consistently with the
ERP plots from figure 2, performance decreases at the highest presentation rate.
This figure shows how at 12 Hz the difference between contralateral and ipsilateral
electrode sites is much reduced in both amplitude and duration, making it more
difficult to detected by the BCI. This decrease in amplitude might be caused by
either the uncertainty of the participant at such high presentation rate1 or the
temporal proximity of lateral targets within a burst for high speeds, which might
cause subsequent targets to fall within a possible refactory period for this ERP.

The remaining rows of the table report the median gains in performance over
the better participant of each pair for each stimulation frequency, separately for
our two types of collaborative BCIs — SC-cBCIs and MC-cBCIs — for different
values of the dissimilarity-index threshold δ.

With 9 participants, in principle we can form up to 36 distinct pairs, but

1Indeed, the reported number of planes for 12 Hz was lower than for slower rates, showing
that many targets were missed by participants, and those that do not fall within the foveated
area are more likely to be missed.
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Table 1: Median AUC values for single-user BCIs and median improvement over
the best participant in the group when using collaborative BCIs, as a function of
presentation rate and the dissimilarity-index threshold δ.

Method δ 5 Hz 6 Hz 10 Hz 12 Hz

sBCI N/A 77.6% 76.8% 79.8% 66.5%

SC-cBCI

5% +7.7% +3.8% –1.1% +1.2%
10% +7.6% +0.2% +1.1% +0.2%
15% +5.2% +0.2% +1.0% –0.3%
20% +5.2% –1.6% +1.0% –1.1%

100% +2.2% –4.0% –1.6% –1.6%

MC-cBCI

5% +6.5% +3.2% +4.1% +3%
10% +6.5% +2.2% +3.6% +1.6%
15% +5.6% +1.9% +2.6% +0.3%
20% +5.6% +1.0% +2.6% 0.0%

100% –0.5% –6.8% 0.0% 0.0%

Table 2: Percentages of groups that are accepted by our selection mechanism for
different values of the stimulation frequency and the dissimilarity-index thresh-
old δ.

δ 5 Hz 6 Hz 10 Hz 12 Hz

5% 41.7% 19.4% 30.6% 22.2%
10% 47.2% 41.7% 41.7% 44.4%
15% 66.7% 50.0% 50.0% 63.9%
20% 66.7% 63.9% 50.0% 80.6%

100% 100.0% 100.0% 100.0% 100.0%

when using a pair selection strategy one can only accept fewer pairs. In table 2
we quantify the effects that different values for the threshold δ have on the fraction
of pairs that can be accepted.

3.1.2 Performance on central targets

Since our SVMs can give an analogue output score for each epoch, we fed the
cBCIs with epochs from the non-lateral targets (that the classifiers had not seen
before) in order to check how their behaviour changed when presented with tar-
gets that are closer to the centre of the screen than those used for training.

As an illustration, in figure 3 we plotted the horizontal position of the target
(as indicated by the abscissa of its centroid) for each target picture (lateral and
central targets) against the raw output from the MC-cBCI for a presentation rate
of 5 Hz and a dissimilarity index of 5%. In this plot, using the values from all
the groups included, we obtained a correlation coefficient of -0.44, showing that
the BCI can give an indication of where the target is located.
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Figure 3: Plot of target positions (in pixels, for 640 × 640 px images) vs MC-
cBCI SVM output scores for LVF, RVF and central targets, at 5 Hz, for groups
formed with a dissimilarity index of 5% (correlation coefficient = -.44). The linear
regression line is also shown.

3.2 Target vs non-target classification

The first row of table 3 shows the median AUC values obtained for target vs non-
target classification for single-user BCIs for each level of difficulty. Consistently
with the literature, the performance of this BCI decreases with increasing presen-
tation rates. We also observed that some individuals perform better at 6 Hz than
they do at 5 Hz, a phenomenon that had also been previously reported [29]. The
performance for higher rates is probably related to a mixture of the effect of the
refractory period of the P300 and RSVP-related issues, such as the attentional
blink. As we pointed out above, at high speeds of presentation the reported
number of planes dramatically decreases for all participants, so lower AUCs for
such presentation rates should not be surprising.
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Table 3: Median AUC values for single-user BCIs (top), median AUC value for
MC-cBCIs (middle) and median improvement over the better participant in the
group when using collaborative BCIs (bottom), as a function of presentation rate
and the dissimilarity-index threshold δ.

Method δ 5 Hz 6 Hz 10 Hz 12 Hz

sBCI N/A 87.2% 86.5% 74.6% 61.6%

MC-cBCI

5% 94.6% 92.8% 82.9% 65.1%
10% 93.8% 92.6% 81.8% 65.7%
15% 93.6% 92.1% 80.6% 67.3%
20% 93.0% 91.1% 78.2% 69.0%

100% 92.7% 90.9% 79.3% 69.0%

Improvement over better performer

5% +3.1% +3.4% +3.9% +3.5%
10% +2.7% +3.1% +3.3% +1.1%
15% +2.0% +2.2% +0.9% +0.7%
20% +1.7% +1.9% 0.0% 0.0%

100% +1.2% +1.5% 0.0% 0.0%

Table 4: Percentages of groups that are accepted by our selection mechanism for
different values of the stimulation frequency and the dissimilarity-index thresh-
old δ.

δ 5 Hz 6 Hz 10 Hz 12 Hz

5% 25.0% 33.3% 38.9% 30.6%
10% 52.8% 58.3% 55.6% 61.1%
15% 69.4% 72.2% 66.7% 77.8%
20% 80.6% 86.1% 86.1% 94.4%

100% 100.0% 100.0% 100.0% 100.0%

The second block of the table reports the actual median AUC values obtained
by pairs for the MC-cBCIs, for different values of the dissimilarity-index threshold
δ and for each stimulation frequency. The third block, instead, reports the median
difference between the performance of an MC-cBCI and the performance of the
better participant of the corresponding pair. Note that we report these values to
illustrate the benefits of a pair over the better participant in it, and that they
are not the differences between the AUCs of an MC-cBCI and a corresponding
sBCI.

Finally, Table 4 quantifies the effects that different values for the threshold δ
have on the fraction of pairs that can be accepted (out of the possible 36).
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4 Discussion

4.1 Left vs right classification

4.1.1 Single-user BCI

As we have seen in figure 2, in the left vs right classification task, the N2pc
ERP changes when varying the presentation rate of our RSVP paradigm (whilst
keeping the ISI = 0).

In particular, we observed a reduction in the duration of this ERP and a
decrease in its latency at the two highest presentation rates. For a presentation
frequency of 10 Hz, the shape and timing of the N2pc was consistent with those
reported in the literature. However, the N2pc amplitude dropped significantly
at 12 Hz. This decrease in amplitude might be caused by either the uncertainty
of the participant at such high presentation rate (as we mentioned above, the
reported number of planes was much lower than for slower rates, showing that
many targets were missed by participants) or the close temporal proximity of
lateral targets within a burst, which might cause some of them falling within a
possible refractory period for this ERP.

The amplitude of the N2pc has been linked to subject engagement, and, so, we
expected it to vary as a function of the presentation rate. The higher amplitude
observed for 6 Hz over that at 5 Hz might be linked to participants being more
attentive for this second level of difficulty, as the task’s demands increased.

Let us now turn our attention to the left vs right classification results in the
top row of table 1. These indicate that the N2pc can reliably be detected by an
sBCI in the single-trial conditions of our experiments for presentation rates of up
to 10 Hz (the median AUC value is almost 80%). In fact, performance seems to
increase in the interval 5–10 Hz to then start decreasing for higher speeds. Still,
even for the rates as high as 12 Hz, most participants are well above chance levels
with the top quartile of our participants showing AUCs ≥72.2%.

4.1.2 Collaborative BCI

In this paper, we also showed that collaborative BCIs can outperform “tradi-
tional” single-user BCIs when only similar performers are allowed to form pairs.
Since our BCI systems are designed for able-bodied users, as opposed to tradi-
tional BCIs, participants could conceivably be selected based on performance and
neural responses so as to best match the requirements of our BCIs. Thus, while
performance variance across participants is a traditional worry for BCI, it is less
so for our systems, both in the individual and in the collaborative forms. In any
case, as illustrated in table2, our selection method is not unreasonably stringent,
typically accepting 40+% pairs.

Consistently with our findings in [6], by increasing the required performance
similarity when pairing participants, we were able to increase further the perfor-
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mance of groups both w.r.t. that of the better participant individually and w.r.t.
sBCIs.

This is reflected by the results in table 1, where lower values of the dissimilarity
index obtain higher improvements over the better of the two members than higher
values. Also, when δ = 100% we see that cBCIs are almost always either worse
or on par with corresponding sBCIs.

This seems reasonable, considering that when a participant with a high AUC
is paired with a low scorer, the extra information of the latter w.r.t. the former
is not enough to translate into an improvement in the performance of the better
one.

If we now compare the absolute improvements across our two types of cBCIs
(also reported in table1), we can see that at the two lowest presentation rates
the reported improvements are similar for SC-cBCI and MC-cBCI. However, for
presentation rates of 10 Hz or more, MC-cBCIs perform better than corresponding
SC-cBCIs.

Finally, the correlation between horizontal position of targets and classifiers’
outputs (see figure 3) revealed that the N2pc can not only be used to distinguish
between LVF and RVF targets, but it can also tell to what degree a target is
lateral. Moreover, separate groups can be better at locating targets than the
overall performance shown on figure 3. Even though we have not studied this
in depth here, some groups showed correlation coefficients greater (in absolute
value) than 0.5.

4.2 Target vs non-target classification

4.2.1 Single-user BCI

Classification results for the single-trial sBCI for target detection indicate that the
P300 can reliably be detected in the conditions of our experiments for presentation
rates of 5 and 6 Hz. However, beyond this, performance rapidly degrades. At
10 Hz, the AUC is more than 10% lower than for 5–6 Hz, and at 12 Hz, it is
25% lower. Interestingly, and somehow surprisingly given the smaller amplitude
of the N2pc w.r.t. the P300, this did not happen in the left vs right classification
discussed in the previous sections, where AUCs for 5, 6 and 10 Hz are almost
indistinguishable, and they only drop by approximately 10% at 12 Hz.

We should note that here we obtained lower median AUCs than those reported
by others for sBCIs (e.g., [11]). However, in our framework the number of targets
within a burst is much higher than those used by others, and at high presentation
rates, the temporal separation between two targets is likely to fall well within the
time frame of the attentional blink and/or the refractory period of the P300, thus
causing a drop in performance.

We feel that this is a reasonably price to pay for a more realistic environment
in which the rate of targets vs non-targets is compatible not only with intelligence
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analysis but also with other screening frameworks, e.g., for medical applications.
Also, as discussed below, performance can improve very substantially by using
cBCIs.

4.2.2 Collaborative BCI

In this paper, we expanded on previous work [6] by including a method for par-
ticipant selection when forming groups of two for a cBCI.

Consistent with our previously reported results, we have shown that by pairing
users into an MC-cBCI, but without performing any selection, we can improve
the median AUC by about 5% with respect to single-user BCIs when all pairs
are considered.

However, by creating pairs using participants with similar AUC scores, we
were able to reach AUC scores well above 90% and improve the BCI performance
by up to 8% (for a presentation rate of 10 Hz and with a dissimilarity-index
threshold δ=5%).

It should be noted that by pairing subjects according to the dissimilarity
index, we are not excluding the worst performers (i.e. the higher median AUCs
are not due to the fact that we are excluding observers with low AUCs). Rather,
we are making sure that groups are formed by performance-matched members,
where the closer their performance (the lower the threshold δ), the better the
cBCI AUCs.

5 Conclusions

In this paper, we used an RSVP protocol to present aerial images of an urban
environment to participants looking for predefined targets (airplanes) at rates
ranging from 5 to 12 Hz. We considered two tasks (detecting targets and ap-
proximately establishing their horizontal position within the pictures, a task that
we have proposed here for the first time), two BCI approaches (single-user and
collaborative BCIs), two forms of collaborative BCI (using a single classifier to
process the averages of the raw signals from users and thresholding the average of
multiple single-user classifiers), and two forms of membership selection for groups
(all-pairs allowed and performance-matched pairs).

Our results conclusively indicate that cBCIs, particularly when pairs are
formed by individuals with similar performance, offer a 5 to 10% performance
improvement (as evaluated by the AUC scores) over the corresponding single-
user BCIs. Furthermore, we found that there is a significant correlation between
the features of the N2pc (as represented by the SVM’s output score) and the
horizontal position of targets within images, which suggests a whole spectrum of
possible BCI applications for this ERP in the future.
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Future research should explore ways of combining our P300 and N2pc classi-
fiers, which is an obvious next step once it has been shown that it is possible to
detect both ERPs independently. With the lessons learnt from this work, we can
now envision a cascade of the two classifiers: the first one would decide whether
a given image contains or not a target (P300 detection); the second (left vs right
classifier) would help limit the area of search within a given image when a target
has been detected in the first step. Thus, it would be possible to improve current
visual search RSVP systems by roughly locating targets after detection, which
would in turn reduce the workload of an external observer that had to manually
check the images classified by the system as targets.

Moreover, in future research we will need to extend the work to different
targets and types of images, to see to what extent it is possible to build BCIs
that can be used for target detection and localisation across a range of target
types. We would also like to study the appearance and form of the P300 and
N2pc components during videos, e.g., for video surveillance.
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