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Abstract

Background

Microarray technology, as well as other functional genomics experiments, allow simultaneous mea-
surements of thousands of genes within each sample. Both the prediction accuracy and interpretability
of a classifier could be enhanced by performing the classification based only on selected discriminative
genes. We propose a statistical method for selecting genes based on overlapping analysis of expres-
sion data across classes. This method results in a novel measure, called proportional overlapping score
(POS), of a feature’s relevance to a classification task.

Results

We apply POS, along-with four widely used gene selection methods, to several benchmark gene ex-
pression datasets. The experimental results of classification error ratescomputed using the Random



Forest,k Nearest Neighbor and Support Vector Machine classifiers show that POS achieves a better
performance.

Conclusions

A novel gene selection method, POS, is proposed. POS analyzes the expressions overlap across
classes taking into account the proportions of overlapping samples. It robustly defines a mask for
each gene that allows it to minimize the effect of expression outliers. The constructed masks along-
with a novel gene score are exploited to produce the selected subset of genes.

Keywords
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Background

Microarray technology, as well as other high-throughput functional genomics experiments, have become
a fundamental tool for gene expression analysis in recent years. Fora particular classification task, mi-
croarray data are inherently noisy since most genes are irrelevant anduninformative to the given classes
(phenotypes). A main aim of gene expression analysis is to identify genes that are expressed differen-
tially between various classes. The problem of identification of these discriminative genes for their use
in classification has been investigated in many studies [1-9]. Assessment ofmaximally selected genes
or prognostic factors - equivalently selected by the minimum p-value approach - have been discussed
in [10,11] using data from clinical cancer research and gene expression. The solution is to use an appro-
priate multiple testing framework, but obtaining study or experiment optimised cut-points for selected
genes make comparison with other studies and results difficult.

A major challenge is the problem of dimensionality; tens of thousands of genes’ expressions are ob-
served in a small number, tens to few hundreds, of samples. Given an inputof gene expression data
along-with samples’ target classes, the problem of gene selection is to find among the entire dimensional
space a subspace of genes that best characterizes the response target variable. Since the total number of

subspaces with dimension not higher thanr is
r
∑

i=1

(

P
i

)

, whereP is the total number of genes, it is hard to

search the subspaces exhaustively [8]. Alternatively, various search schemes have been proposed e.g.,
best individual genes [9], Max-Relevance and Min-Redundancy based approaches [8], Iteratively Sure
Independent Screening [12] and MaskedPainter approach [7]. Identification of discriminative genes can
be based on different criteria including: p-values of statistical tests e.g. t-test or Wilcoxon rank sum
test [10,11]; ranking genes using statistical impurity measures e.g. information gain, gini index and max
minority [9]; analysis of overlapping expressions across different classes [6,7].

A way to improve prediction accuracy, as well as interpretation of the biological relationship between
genes and the considered clinical outcomes, is to use a supervised classification based on expressions of
discriminative genes identified by an effective gene selection technique. This procedure of pre-selection
of informative genes also helps in avoiding overfitting and building a faster model by providing only the
features that contribute most to the considered classification task. However, a search for the subset of
informative genes presents an additional layer of complexity in the learning process. In depth reviews
of feature selection methods in the microarray domain can be found in [13].



One of the differences among various feature selection procedures is the way they perform the search
in the feature space. Three categories of feature selection methods can be distinguished: wrapper,
embedded and filter methods.

Wrapper methodsevaluate gene subsets using a predictive model which is run on the datasetpartitioned
into training and testing sets. Each gene subset is used with training dataset totrain the model, which is
then tested on the test set. Calculating a model prediction error from the test set gives a score for that
gene subset. The gene subset with the highest evaluation is selected as thefinal set on which to run this
particular model. The wrapper methods are computationally expensive sincethey need a new model to
be fitted for each gene subset. Genetic algorithm based feature selection techniques are representative
examples for wrapper methods [13].

Embedded methodsperform feature selection search as part of the model construction process. They are
less computationally expensive than the wrapper methods. An example of this category is a classification
tree based classifier [14].

Filter methodsassess genes by calculating a relevant score for each gene. The low-relevant genes are
then removed. The selected genes may then be used to serve classification via many types of classi-
fiers. Gene selection filter-based methods can scale easily to high-dimensional datasets since they are
computationally simple and fast compared with the other approaches. Variousexamples for filter-based
approaches have been proposed in earlier papers [2,3,15-17]. Filtering methods can introduce a mea-
sure for assessing importance of genes [2,15,18,19], present thresholds by which informative genes
are selected [3] or fit a statistical model to expression data in order to identify the discriminative fea-
tures [16,17]. A measure named ‘relative importance’, proposed by Draminski et al. [2], is used to
assess genes and to identify informative ones based on their contribution inthe process of classifying
samples when large number of classification trees have been constructed.The contribution of a par-
ticular gene to the relative importance measure is defined by a weighted scale of the overall number
of splits made on that gene in all constructed trees. The authors of [2] usedecision tree classifiers for
measuring the genes’ relative importance, not for the aim of fitting classification rules. Ultsch et al. [15]
propose an algorithm, called ‘PUL’, in which the differentially expressed genes are identified based on
a measure for retrieval information named PUL-score. Ding et al. [18] propose a framework, named
‘minimal redundancy maximal relevance (mRMR)’ based on a series of intuitive measures of relevance,
to the response target, and redundancy, between genes being selected. De Jay et al. [19] developed an
R package, named ‘mRMRe’, by which an ensemble version of mRMR has been implemented. The
authors of [19] use two different strategies to select multiple features sets, rather than a single set, in
order to mitigate the potential effect of the low sample-to-dimensionality ratio on thestability of the
results. Marczyk et al. [3] propose an adaptive filter method based on the decomposition of the proba-
bility density function of gene expression means or variances into a mixture ofGaussian components.
They determine thresholds to filter genes via tuning the proportion between thepools sizes of removed
and retained genes. Lu et al. [16] propose another criterion to identify the informative genes in which
principle component analysis has been used to explore the sources of variation in the expression data
and to filter out genes corresponding to components with less variation. Tallon et al. [17] use factor
analysis models rather than principle component analysis to identify informative genes. A comparison
between some algorithms for identifying informative genes in microarray data can be found in [15,20].

Analyzing the overlap between gene expression measures for different classes can be another important
criterion for identifying discriminative genes which are relevant to the considered classification task.
This strategy utilities the information given by sample classes as well as expression data for detection of
the differentially expressed genes between target classes. A classifiercan then use these selected genes
to enhance its classification performance and prediction accuracy. A procedure specifically designed
to select genes based on their overlapping degree across different classes was recently proposed [6].



This procedure, named Painter’s feature selection method, proposes a simplified version of a measure
calculating an overlapping score for each gene. For binary class situations, this score estimates the
overlapping degree between both classes taking into account only one factor i.e., length of the interval
of overlapping expressions. It has been defined to provide higher scores for longer overlapping intervals.
Genes are then ranked in ascending order according to their scores. This simplified measure has been
extended by Apiletti et al. [7] using another factor, i.e. the number of overlapped samples, in the analysis.
The authors of [7] characterize each gene by means of agene maskthat represents the capability of a
gene to unambiguously assign training samples to their correct classes. Characterization of genes using
training sample masks with their overlapping scores allow the detection of the minimumset of genes
that provides the best classification coverage on training samples. A finalgene set is then provided
by combining the minimum gene subset with the top ranked genes according to theoverlapping score.
Since gene masks, proposed by [7], are defined based on the range of the training expression intervals,
a caveat of this technique is that the construction of gene masks could be affected by outliers.

Biomedical researchers may be interested in identifying small sets of genes that could be used as genetic
markers for diagnostic purposes in clinical researches. This typically involves obtaining the smallest
possible subset of genes that can still provide a good predictive performance, whilst removing redundant
ones [21]. We propose a procedure serving this goal, by which the minimumset of genes is selected to
yield the best classification accuracy on a training set avoiding the effectsof outliers.

In this article, we propose a new gene selection method, called POS, that canbe described as follows:

1. POS utilizes the interquartile range approach to robustly detect the minimum subset of genes
that maximizes the correct assignment of training samples to their corresponding classes i.e., the
minimum subset that can yield the best classification accuracy on a training set avoiding the effects
of outliers.

2. A new filter-based technique which ranks genes according to their predictive power in terms of the
overlapping degree between classes is proposed. In this context, POS presents a novel generalized
version, calledPOS score, of the overlapping score (OS) measure, proposed in [7].

3. POS provides genes categorization into the target class labels based ontheir relative dominant
classes i.e., POS assigns each gene to the class label that has the highest proportion of correctly
assigned samples relative to class sizes.

In a benchmarking experiment, the classification error rates of the RandomForest (RF) [22],k Near-
est Neighbor (kNN) [23], and Support Vector Machine (SVM) [24] classifiers demonstrate that our
approach achieves a better performance than several other widely used gene selection methods.

The paper is organized as follows. Section ‘Methods’ explains the proposed method. The results of our
approach are compared with some other feature selection techniques in section ‘Results and discussion’.
Section ‘Conclusion’ concludes the paper and suggests future directions.

Methods

POS approach for binary class problems

Microarray data are usually presented in the form of a gene expressionmatrix, X = [xij ], such that
X ∈ <P×N andxij is the observed expression value of genei for tissue samplej wherei = 1, . . . , P
and j = 1, . . . , N . Each sample is also characterized by a target class label,yj , representing the



phenotype of the tissue sample being studied. LetY ∈ <N be the vector of class labels such that its
jth element,yj , has a single valuec which is either1 or 2.

Analyzing the overlap between expression intervals of a gene for different classes can provide a classifier
with an important aspect of a gene’s characteristic. The idea is that a certain genei can assign samples
(patients) to classc because their genei expression interval in that class is not overlapping with genei
intervals of the other class. In other words, genei has the ability to correctly classify samples for which
their genei expressions fall within the expression interval of a single class. For instance, Figure 1a
presents expression values of genei1 with 36 samples belonging to two different classes. It is clear that
genei1 is relevant for discriminating samples between the target classes, becausetheir values are falling
in non-overlapping ranges. Figure 1b, on the other hand, shows expression values for another genei2,
which looks less useful for distinguishing between these target classes,because their expression values
have a highly overlapping range.

Figure 1 An example for two different genes with different overlapping pattern. Expression values
of two different genes (i1, i2) each of which with 36 samples belonging to 2 classes, 18 samples for
each class:(a) expression values of genei1, (b) expression values of genei2.

POS initially exploits the interquartile range approach to robustly define gene masks that report the dis-
criminative power of genes with a training set of samples avoiding outlier effects. Then, two measures
are assigned for each gene: proportional overlapping score(POS) and relative dominant class(RDC).
Analogously to [7] these two novel measures are exploited in the ranking phase to produce the final
set of ranked genes.POS is a gene relevance score that estimates the overlapping degree between the
expression intervals of both given classes taking into account three factors: (1) length of overlapping
region; (2) number of overlapped samples; (3) the proportion of classes’ contribution to the overlapped
samples. The latter factor is the incentive for the name we gave to our procedure, Proportional Over-
lapping Scores (POS). The relative dominant class (RDC) of a gene is the class that has the highest
proportion, relative to class sizes, of correctly assigned samples.

Definition of core intervals

For a certain genei, by considering the expression valuesxij with a class labelcj for each samplej, we
can define two expression intervals, one for each class, for that gene. Thecth class interval for genei
can be defined in the form:

Ii,c = [ai,c, bi,c] , i = 1, . . . , P, c = 1, 2, (1)

such that:
ai,c = Q

(i,c)
1 − 1.5 IQR(i,c), bi,c = Q

(i,c)
3 + 1.5 IQR(i,c), (2)

whereQ(i,c)
1 , Q(i,c)

3 andIQR(i,c) denote the first, third empirical quartiles, and the interquartile range
of genei expression values for classc respectively. Figure 2 shows the potential effect of expression
outliers on extending the underlying intervals, if the range of training expressions are considered. Based
on the defined core intervals, we present the following definitions:

Non-outlier samples set , Li, for genei is defined as the set of samples whose expression values fall
inside their own target classes core interval. This set can be expressedas:

Li =
{

j : xij ∈ Ii,cj , j = 1, · · · , N
}

, (3)

wherecj is the correct class label for samplej.



Total core interval , Ii, for genei is given by the region between the global minimum and global max-
imum boundaries of core intervals for both classes. It is defined as:

Ii = [ai, bi] , (4)

such that:ai = min {ai,1, ai,2}, bi = max {bi,1, bi,2}, whereai,c, bi,c respectively represent the
minimum and maximum boundaries of core interval,Ii,c, of genei with target classc = 1, 2, (see
equations 1 and 2).

The overlap region , I(v)i , for genei is defined as the interval yielded by the intersection between core
expression intervals of both target classes. It can be addressed as:

I
(v)
i = Ii,1 ∩ Ii,2. (5)

Overlapping samples set , Vi, for genei is the set containing the samples whose expression values fall
within the overlap intervalI(v)i , defined in the overlap region definition (see equation 5). The
overlapping sample set can be defined as:

Vi = Li − V
′
i, (6)

whereV′
i represents the non-overlapping samples set which is defined as follows.

Non-overlapping samples set , V′
i, for genei is defined as the set consisting of elements ofLi, de-

fined in equation 3, whose expression values don’t fall within the overlapintervalI(v)i , defined in
equation 5. In this way, we can define this set as:

V
′
i = { j : j ∈ Li ∧ xij ∈ Ii,1 	 Ii,2} . (7)

For convenience,〈I〉 notation is used with intervalI to represent its length while|.| notation is
used with set{.} to represent its size.

Figure 2 Core intervals with gene mask. An example for core expression intervals of a gene with
18 and14 samples belonging to class 1, in red colour, and class 2, in green colour, respectively with its
associated mask elements. Elements of the overlapping samples set and non-overlapping samples set
are highlighted by squares and circles respectively.

Gene masks

For each gene, we define a mask based on its observed expression values and constructed core intervals
presented in subsection ‘Definition of core intervals’. Genei mask reports the samples that genei can
unambiguously assign to their correct target classes, i.e. the non-overlapping samples setV′

i. Thus,
gene masks can represent the capability of genes to classify correctly each sample, i.e. it represents a
gene’s classification power. For a particular genei, elementj of its mask is set to1 if the corresponding
expression valuexij belongs only to core expression intervalIi,cj of the single classcj , i.e. if samplej
is a member of the setV′

i. Otherwise, it is set to zero.

We define the gene masks matrixM = [mij ] in which the mask of genei is presented byMi.(the ith
row ofM ) such that gene mask elementmij is defined as:

mij =

{

1 if j ∈ V
′
i

0 otherwise
,

i = 1, . . . , P
j = 1, . . . , N

. (8)



Figure 2 shows the constructed core expression intervalsIi,1 andIi,2 associated with a particular gene
i along-with its gene mask. The gene mask presented in this figure is sorted corresponding to the
observations ordered by increasing expression values.

The proposedPOS measure and relative dominant class assignments

A novel overlapping score is developed to estimate the overlapping degreebetween different expression
intervals. Figures 3a and 3b represent examples of 2 different genes, i1 andi2, with the same length of

overlap interval,
〈

I
(v)
i1

〉

=
〈

I
(v)
i2

〉

=
〈

I
(v)
i

〉

, length of total core interval,〈Ii1〉 = 〈Ii2〉 = 〈Ii〉, and

total number of overlapped samples,|Vi1 | = |Vi2 | = 12. These figures demonstrate that performing the
ordinary overlapping scores, proposed in earlier papers [6,7], result in the same value for both genes.
But, there is an element which differs in those examples and it may also affectthe overlap degree
between classes. This element is the distribution of overlapping samples by classes. Genei1 has six
overlapped samples from each class, whereas genei2 has ten and two overlapping samples from class
1 and 2 respectively. By taking this status into account, genei2 should be reported to have less overlap
degree compared to genei1. In this article, we develop a new score, called proportional overlapping
score (POS), that estimates the overlapping degree of a gene taking into account this element, i.e.
proportion of each class’s overlapped samples to the total number of overlapping samples.

Figure 3 Illustration for overlapping intervals with different propor tions. Examples for expression
values of 2 genes distinguishing between 2 classes:(a) genei1 has overlapping samples distributed as
1:1, (b) genei2 has its overlapping samples distributed as 5:1 for class1:class2.

POS for a genei is defined as:

POSi = 4

〈

I
(v)
i

〉

〈Ii〉
|Vi|
|Li|

(

2
∏

c=1

θc

)

, (9)

whereθc is the proportion of classc samples among overlapping samples. Hence,θc can be defined as:

θc =
|Vi,c|
|Vi|

, (10)

whereVi,c represent set of overlapping samples belonging to classc (i.e.,Vi,c = { j | j ∈ Vi ∧ cj = c}),
2
∑

c=1
|Vi,c| = |Vi|. According to equation 9, values ofPOS measure are921 .

〈

I
(v)
i

〉

〈Ii〉
and 5

21 .

〈

I
(v)
i

〉

〈Ii〉
for

genesi1 andi2 in Figures 3a and 3b respectively.

Larger overlapping intervals or higher numbers of overlapping samples results in an increasingPOS
value. Furthermore, as proportionsθ1 andθ2 get closer to each other, thePOS value increases. The
most overlapping degree for a particular gene is achieved whenθ1 = θ2 = 0.5 while the other two
factors are fixed. We include the multiplier “4” in equation 9 to scalePOS score to be within the closed
interval[0, 1]. In this way, a lower score denotes gene with higher discriminative power.

Once the gene mask is defined andPOS index is computed, we assign each gene to its relative dominant
class (RDC). RDC for genei is defined as follows:

RDCi = argmax
c







∑

j∈Uc

I (mij = 1)

|Uc|






, (11)



whereUc is the set of classc samples (i.e.,Uc = { j | cj = c}). Note that
∑

c

|Uc| = N , while mij is

thejth mask element of genei (seeequation 8).I (mij = 1) represents an indicator which sets to1 if
mij = 1, otherwise it sets to zero.

In this definition, the samples that belong to the setV
′
i categorized into their target classes are only

considered for each class. These samples are the ones that the gene could unambiguously assign to their
target classes. According to our gene mask definition (seeequation 8) they are the samples with1 bits
in the corresponding gene mask. Afterwards, the proportion of the class’s samples to its total sample
size has been evaluated. The class with the highest proportion is the relative dominant class of the gene.
Ties are randomly distributed on both classes. Genes are assigned to theirRDC in order to associate
each gene with the class it is more able to distinguish. As a result, the number of selected genes could
be balanced per class at our final selection process. The relative evaluation for detecting the dominant
class can avoid the misleading assignment due to unbalanced class sizes distribution effects.

Selecting minimum subset of genes

Selecting a minimum subset of genes is one of the POS method stages in which the information provided
by the constructed gene masks and thePOS scores are analyzed. This subset is designated to be the
minimum one that correctly classify the maximum number of samples in a given training set, avoiding
the effects of expression outliers. Such a procedure allows disposing of redundant information e.g.,
genes with similar expression profiles.

Baralis et al. [25] have proposed a method that is somewhat similar to our procedure for detecting a
minimum subset of genes from microarray data. The main differences are that [25] use the expression
range to define the intervals which are employed for constructing gene masks, and then apply a set-
covering approach to obtain the minimum feature subset. The same technique isperformed by [7] to get
a minimum gene subset using a greedy approach rather than the set-covering.

Let G be a set containing all genes (i.e.,|G| = P ). Also, letM.. (G) be its aggregate mask which is
defined as the logical disjunction(logic OR)between all masks corresponding to genes that belong to
the set. It can be expressed as follows:

M.. (G) = ∨
i∈G

Mi. = M1. ∨ . . . ∨ MP. (12)

Our objective is to search for the minimum subset, denoted byG
∗, for whichM.. (G

∗) equals to the
aggregate mask of the set of genes,M.. (G). In other words, our minimum set of genes should satisfy
the following statement:

argmin
G∗⊆G

(

|G∗|
∣

∣

∣

∣

∣

(

M.. (G
∗) = ∨

i∈G∗

Mi. = M.. (G)

)

)

. (13)

A modified version of the greedy search approach used by [7] is applied. The pseudo code of our
procedure is reported in Algorithm 1. Its inputs are the matrix of gene masks,M ; the aggregate mask
of genes,M.. (G); andPOS scores. It produces the minimum set of genes,G

∗, as output.



Algorithm 1 Greedy Search - Minimum set of genes
Inputs: M , M.. (G) andPOS scores for all genes.
output: G

∗.

1: k = 0 { Initialization}
2: G

∗ = ∅
3: M.. (G

∗) = 0N
4: while M.. (G

∗) 6= M.. (G) do
5: k = k + 1

6: Sk = argmax
i ∈ G

(

N
∑

j=1
I (mij = 1)

)

{ Assign gene set whose masks have the max. bits of1}

7: gk = argmin
i ∈ Sk

(POSi) { Select the candidate with the best score among the assigned set}

8: G
∗ = G

∗ + gk { Update the target set by adding the selected candidate}
9: for all i ∈ G do

10: M
(k+1)
i. = M

(k)
i. ∧ M ′

.. (G
∗) { update gene masks such that the uncovered samples are only considered}

11: end for
12: end while
13: return G

∗

At the initial step (k = 0), we letG∗ = ∅ andM.. (G
∗) = 0N (lines 2,3); whereM.. (G

∗) is the
aggregate mask of the setG

∗, while 0N is a vector of zeros with the lengthN . Then, at each iteration,
k, the following steps are performed:

1. The gene(s) with the highest number of mask bits set to1 is (are) chosen to form the setSk (line 6).
This set could not be empty as long as the loop condition is still satisfied, i.e.M.. (G

∗) 6= M.. (G).
Under this condition, our selected genes don’t cover yet the maximum number of samples that
should be covered by our target gene set. Note that our definition for gene masks allowsM.. (G)
to report in advance which samples should be covered by the minimum subsetof genes. Therefore,
there would be at least one gene mask which has at least one bit set to1 if that condition is to
hold.

2. The gene with the lowestPOS score among genes inSk, if there are more than one, is then
selected (line 7). It is denoted bygk.

3. The setG∗ is updated by adding the selected gene,gk (line 8).

4. All gene masks are also updated by performing the logical conjunction (logic AND) with negated
aggregate mask of setG∗ (line 10). The negated maskM ′

..(G
∗) of the maskM..(G

∗) is the one
obtained by applying logical negation (logical complement) on this mask. Consequently, the bits
of ones corresponding to the classification of still uncovered samples areonly considered. Note
thatM (k)

i. represents updated mask of genei at thekth iteration such thatM (1)
i. is its original gene

mask whose elements are computed according to equation 8.

5. The procedure is successively iterated and ends when all gene masks have no one bits anymore,
i.e. the selected genes cover the maximum number of samples. This situation is accomplished iff
M.. (G

∗) = M.. (G).

Thus, this procedure detects the minimum set of genes required to provide the best classification cover-
age for a given training set. In addition, genes are descendingly ordered by number of1 bits within the
minimum set,G∗.



Final gene selection

ThePOS score alone can rank genes according to their overlapping degree, without taking into account
the class that has more correctly assigned samples by each gene (which can be addressed as the dominant
class of that gene). Consequently, high-ranked genes may all have anability to only correctly classify
samples belonging to the same class. Such a case is more likely to happen in situations with unbalanced
class-size distributions. As a result, a biased selection could result. Assigning the dominant class on
a relative basis, as proposed in subsection ‘The proposedPOS measure and relative dominant class
assignments’, and taking these assignments into account during the gene ranking process allows us to
overcome this problem.

Therefore, the gene ranking process is performed by considering both POS scores andRDC. Within
each relative dominant classc (wherec = 1, 2), all genes that have not been chosen in the minimum
set,G∗, and whoseRDC = c are sorted by an increasing order ofPOS values. Now, we have two
disjoint groups (one for each class) of ranked genes. The topmost gene is selected from each group in a
round-robin fashion to compose the gene ranking list.

The minimum subset of genes, presented in subsection ‘Selecting minimum subset of genes’, is extended
by adding the topν ranked genes in the gene ranking list, whereν is the required number extending the
minimum subset up to the total number of requested genes,r, which is an input of the POS method
set by the user. The resulting final set includes the minimum subset of genes regardless of theirPOS
values, because these genes allow the considered classifier to correctlyclassify the maximum number of
training samples.

The pseudo code of the Proportional Overlapping Scores (POS) methodis reported in Algorithm 2.



Algorithm 2 POS Method For Gene Selection
Inputs: X, Y and number of selected genes (r).
Output: Sequence of the selected genesT.

1: for all i ∈ G do
2: for c = 1 to 2 do
3: CalculateIi,c as defined in equation 1.
4: end for
5: for j = 1 to N do
6: Computemij as defined in equation 8.
7: end for
8: ComputePOSi as defined in equations 9 and 10.
9: AssignRDCi as defined in equation 11.

10: end for
11: LetM ∈ <P×N be the gene mask matrix, whereM = [mij ].
12: ObtainM.. (G) as defined in equation 12. {aggregate mask of genes}
13: Use the Greedy Search approach, presented in algorithm 1, with input set includesM , M.. (G), and

POSi, i = 1, . . . , P , to output the minimum subset of genes,G
∗.

14: G = G−G
∗. {exclude the minimum subset from the set of genes}

15: for c = 1 to 2 do
16: Let Gc = 〈gck : gck ∈ G, RDCgck = c〉 be a sequence of genes such thatPOSgck ≤

POSgc(k+1)
, wheregck denotes gene in thekth rank in sequenceGc. {define the sequence of genes

sorted by an increasing order ofPOS values within theRDC classc}
17: end for

Getting the Final Gene Ranking
18: if r ≤ |G∗| then
19: T is the set whose members are the firstr genes inG∗.
20: else
21: T = G

∗. {initially get the minimum set in our final gene ranking}
22: while

∣

∣T
∣

∣ < r do
23: ExtendT by one gene using round-robin fashion applying on the sequencesG1andG2.
24: end while
25: end if
26: return T

Results and discussion

For evaluating different feature selection methods, one can assess the accuracy of a classifier applied
after the feature selection process. Thus, the classification is based onlyon selected gene expressions.
Such an assessment can verify the efficiency of identification of discriminative genes. Jirapech and
Aitken [26] have analyzed several gene selection methods available in [9]and have shown that the gene
selection method can have a significant impact on a classifier’s accuracy.Such a strategy has been
applied in many studies including [7] and [8].

In this article, our experiment is conducted using eleven gene expressiondatasets in which the POS
method is validated by comparison with five well-known gene selection techniques. The performance
is evaluated by obtaining the classification error rates from three different classifiers: Random Forest
(RF);k Nearest Neighbor (kNN); Support Vector Machine (SVM).



Table 1 summarizes the characteristics of the datasets. The estimated classification error rate is based
on the Random Forest classifier with the full set of features, without pre-selection, using 50 repetitions
of 10-fold cross validation. Eight of the datasets are bi-class, while three, i.e. Srbct, GSE14333 and
GSE27854, are multi-classes. The two classes with topmost number of samplesare only considered
for the Srbct data, while the remaining classes are ignored, since we are interested only in binary clas-
sification analysis. For the GSE14333 data, patients with colorectal cancerof I and II tumor ‘Union
Internationale Contre le Cancer (UICC)’ stages are combined in a single class representing non-invasive
tumors, against patients with stage III, which represents invasive tumors.Whereas for the GSE27854
data, a class composed of colorectal cancer patients with UICC stages I and II is defined against an-
other class involving patients with III and IV stages. All datasets are publiclyavailable, see section
‘Availability of supporting data’.

Table 1 Description of used gene expression datasets

Dataset Genes Samples Class-sizes Est. Error Source

Leukaemia 7129 72 47/25 0.049 [27]

Breast 4948 78 34/44 0.369 [28]

Srbct 2308 54 29/25 0.0008 [29]

Prostate 10509 102 52/50 0.088 [29]

All 12625 128 95/33 0.000 [30]

Lung 12533 181 150/31 0.003 [31]

Carcinoma 7457 36 18/18 0.027 [32]

GSE24514 22215 49 34/15 0.0406 [33]

GSE4045 22215 37 29/8 0.2045 [34]

GSE14333 54675 229 138/91 0.4141 [35]

GSE27854 54675 115 57/58 0.4884 [36]

Fifty repetitions of 10-fold cross validation analysis were performed for each combination of dataset,
feature selection algorithm, and a given number of selected genes, up to 50, with the considered classi-
fiers. Random Forest is implemented using the R package ‘randomForest’ with its default parameters,
i.e. ntree, mtry and nodesize are 500,

√
r and 1 respectively. The R packages ‘class’ and ‘e1071’ are

used to perform thek Nearest Neighbor and Support Vector Machine classifiers respectively. The pa-
rameterk for kNN classifier is chosen to be

√
N rounded to the nearest odd number, whereN is the total

number of observations (tissue samples). For each experimental repetition, the split seed was changed
while the same folds and training datasets were kept for all feature selectionmethods. To avoid bias,
gene selection algorithms have been performed only on the training sets. Foreach fold, the best subset
of genes has been selected according to the Wilcoxon Rank Sum technique(Wil-RS), Minimum Redun-
dancy Maximum Relevance (mRMR) method [8], MaskedPainter (MP) [7], Iteratively Sure Independent
Screening (ISIS) [12], along-with our proposed method. The expressions of the selected genes as well
as the class labels of the training samples have then been used to construct the considered classifiers.
The classification error rate on the test set is separately reported for each classifier and the average error
rate over all the fifty repetitions is then computed. Due to limitations of the R package ‘mRMRe’ [19],
mRMR selections could not be conducted for datasets having more than ‘46340’ features. Therefore,
mRMR method is excluded from the analysis of the ‘GSE14333’ and ‘GSE27854’ datasets.

The compared feature selection methods are used commonly within the microarray data analysis do-
main. Apiletti et al. [7] demonstrate that the MaskedPainter method has outperformed many widely
used gene selection methods available in [9]. The mRMR technique, proposed in [18], is intensively
used in microarray data analysis e.g., [19,37]. The ISIS feature selectionmethod exploits the principle
of correlation ranking with its ‘sure independence screening’ propertyshowed in [38] to select a set of
features based on an iterative process. In our experiment, the ISIS technique has been applied using the
‘SIS’ R package.



For large enough input feature sets, effective classifier algorithms may have more ability to mitigate the
potential effects of noisy and uninformative features by focusing more on the informative ones. For
instance, the Random Forest algorithm employs an embedded feature selection procedure that results
in less reliance on uninformative input features. In other words, selecting a large number of features
may allow a classifier to compensate for potential feature selection shortcomings. For the purpose of
comparing the effectiveness of the considered feature selection techniques in improving the classification
accuracy, the experiment is designed to focus on small sets of selected features, up to 50 genes.

Tables 2 and 3 show the average classification error rates obtained by Wil-RS, mRMR, MP and POS with
RF, kNN and SVM classifiers on Leukaemia and GSE24514 datasets respectively. Each row provides
the average classification error rate at a specific number of selected genes, reported in the first column.
The aggregate average error value and the minimum error rate for each method with each classifier are
provided in the last two rows. Average error rates yielded on the Breastand Srbct datasets using RF,
kNN, and SVM classifiers are shown in Figure 4.



Table 2 Average classification error rates yielded by Random Forest, k Nearest Neighbors and Support Vector Machine classifiers on ‘Leukaemia’
dataset over all the 50 repetitions of 10-fold cross validation

RF kNN SVM
N.genes

Wil-RS mRMR MP POS Wil-RS mRMR MP POS Wil-RS mRMR MP POS

1 0.126 0.211 0.015 0.003 0.141 0.220 0.019 0.005 0.133 0.238 0.022 0.005
2 0.083 0.197 0.017 0.001 0.110 0.195 0.059 0.047 0.099 0.197 0.053 0.026
3 0.068 0.185 0.020 0.003 0.086 0.198 0.070 0.073 0.078 0.198 0.064 0.044
4 0.044 0.180 0.016 0.001 0.082 0.194 0.076 0.069 0.068 0.178 0.070 0.050
5 0.043 0.168 0.015 0.002 0.077 0.191 0.084 0.075 0.060 0.172 0.079 0.060
6 0.037 0.170 0.018 0.005 0.074 0.188 0.087 0.065 0.052 0.171 0.082 0.065
7 0.036 0.161 0.018 0.004 0.077 0.182 0.090 0.065 0.049 0.162 0.086 0.069
8 0.035 0.158 0.020 0.004 0.081 0.186 0.092 0.063 0.047 0.166 0.090 0.074
9 0.032 0.161 0.015 0.003 0.082 0.176 0.090 0.067 0.049 0.162 0.092 0.083
10 0.031 0.157 0.018 0.003 0.078 0.181 0.094 0.067 0.050 0.159 0.092 0.079
20 0.030 0.141 0.028 0.001 0.085 0.162 0.102 0.064 0.062 0.145 0.088 0.068
30 0.030 0.131 0.029 0.001 0.085 0.155 0.108 0.070 0.058 0.139 0.093 0.066
40 0.031 0.118 0.031 0.000 0.084 0.142 0.105 0.078 0.053 0.127 0.094 0.069
50 0.031 0.119 0.029 0.001 0.083 0.135 0.107 0.078 0.049 0.126 0.101 0.062

Avg. 0.041 0.157 0.021 0.002 0.087 0.179 0.085 0.063 0.065 0.167 0.079 0.059
Min. 0.030 0.118 0.015 0.000 0.074 0.135 0.019 0.005 0.047 0.126 0.022 0.005

Boldface numbers indicate the minimum average of classification error rates (the highest accuracy) achieved with the corresponding classifier at each size of
selected gene sets, reported in the first column.



Table 3 Average classification error rates yielded by Random Forest, k Nearest Neighbors and Support Vector Machine classifiers on ‘GSE24514’
dataset over all the 50 repetitions of 10-fold cross validation

RF kNN SVM
N.genes

Wil-RS mRMR MP POS Wil-RS mRMR MP POS Wil-RS mRMR MP POS

1 0.163 0.352 0.182 0.090 0.125 0.304 0.147 0.096 0.116 0.274 0.141 0.085
2 0.108 0.267 0.143 0.082 0.086 0.249 0.117 0.074 0.085 0.250 0.108 0.080
3 0.098 0.219 0.116 0.068 0.077 0.223 0.093 0.068 0.075 0.215 0.087 0.067
4 0.079 0.186 0.121 0.067 0.078 0.186 0.082 0.065 0.068 0.185 0.077 0.063
5 0.074 0.166 0.103 0.059 0.072 0.166 0.070 0.063 0.062 0.166 0.071 0.062
6 0.067 0.147 0.090 0.058 0.066 0.155 0.068 0.059 0.060 0.149 0.064 0.060
7 0.065 0.137 0.074 0.058 0.059 0.142 0.064 0.060 0.059 0.135 0.061 0.061
8 0.064 0.128 0.068 0.052 0.057 0.133 0.060 0.058 0.056 0.126 0.057 0.054
9 0.063 0.115 0.075 0.055 0.052 0.127 0.061 0.057 0.053 0.113 0.052 0.050
10 0.063 0.104 0.066 0.051 0.048 0.116 0.058 0.058 0.050 0.105 0.047 0.048
20 0.058 0.076 0.047 0.037 0.032 0.088 0.048 0.050 0.044 0.078 0.041 0.039
30 0.057 0.067 0.039 0.034 0.035 0.071 0.041 0.043 0.042 0.070 0.038 0.034
40 0.057 0.073 0.040 0.034 0.037 0.063 0.037 0.042 0.041 0.069 0.037 0.037
50 0.055 0.063 0.038 0.032 0.036 0.041 0.036 0.039 0.041 0.059 0.038 0.036

Avg. 0.077 0.150 0.086 0.055 0.061 0.147 0.070 0.059 0.061 0.142 0.066 0.055
Min. 0.055 0.063 0.038 0.032 0.032 0.041 0.036 0.039 0.041 0.059 0.037 0.034

Boldface numbers indicate the minimum average of classification error rates (the highest accuracy) achieved with the corresponding classifier at each size of
selected gene sets, reported in the first column.



Figure 4 Averages of classification error rates for ‘Srbct’ and ‘Breast’ datasets. Average classifi-
cation error rates for ‘Srbct’ and ‘Breast’ data based on 50 repetitions10-fold CV using ISIS, Wil-RS,
mRMR, MP and POS methods.

The proportional overlapping scores (POS) approach yields a good performance with different classifiers
on all datasets. For the Random Forest classifier, in particular on Leukaemia, Breast, GSE24514 and
GSE4045 datasets, the classification average error rates on the test setsare less than all other feature
selection techniques at all selected genes set sizes. On the Srbct, All andLung datasets, the POS method
provides lower error rates than all other methods on most set sizes. While,on the Prostate dataset,
POS shows a comparable performance with the best technique (MP). On theCarcinoma dataset, Wil-RS
technique has outperformed all methods for feature set sizes which are more than20 genes, whereas for
smaller sets, the MP method was the best. More details of the RF classifier’s results can be found in the
Additional file 1.

For thekNN classifier, POS provides a good classification performance. Its classification average error
rates are less than all other compared methods on Leukaemia and Breast datasets for most selected set
sizes, see Table 2 and Figure 4. A similar case has been observed in the Lung dataset, see Additional
file 2: Table S3. On the GSE24514 dataset, Wil-RS technique has outperformed all methods for set
sizes that are more than eight, whereas for smaller sets, the POS was the best. While, on Srbct and
GSE4045 datasets, POS shows a comparable and a worse performance respectively compared with the
best techniques, MP and Wil-RS respectively. More details of thekNN classifier’s results can be found
in the Additional file 2.

For the SVM classifier, POS provides a good classification performance on all used datasets. In particu-
lar on Breast and Lung datasets, the classification average error rateson the test sets are less than all other
feature selection techniques at all selected genes set sizes, see Figure4 in the manuscript and Additional
file 3: Table S3. The performance of POS outperformed all other compared methods on the GSE24514
and Srbct datasets for almost all feature set sizes, see Table 3 and Figure 4. On Leukaemia and GSE4045
datasets, POS is outperformed by other methods for set sizes more than fiveand 20 respectively. More
details of the SVM classifier’s results can be found in the Additional file 3.

The improvement/deterioration in the classification accuracy is analyzed in order to investigate the qual-
ity performance of our proposal against the other techniques when the size of the selected gene set
varies. The log ratio between the misclassification error rates of the candidate set selected by the best
method of the compared techniques and the POS method is separately computed for each classifier on
different set sizes up to 50 genes. At each set size, the best method ofthe compared techniques is identi-
fied and the log ratio between its error rate and corresponding error rateof the POS method is reported.
Figure 5 shows the results with each classifier. Positive values indicate improvements of a classification
performance achieved by the POS method over the second best technique. The panel on right bottom of
Figure 5 shows the averages of log ratios across all considered datasets for each classifier.

Figure 5 Log ratio between the error rates of the best compared method and the POS. Log ra-
tios measure the improvement/deterioration achieved by the proposed method over the best compared
method for three different classifiers; RF,kNN and SVM. The last panel shows the averages of log ratios
across all datasets for each classifier.

The POS approach provides improvements over the best method of the compared techniques for most
datasets with all classifiers, see panels of RF,kNN and SVM in Figure 5. On average across all datasets,
POS achieves an improvement over the best compared techniques at all set sizes for RF classifier by
between 0.055 and 0.720, measured by the log ratio of the error rates. Thehighest improvement in
RF classification performance measured by log ratio, 0.720, is obtained at gene sets of size 20. For



smaller sizes, the performance ratio decreases, but the POS approach still provides the best accuracy,
see Figure 5. ForkNN and SVM classifiers, the averages of improvements across Leukaemia,Breast,
Srbct, Lung, GSE24514, GSE4045, GSE14333 and GSE27854 have been depicted at different set sizes
up to 50 genes. The proposed approach achieves improvements forkNN classifier at set sizes not more
than 20 features. The highest improvement measured by log ratio, 0.150, isobtained at the selected sets
composed of a single gene. For SVM classifier, improvements over the bestmethod of the compared
techniques are achieved by the POS method at most set sizes. The highestimprovement measured by
the log ratio of the error rates, 0.213, is observed at gene sets of size seven, see the right bottom panel
of Figure 5.

The best performing technique among the compared methods is not always the same for neither all
selected gene set sizes, all datasets nor all classifiers. Hence, the POSalgorithm could keep its better
performance for large as well as small sets of selected genes with RandomForest and Support Vector
Machine classifiers on individual datasets. While it could keep its best performance withk Nearest
Neighbor classifier for only feature sets with small sizes (specifically, notmore than 20). Consequently,
the POS feature selection approach is more able to adapt to different pattern of data and to different clas-
sifiers than the other techniques, whose performance is more affected byvarying the data characteristics
and the used classifier.

A method which is more able to minimize the dependency within its selected candidates can reach
a particular level of accuracy using a smaller set of genes. To highlight the entire performances of
the compared methods against our proposed approach, we also performed a comparison between the
minimum error rates achieved by each method. Each method obtains its particularminimum at different
size of selected gene set. Tables 4, 5, 6 summarizes these results for RF,kNN and SVM classifiers
respectively. Each row shows the minimum error rate (along-with its corresponding size, shown in
brackets) obtained by all methods for a specific dataset, reported in the first column. Since the inherent
principal of the ISIS method may result in selecting sets with different sizes for each fold of the cross
validation, the estimated error rate has been reported along-with the average size of the selected feature
sets, shown in brackets. In addition, the error rates of the corresponding classifier with the full set of
features, without feature selection, are reported in the last column of Tables 4, 5, 6. A similar comparison
scheme is performed in [39].

Table 4 The minimum error rates yielded by Random Forest classifier with feature selection meth-
ods along-with the classification error without selection

Dataset ISIS Wil-RS mRMR MP POS Full set

Leukaemia 0.003 (1) 0.030 (20) 0.118 (40) 0.015 (9) 0.0002(40) 0.049
Breast 0.407 (4) 0.371 (50) 0.407 (48) 0.354 (48) 0.308(45) 0.369
Srbct 0.092 (2.63) 0.069 (24) 0.074 (46) 0.009 (32) 0.003(48) 0.0008
Prostate 0.097 (4.18) 0.200 (50) 0.140 (50) 0.069 (50)0.062(50) 0.088
All 0.0004 (1.018) 0.143 (40) 0.011 (50) 0 (40) 0 (20) 0
Lung 0.022 (3.26) 0.040 (30) 0.016 (48) 0.008 (46) 0.007(48) 0.003
Carcinoma 0.171 (1.29) 0.003(41) 0.017 (44) 0.019 (5) 0.026 (20) 0.027
GSE24514 0.107 (1.96) 0.054 (47) 0.063 (50) 0.036 (48)0.032(24) 0.041
GSE4045 0.27 (1.47) 0.134 (24) 0.187 (37) 0.137 (21)0.114(27) 0.205
GSE14333 0.423 (9) 0.421(10) - 0.438 (31) 0.437 (34) 0.414
GSE27854 0.448 (5) 0.401(15) - 0.444 (49) 0.451 (6) 0.488
The numbers in brackets represent the size, average size for ISIS method, of the gene set that correspond-
ing to the minimum error rate. Boldface numbers indicate the lowest error rate (the highest accuracy)
among the compared methods for the corresponding datasets.



Table 5 The minimum error rates yielded by k Nearest Neighbor classifier with feature selection
methods along-with the classification error without selection

Dataset ISIS Wil-RS mRMR MP POS Full set

Leukaemia 0.064 (1) 0.074 (6) 0.135 (50) 0.019 (1) 0.005(1) 0.109
Breast 0.385 (4) 0.405 (11) 0.404 (50) 0.346 (19) 0.332(11) 0.405
Srbct 0.105 (2.63) 0.157 (3) 0.098 (48) 0.005(26) 0.005(22) 0.034
Lung 0.030 (3.26) 0.203 (12) 0.027 (49) 0.017 (17) 0.011(12) 0.0005
GSE24514 0.074 (1.96) 0.032(20) 0.041 (50) 0.036 (50) 0.039 (50) 0.041
GSE4045 0.239 (1.47) 0.066(43) 0.207 (38) 0.137 (50) 0.142 (3) 0.103
GSE14333 0.425 (9) 0.420(8) - 0.455 (23) 0.450 (34) 0.438
GSE27854 0.432 (5) 0.420(3) - 0.454 (13) 0.420(6) 0.464
The numbers in brackets represent the size, average size for ISIS method, of the gene set that correspond-
ing to the minimum error rate. Boldface numbers indicate the lowest error rate (the highest accuracy)
among the compared methods for the corresponding datasets.

Table 6 The minimum error rates yielded by Support Vector Machine classifier with feature se-
lection methods along-with the classification error without selection

Dataset ISIS Wil-RS mRMR MP POS Full set

Leukaemia 0.018 (1) 0.047 (8) 0.126 (50) 0.022 (1) 0.005(1) 0.131
Breast 0.409 (4) 0.401 (39) 0.407 (50) 0.359 (21) 0.313(22) 0.438
Srbct 0.106 (2.63) 0.131 (50) 0.124 (49) 0.010 (21) 0.003(8) 0.079
Lung 0.013 (3.26) 0.066 (50) 0.026 (50) 0.021 (19) 0.010(47) 0.024
GSE24514 0.090 (1.96) 0.041 (40) 0.059 (50) 0.037 (40)0.034(30) 0.070
GSE4045 0.236 (1.47) 0.134 (24) 0.187 (37) 0.095(47) 0.114 (29) 0.214
GSE14333 0.416 (9) 0.427 (9) - 0.412(1) 0.431 (1) 0.407
GSE27854 0.434 (5) 0.431(25) - 0.465 (13) 0.456 (8) 0.50
The numbers in brackets represent the size, average size for ISIS method, of the gene set that correspond-
ing to the minimum error rate. Boldface numbers indicate the lowest error rate (the highest accuracy)
among the compared methods for the corresponding datasets.

An effective feature selection technique is expected to produce stable outcomes across several sub-
samples of the considered dataset. This property is particularly desirable for biomarker selections within
a diagnostic setting. A stable feature selection method should yield a set of biological informative
markers that are selected quite often, and randomly chosen features thatare selected rarely or never.

The stability index proposed by Lausser et al. [40] is used to measure the stability of the compared
method at different set sizes of features. Values of this stability score range from1/λ, whereλ is the
total number of used sub-samples (in our context,λ = 500), for the worst unstable selections to1 for the
full stable selection. Table 7 and Figures 6 and 7 show the stability scores ofdifferent feature selection
methods for the ‘Srbct’, ‘GSE27854’ and ‘GSE24514’ datasets respectively. Figure 6 shows that our
proposed approach provides more stable feature selections than Wil-RS and MP methods at most set
sizes selected from ‘GSE27854’ dataset. For GSE24514 dataset, Figure 7 depicts the stability scores of
compared feature selection techniques at different set sizes. Unlike themRMR and the MP approaches,
both the Wil-RS and the POS methods keep their stability degree for different sizes of feature sets. The
POS method provides a stability degree close to the well established Wil-RS method. For the ‘Srbct’
data, the best stability scores among the compared methods are yielded by POSat most set sizes, see
Table 7.



Table 7 Stability scores of the feature selection techniques over 50repetitions of 10-fold cross
validation for ‘Srbct’ dataset

N. selected genes Wil-RS mRMR MP POS

5 0.789 0.097 0.815 0.760
10 0.804 0.198 0.788 0.844
15 0.804 0.302 0.853 0.911
20 0.857 0.405 0.898 0.908
25 0.883 0.506 0.871 0.872
30 0.896 0.579 0.871 0.870
35 0.868 0.640 0.852 0.859
40 0.858 0.705 0.833 0.847
45 0.862 0.754 0.812 0.835
50 0.873 0.803 0.800 0.820

Figure 6 Stability scores for ‘GSE27854’ dataset. Stability scores at different sizes of features sets
that selected by Wil-RS, MP and POS methods on ‘GSE27854’ dataset.

Figure 7 Stability scores for ‘GSE24514’ dataset. Stability scores at different sizes of features sets
that selected by Wil-RS, mRMR, MP and POS methods on ‘GSE24514’ dataset.

A stable selection does not guarantee the relevancy of the selected features to the considered response
of the target class labels. The prediction accuracy yielded by a classifierbased on the selected features
should also be highlighted. The relation between the accuracy and stability has been outlined by Fig-
ures 8 and 9 for the ‘Lung’ and ‘GSE27854’ respectively. The stabilityscores were combined with
corresponding error rates yielded by three different classifiers: RF; kNN; SVM. Different dots for the
same feature selection method correspond to different set sizes of features. Since stability degree in-
creases from the bottom to the top on the vertical axis and the classification error increases to the right
on the horizontal axis, the best method is the one whose dots are depicted in the upper-left corner of the
plot. For all classifiers, our proposed method achieve a good trade-offbetween accuracy and stability
for ‘Lung’ data, see Figure 8. For ‘GSE27854’ data with thekNN classifier, POS provides a better
trade-off between accuracy and stability than other compared methods. Whereas with the RF and SVM
classifiers, POS is outperformed by Wil-RS.

Figure 8 Stability-accuracy plot for ‘Lung’ dataset. The stability of the feature selection methods
against the corresponding estimated error rates on ‘Lung’ dataset. Theerror rates have been measured by
50 repetations of 10-fold cross validation for three different classifiers: Random Forest (RF);k Nearest
Neighbor (kNN); Support Vector Machine (SVM).

Figure 9 Stability-accuracy plot for ‘GSE27854’ dataset. The stability of the feature selection
methods against the corresponding estimated error rates on ‘GSE27854’dataset. The error rates have
been measured by 50 repetations of 10-fold cross validation for three different classifiers: Random
Forest (RF);k Nearest Neighbor (kNN); Support Vector Machine (SVM).

Genomic experiments are representative examples for high-dimensional datasets. However, our proposal
of feature selection can be also used on other high-dimensional data, e.g.[41] and [42].



All procedures described in this manuscript have been programmed into anR package named ‘propOver-
lap’. It would be available for download from the Comprehensive R Archive Network (CRAN) reposi-
tory (http://cran.us.r-project.org/) as soon as possible.

Conclusion

The idea of selecting genes based on analysing the overlap of their expressions across two phenotypes,
taking into account the proportions of overlapping samples, is consideredin this article. To this end,
we defined core gene expressions and robustly constructed gene masks that allow us to report a gene’s
predictive power avoiding the effects of outliers. In addition, a novel score, named as the Proportional
Overlapping Score (POS), is proposed by which a gene’s overlapping degree is estimated. We then
utilized the constructed gene masks along-with the gene scores to assign the minimum subset of genes
that provide the maximum number of correctly classified samples in a training set.This minimum
subset of genes is then combined with the top ranked genes according to thePOS to produce a final
gene selection.

Our new procedure is applied on eleven publicly available gene expression datasets with different char-
acteristics. Feature sets of different sizes, up to 50 genes, are selected using widely used gene selec-
tion methods: Wilcoxon Rank Sum (Wil-RS); Minimum redundancy maximum relevance (mRMR);
MaskedPainter (MP); Iteratively sure independence screening (ISIS) along-with our proposal, POS.
Then, the prediction models of three different classifiers: Random Forest; k Nearest Neighbor; Sup-
port Vector Machine are constructed with the selected features. The estimated classification error rates
obtained by the considered classifiers are used for evaluating the performance of POS.

For the Random Forest classifier, POS performed better than the compared feature selection methods
on ‘Leukaemia’, ‘Breast’, ‘GSE24514’ and ‘GSE4045’ datasets at all gene set sizes that have been
investigated. POS also outperformed all other methods on ‘Lung’, ‘All’ and‘Srbct’ datasets at: small
(i.e., less than 7); moderate and large (i.e.,> 2); large (i.e.,> 5) sets of genes respectively. On average,
our proposal improves the compared techniques by between5% and51% of the misclassification error
rates achieved by their candidates.

For thek Nearest Neighbor classifier, POS outperformed all other methods on ‘Leukaemia’, ‘Breast’,
‘Lung’ and ‘GSE27854’. While it shows a comparable performance to theMaskedPainter method on
the ‘Srbct’. On average across all considered datasets, POS approach improves the best performance of
the compared methods by up to20% of the misclassification error rates achieved using their selections
at small set sizes less than20 features.

For the Support Vector Machine classifier, POS outperformed all other methods on ‘Leukaemia’, ‘Breast’,
‘Srbct’, ‘Lung’ and ‘GSE24514’. While the MaskedPainter provides the minimum error rates on
‘GSE4045’ and ‘GSE14333’. Whereas on ‘GSE27854’ data, the Wilcoxon Rank Sum is the best. On
average across all considered datasets, POS approach improves the best performance of the compared
methods by up to26% of the misclassification error rates achieved using their selections at different set
sizes.

The stability of the selections yielded by the compared feature selection methods using the cross vali-
dation technique has been highlighted. Stability scores computed at different set sizes of the selected
features show that the proposed method has a stable performance for different sizes of selected features.
The analysed relationship between classification accuracies yielded by three different classifiers and
stability confirms that the POS method can provide a good trade-off between stability and classification
accuracy.



The intuition for the better performance of our new method might be that when incorporating together
genes with less overlapping degrees across different phenotypes, estimated by taking into account a
useful element of overlapping analysis, i.e. the proportions of overlapped samples, with those genes
which could capture the distinct underlying structure of samples by means ofgene masks, then a classi-
fier could be more able to gain more information from the learning process thanthat of those could be
gained by other selected same sized sets of genes.

In the future, one can investigate the possibility of extending POS method to handle multi-class situa-
tions. Constructing a framework for POS in which mutual information between genes are considered in
the final gene set might be another useful direction. Such a framework could be effective in selecting
the discriminative genes with a low degree of dependency.
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Additional file 1: Classification error rates obtained by Random Forest Classifier. Average clas-
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imum redundancy maximum relevance (mRMR), MaskedPainter (MP) and proportional overlapping
scores (POS) feature selection techniques on ‘Breast’, ‘Srbct’, ‘Prostate’, ‘All’, ‘Lung’, ‘Carcinoma’,
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presented in nine tables, a table for each dataset. Each row provides the average classification error rate
at a specific number of selected genes (reported in the first column).
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Additional file 2: Classification error rates obtained by k Nearest Neighbor Classifier. Average
classification error rates yielded by thek Nearest Neighbor classifier using Wilcoxon rank sum (Wil-
RS), Minimum redundancy maximum relevance (mRMR), MaskedPainter (MP)and proportional over-
lapping scores (POS) feature selection techniques on ‘Breast’, ‘Srbct’, ‘Lung’, ‘GSE4045’, ‘GSE14333’
and ‘GSE27854’ datasets over 50 repetitions of 10-fold cross validationare presented in six tables, a
table for each dataset. Each row provides the average classification error rate at a specific number of
selected genes (reported in the first column).
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Additional file 3: Classification error rates obtained by Support Vector Machine Classifier. Av-
erage classification error rates yielded by the Support Vector Machine classifier using Wilcoxon rank
sum (Wil-RS), Minimum redundancy maximum relevance (mRMR), MaskedPainter (MP) and propor-
tional overlapping scores (POS) feature selection techniques on ‘Breast’, ‘Srbct’, ‘Lung’, ‘GSE4045’,
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six tables, a table for each dataset. Each row provides the average classification error rate at a specific
number of selected genes (reported in the first column).
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