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Abstract—The Interval Type-2 Fuzzy Pl controller (IT2-FPI)
might be able to handle high levels of uncertainties to produce a
satisfactory control performance which could be potentially due
to the robust performance as a result of the smoother control
surface around the steady state [1]. However, the transient state
and disturbance rejection performance of the IT2-FPI may
degrade in comparison to the Type-1 Fuzzy Pl (T1-FPI)
counterpart [1]. This drawback can be resolved via general type-
2 fuzzy PI controllers which can provide a trade-off between the
robust control performance of the 1T2-FPI and the acceptable
transient and disturbance rejection performance of the type-1 Pl
controllers. In this paper, we will present a zSlices based general
Type-2 Fuzzy Pl controller (zT2-FPI) where the Secondary
Membership Functions (SMFs) of the antecedent general type-2
fuzzy sets are adjusted in an on-line manner. We will examine the
effect of the SMF on the closed system control performance to
investigate their induced performance improvements. The paper
will focus on the case followed in conventional or self-tuning
fuzzy controller design strategies where the aim is to decrease the
integral action sufficiently around the steady state to have robust
system performance against noises and parameter variations.
The zSlices approach will give the opportunity to construct the
zT2-FPl1 controller as a collection of IT2-FPI and T1-FPI
controllers. We will present a new way to design a zT2-FPI
controller based on a single tuning parameter where the features
of T1-FPI (speed) and IT2-FPI (robustness) are combined
without increasing the computational complexity much when
compared to the IT2-FPI structure. This will allow the proposed
ZT2-FPI controller to achieve the desired transient state response
and provide an efficient disturbance rejection and robust control
performance. We will present several simulation studies on
benchmark systems in addition to real-world experiments which
were performed using the PIONEER 3-DX mobile robot that will
act as a platform to evaluate the proposed systems. The results
will show that the control performance of the self-tuning zT2-FPI
control structure enhances both the transient state and
disturbance rejection performances when compared to the type-1
and IT2-FPI counterparts. In addition, the self-tuning zT2-FPI is
more robust to disturbances, noise and uncertainties when
compared to the type-1 and interval type-2 fuzzy counterparts.

Index Terms—General Type-2 Fuzzy Logic Systems, zSlices
based General Type-2 Fuzzy Logic Systems, Interval Type-2
Fuzzy Logic Systems
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I. INTRODUCTION

ecently, Interval Type-2 Fuzzy Logic Controllers (IT2-

FLCs) attracted significant research interest especially in
controlling nonlinear and uncertain systems. The IT2-FLCs
demonstrated control performance improvements which could
be attributed to the additional degree of freedom provided by
the Footprint of Uncertainty (FOU) present in the antecedent
interval type-2 fuzzy Membership Functions (MFs) [2-6]. The
internal structure of the IT2-FLC is similar to its type-1
counterpart. However, the major differences are that IT2-FLCs
employ Interval Type-2 Fuzzy Sets (IT2-FSs) (rather than
type-1 fuzzy sets) and the IT2-FLCs process [T2-FSs and thus
the IT2-FLC has an extra type-reduction process [7-9].
Nevertheless, the systematic design of IT2-FLCs is still a
challenging problem due to the main difficulty in determining
the parameters of the Fuzzy Sets (FSs) and the rulebase [10].
Recently, several studies have employed various techniques
for the design of IT2-FLCs including genetic algorithms [4],
[11], particle swarm [12] and ant colony optimization [13].

In the IT2-FLC literature, several studies have been
presented to analyze and examine the behavior of the interval
type-2 fuzzy PI and PD controllers [1], [14-16]. Wu and Tan
[1] showed that the Interval Type-2 Fuzzy PI controllers (IT2-
FPI) are generally more robust than their type-1 counterparts
by examining their behavior around the steady state. It has
been also reported that the IT2-FPI controller behaves like a
variable gain PI controller and has a smoother control surface
around the steady state in comparison with its type-1 and
conventional controllers counterparts [1]. Thus, tuning the
FOUs of the IT2-FSs of the IT2-FPI might potentially result in
more robust controllers since a smooth control surface might
be generated [1]. However, the IT2-FPI transient state and
disturbance rejection performance may degrade in comparison
with its type-1 and conventional counterparts [1], [14].
Although a smooth control surface is probably a common
objective in industrial practice, the problem is that the
resulting disturbance response may be unacceptable (too slow)
since disturbances occurring around the steady state might
cause a smaller control output change [17]. This problem is
usually solved by a trade-off between control performance and
robustness [18].

General type-2 fuzzy PI controllers can provide an
acceptable trade-off between the robust control performance
of the IT2-FPI and the acceptable transient and disturbance
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rejection performance of the type-1 PI controllers. Thus the
general type-2 fuzzy PI controller might be able to enhance
both the transient state and disturbance rejection performances
while preserving the robustness of the type-2 fuzzy controller.
In this context, we will examine and present the effect of the
shape and size of the Secondary MFs (SMFs) of the type-2
fuzzy controller on the control performance.

General Type-2 Fuzzy Sets (T2-FSs) give the opportunity to
define the uncertainty in the third dimension (the shape of the
SMFs). Fig.1a shows the front projection on the x-u plane of a
given general T2-FS (F' ) while Fig.1b shows the SMF of the
T2-FS at x’. T2-FSs are relatively more complex than the 1T2-
FSs due to the need to determine the shape and parameters of
the third dimension. Several forms of representations of
general T2-FSs have been developed to enable the use of
general type-2 Fuzzy Logic Systems (FLSs) in real-world
applications [19-23]. In this paper, we will employ the zSlices
based general Type-2 Fuzzy Sets (zZT2-FSs) and zSlices based
general Type-2 Fuzzy Logic Systems (zT2-FLSs) which were
proposed by Wagner and Hagras [23]. The zSlices theory
gives the opportunity to calculate the crisp output of the zT2-
FLS by using the fact that zZT2-FLS can be implemented by
constructing a series of interval type-2 fuzzy logic systems
which are associated with different zLevels [23]. The zT2-FLS
approach has been implemented successfully in real-world
applications [23], [24].

In this paper, we will present a novel zSlices based general
Type-2 Fuzzy PI (zT2-FPI) controller where the SMFs are
adjusted in an on-line manner through a single tuning
parameter. The proposed zT2-FPI structure and tuning
mechanism will give the opportunity to improve the transient
state response while enhancing the disturbance rejection
performance in addition to improving the system robustness.
We will first present the structure of the proposed novel zT2-
FPI controller and show that the SMF of the general T2-FSs
can easily be tuned by a single tuning parameter. In order to
analyze the behavior of the zT2-FPI controller around the
steady state, we will first provide the mathematical
background of an IT2-FPI controller since the zT2-FPI
controller structure can be seen as a collection of IT2-FPIs
which are associated with different zLevels (we will follow
the same analysis strategy presented in [1], [14] while using
triangular IT2-FSs instead of trapezoidal IT2-FSs).
Afterwards, we will analyze and provide theoretical
explanations of why the zT2-FPIs are able to eliminate
oscillations and be potentially more robust against parameter
variations when compared to Type-1 Fuzzy PI (T1-FPI)
controllers. We will investigate the effect of the SMFs in two
parts which are the size (relative to the FOU) and the shape of
the SMFs. Based on the observations; we will present two
heuristic tuning mechanisms based on the feedback error. In
the first proposed self-tuning zT2-FPI structure, where the
SMFs are interval sets (thus having a self-tuning IT2-FPI
structure), the FOU size is tuned in an online manner. In the
second control structure, the shape of the SMF with a fixed
FOU size is online tuned. Then, we will present an
optimization based design strategy for the design of the

proposed zT2-FPI control structures.

We will present several simulation studies to validate the
proposed approaches, where we will present first simulation
studies where the proposed Error based self-Tuning zT2-FPI
(EzT2-FPI) control structures are compared with an Optimized
Type-1 Fuzzy PI (OT1-FPI) and Interval Type-2 Fuzzy PI
(OIT2-FPI) control structures. The comparative simulation
results will show that the control performance of the both
EzT2-FPI structures improved both the transient state and
disturbance rejection performances of the OT1-FPI and OIT2-
FPI. However, it will be illustrated that the SMF Shape
Tuning strategy based zT2-FPI (ST-zT2-FPI) control system is
more robust against nonlinear dynamics, parameter variations,
disturbances and noise in comparison to the FOU size Tuning
strategy based zT2-FPI (FT-zT2-FPI) (which is in fact a self-
tuning IT2-FPI controller). Moreover, we will show that the
proposed zT2-FPI controller has a reasonable computational
cost which makes it feasible for real-time control applications
since it is constructed based on zSlices theory and tuned by a
single parameter. We will also evaluate the various fuzzy PI
control systems on the real-time path tracking problem of the
real-world PIONEER 3-DX mobile robot which inherits large
amounts of nonlinearities and uncertainties caused by the
internal dynamics and/or feedback sensors of the controlled
system. The comparative real-time control studies have shown
that the overall control performance of the EzZT2-FPI is better
in terms of transient state and disturbance rejection and it is
also more robust against nonlinear dynamics, parameter
variations and disturbances when compared to its optimized
type-1 and interval type-2 fuzzy controller counterparts.

Section II will briefly present an overview of T1-FPI and
IT2-FPI controllers. Section III will present the structure of
the proposed the zT2-FPI controller. Section IV will present
the effect of the SMFs on the controller performance. Section
V will present the proposed error based self-tuning
mechanisms. Section VI will briefly present the design
methodology of the proposed zT2-FPI structure. Section VII
will present the simulation studies for linear and nonlinear
systems while the real world experiments results are presented
in Section VIII. Section IX will present the conclusions and
future work.

II. BRIEF OVERVIEW ABOUT TYPE-1 AND INTERVAL TYPE-2
Fuzzy PI CONTROLLERS

In this section, we will present brief information about the
T1-FPI and IT2-FPI controllers which are used in the
comparison studies (and to construct the proposed zT2-FPI
controller).

A linear PI control law can be implemented as:

u=Kpé+Ke @))

where u is the change of the control signal, e is the feedback
error, € is the change of the feedback error, and K, and K; are
the proportional and integral gains, respectively. Moreover,
the controller gain and integral time constant of the PI
controller are defined as K.=Kp, andT;=K,/Kp,
respectively.
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It has been shown that a rapid generation of fuzzy rules
based on the existing linear PI controller can be achieved [1],
[25]. Thus, a TI1-FPI with the rulebase whose rule is
represented as follows:

RU:IFé is E; and e is E; Then u is u;; )
i=-N,..N;j=—-M,..M @
has an identical output to the PI control law if [1], [25]:
50% overlapping T1-FSs are used for input MFs (E;, Ej),
ie Y pg, = 1 and fol Mg, = 1 where 2M and 2N are
the numbers of the MFs for the inputs é ande,
respectively. The illustration of such MFs is shown as the
bold lines in Fig.2 where cg;, ¢, are the cores of the MFs.
The consequents of the rules are crisp numbers defined as
follows:
U;j = KpCei + KiCej

3)
The IT2-FSs used in an IT2-FPI can be simply constructed
by extending the T1-FSs of a T1-FPI, as shown in Fig. 2. The
rulebase for an IT2-FPI is defined as follows:
RU:IF¢é isE; and eis E; Then 1 is 1
i=-N,.N;j=—-M,.M
where Ei and Ej are antecedent IT2-FSs obtained by extending
the T1-FSs (E; and Ej), and 1;; is defined in Equation (3). The
IT2-FSs are described in terms of upper MFs (ﬁéi,ﬁﬁj) and

“)

lower MFs ( K, Efj) which are defined with their cores
(ceirCej) and the height of their MFs (ay;, a,;) as illustrated
in Fig. 2. The IT2-FSs have the following properties.

. 2M = _ 2N = _
i) Zi=1lij§i =1 ’Zi:l#ﬁj =1
i) Hg = Hg Qe HE; = Hg Qej
iii) Coi = —Co—i ,Cej = —Ce—j
iv) Aoj = Ao—j  ,QAej = Ao

The implemented IT2-FPI uses the center of sets Type
Reduction (TR) method [7]. Thus, the defuzzified output
(1) of an IT2-FPI can be calculated as:

Uy = (U +1,)/2 (5)
where 1; and u, are the left and right end points respectively
of the type reduced set. The typed reduced set can be
calculated by using the iterative Karnik and Mendel (KM) TR
procedure [26].

I

THE zSLICES BASED GENERAL TYPE-2 Fuzzy PI
CONTROLLER STRUCTURE

In this paper, we will employ the zSlices theory to design a
novel zT2-FPI controller structure. We will firstly present
information about the zSlices theory which will facilitate the
design of the zZT2-FPI since it can be seen as a collection of
IT2-FPI controllers. We will present a simple design method
for the zT2-FPI controllers based on one tuning parameter
which will allow facilitating the design of the SMFs of the T2-
FSs. Since the output of the zZT2-FPI is an aggregation of the
outputs of several IT2-FPIs each associated with a specific
zLevel, we will first derive the closed form formulation of an

IT2-FPI around the steady state. Then, we will combine the
IT2-FPIs each associated with a specific zLevel and derive the
output of the zZT2-FPI around the steady state.

A. Brief Information about zSlices based General Type-2
Fuzzy Sets and Systems

The concept of zT2-FLSs was introduced by Wagner and
Hagras [23]. The internal structure of the zT2-FLS is very
similar to its interval type-2 counterpart, i.e. it is composed of
a Fuzzifier, an Inference Engine and Rule Base as well as a
Type-Reducer and Defuzzifier. However, the major difference
is that zZT2-FLSs employ and process zT2-FSs. A zSlice Zq is
formed by slicing a T2-FS in the third dimension z at level z,
[21]. A zSlice Zq is defined as:

Za= LEX J;-qE/quq/ (6, g) 1 Jgy € [lg Ty ©

Hence, at each x value, z-Slicing creates an interval set with
the height z; in the domain J,, which ranges from [, to 7,
0<q<Q, Q is the number of zSlices (excluding Z,) and
zq =1/Q. Z, is a special case since its height is z = 0 and
therefore can be neglected [21]. The concept of the z-Slicing is
given in Fig. 1b for O=3 zSlices. Thus, a T2-FS (F) can be
seen equivalent to the collection of Q zSlices as follows:

Q
F=>1,
q=1
This gives the opportunity to calculate the crisp output of the
zT2-FLS by using the fact that zZT2-FLS can be implemented
by constructing a series of IT2-FLSs associated with various
zLevels [23]. Thus, the outputs of all IT2-FLSs (within a zT2-

FLS) are fused to obtain the zT2-FLS output (y,) of the as
follows:

2 (1, eryrl) ‘2 (1, eryrz) iy

(7

0 (YZQ ;—yrQ) (8)

yC_ Zl+22+.“+ZQ

where (qu, yrq) is the type reduced set for each zSlice related

IT2-FLS which is obtained by the center of sets TR method
[24]. At the zSlice level zj, y;, = yr,, then the IT2-FLS for

the zSlice level z; will reduce to a TI-FLS. A detailed
comprehensive analysis on the zT2-FLS can be found in [23].

We would like to point out that the employed zT2-FLS in
this paper can also be seen as a quasi T2-FLS which represents
the T2-FSs via an alpha-level representation [20]. In [27], it
has been proven that there is an equivalence between the
alpha-level and zSlices representations of T2-FSs. Thus, the
proposed zSlices representation based general type-2 fuzzy
controller structure (which will be introduced in the following
section) can also be constructed with the equivalent
representation of alpha-level representation.

B. The General Structure and the Components of the zT2-FPI
Controller

In this subsection, we will present the general structure and
the components of the zT2-FPI controller. As has been
explained in the previous subsection, the output of the zT2-
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FPI is an aggregation of the outputs of several IT2-FPIs each
associated with a specific zLevel (zq).

In this paper, we will construct the zT2-FPI by having
Q@ =2 (i.e. having two zSlices). Hence the zT2-FPI will
aggregate the output of possibly the T1-FPI (obtained possibly
at zSlice level z,,y,, = ¥, wheny =1 (as explained below)
and the IT2-FPIs which use the rules structures given in
Equation (2) and (4), respectively. Moreover, in the zT2-FPI
controller, we will employ the same rule consequent structure,
given in Equation (3). Thus, the output (?T27FPT) of the
proposed zT2-FPI can be defined as:

1,2T2~FPI — U + zpu” )

z, + 2,
where 1174 is the output of an IT2-FPI controller (associated
with the zSlice z;) and is defined as:
. Z2q . Zq
G +3,7) (10)
2

Here, ufq and ufq are the left and right end points of the type
reduced set for each corresponding zSlices level and can be
calculated via the KM method while the values of z; and z,
are 0.5 and 1.0, respectively.

The employed zT2-FPI controller will encompass the
presented IT2-FPI structure presented in Section 2. The
illustration of the employed zT2-FSs is shown in Fig.3a. In the

antecedent zT2-FSs (Eizl,ﬁjzl),(gizz,ﬁ'?), we employed

:Jl = ceZ]2 = cezl?, i.e., the cores of IT2-FSs of each
zSlices level (z;, z,) have the same values. In order to have a
convex SMF, we employ the following constraints on the
heights of the lower MFs of the IT2-FPI associated with the

zSlices z,:

qu =

Z1
c and c,;

az=(1-all)y +af} (11)
agi = (1-ag)y +ag (12)
where af} and a,! are heights of the lower MFs for the
G
the zSlices z,. Here, y is a tuning parameter and can take
values between 0 and 1. In order to examine how the defined y
parameter varies the SMFs, we will examine three cases for
the zT2-FSs
If y = 0 then the z, zSlice becomes an interval set with
the same uncertainty as z;, i.e. [y = I, <1, = r,.Thus, an
interval secondary FS will be obtained in the third
dimension as illustrated in Fig. 4a.
If 0 <y <1, then for the z, zSlice [, < r, however the
interval associated with zSlice z, has always a smaller
interval in comparison to the interval associated with
zSlice z; since [, > I; . Thus, a secondary FS as shown in
Fig. 4b will be obtained in the third dimension. The
l;,1,,rand r, values of this case have been shown for a
zT2-FS in Fig.3b.
If y = 1, then for the z, zSlice, I, = r, and a secondary
FS as illustrated in Fig. 4c will be obtained in the third
dimension of the zT2-FS.
Thus, as it has been shown in Fig.4 for different y values, the

zSlices z; while «.% and ajiz are heights of the lower MFs for

zT2-FPI controller can be constructed in three different

combinations.

e Ify =0, then the zT2-FPI will be reduced to an IT2-FPI
controller.

e If0 <y <1, then the ZT2-FPI can be seen as collection
of two IT2-FPIs associated with different FOUs (r; —
L >r—1).

e Ify =1, then the zT2-FPI can be seen as a collection of
IT2-FPI and T1-FPI controller (r; — l; > 1, — I, = 0).
Thus, we will first derive an IT2-FPI associated with the
zSlices z4 and we then will derive the output of the proposed
zT2-FPI around the steady state via Equation (9) from a

mathematical point of view.

C. The Analytical Derivations for IT2-FPI Controller
associated with zLevel

In this section, we will follow the same analysis strategy
presented in [1], [14] to analyze the behavior of an IT2-FPI
associated with zLevel (Zq) around the steady state from a
mathematical point of view. Thus, we will investigate the
region around the steady state (e = 0,é = 0,u = 0) bounded
by the following inequalities:

—0s < € < 46,

-8, <e< 44,

=0, S u<+6;,
where 6;, 6, and &, are sufficiently small perturbations
around the origin.

As it has been asserted in the previous subsection, we will
employ the same IT2-FPI controller given in Section 2 and
associated it with zLevel (zq). The employed IT2-FPI uses
fully overlapping triangular IT2-FSs in the sense of upper and
lower MFs as shown in Fig. 2. Thus for any input vector (e, €)
always four IT2-FSs are always fired, and the corresponding
membership values around the steady state are:

13)

e = e e ] = |(2=2) et (29 aw
gty = [some| = ()t ()] as)
o = et = [(5) et ((5)] a0
ety = et = [(5) et (5]

The corresponding four rules outputs are then R™%~1, R™11,
RV~ and RY! which are defined as:

U_q,1 = —Kpcsy — KjCeq (18)
U_11 = —Kpcsy + KjCeq (19)
Uy 1 = KpCsy — KjCeq (20)
Uy = KpCsqy + KjCeq (21)
The total firing interval for each rule is defined as
Zq —Z
- [ﬂjq'f 5 (22)

where }_‘UZ.q and fl.zjq are given in Equations (23),(24), (25) and

(26) (using the product operation to represent the t-norm).
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5
—zq _ _ [ (Co1 — é> (cel - e)' 2q '(cél - e) 2q (cél - e> zq ]
= =Z, ~Z = ) = ~Z, ~Z = . 23
-1t [ME—‘}*ME-?] ( 2¢¢q 2¢,, /17 =11 [EE—Z *EE—‘}] [\ 2¢gq o1 2¢Ce1 e1 | 23)
—zq _ _ [ (Co1 — é> (Ce1 + e)' 2q '(cél - e) 24 (Cel + e> zq ]
= ~Zg * U .Z = ) = =Zg * Uz = a a 24
o = e R = [(50) (50 )] £ = e e = (557 (557 1] )
—zq _ _ [ (Co1 + é> <Ce1 - e)' 2q '(cél + e‘) 2q (ce-l - e> 2|
= (Uzzq * Uozq| = , ~zq * lzq| = a, a 25
Si1 [#Eﬁ #E-?] ( 2¢49 2c, /17 =11 [EEJ EE_?] [\ 2¢51 /91N 2¢,y /€] 23)
e I _ _[(ca &\ [(Cp1 + €\] _'cé1+é zq (Ce1 T €\ z4]
form = ["E’f‘{*”ﬁi‘i] - ( 2¢0; >< 200 ) filn [“ 29" —E+‘1] - ( 2¢0; )“el( 20, >“91_ (26)

The IT2-FPI output can be calculated as:
W+

2
where 1; and u, are the left and right end points of the type

reduced set, and are formulated as follows:
L FAa. P zZq .
n=1fp Un + X141 [ Un
—2zq Z
n=1fn + Xl fy"
R fZa p T4
. Zq n:1£n un+ZR+1fn Up
U= R fZ P Fha 29)
n=1fp T Yri1fn
Here, P is the total number of fuzzy rules (P = 4 ) and (L, R)
are the switching points needed by the KM procedure [26].
When the KM method is used, the consequents (L’L,- ]-) need to
be sorted in ascending order and their corresponding firing
intervals (flzjq]_‘lzj) must be matched. Since the sorting of the

27)

u%a =

z
o4 —
ul =

(28)

consequents (ui ]-) depends on the values Kpcsy and K c,q,
there are only three possibilities which will be examined.

1) Case-1 (Kpcsq > KiCep)

If Kpcs1 > K;cCpq, then the consequents (ui j) are sorted as:

Uogq <Uoqy <O <Uyg g <Upggq (30)
Since we are investigating the behavior around the steady

state (e = ~ 0,u = 0) it can be further imposed as:

€2y
which indicates that the switch points of the KM must be L=2
and R=2 [1]. Thus, uf‘? should be:

. Zq

ul=

. . Zq . Zq .
U141 U <U SUyqg

—Z, —Z
. . zq . zq .
foi bt pteaa g g+ ] U

o TS A+ [
Thus, by substituting the correspondlng consequent parts and
the firing levels given in Equations (18-21) and (23-26),
respectively into the Equation (32) we have:

(32)

7q _ Kp(—c2 + co1€ + 3 10(@1 o+ celea:eloze1
l
(Ce1 —é+ Celael el +é aelael (33)
K,(Cele —eé+cs e “e1 o1 Tt+ée aelael
(cél é+ celael o te aelael
and similarly ur should be:
<Zq _
! =
zg . zq . —ZZq . —%q §
fol gt gt +f 0 o+ Ll (34)
Z
q

—Za —<Zq
I-1,-1 + f 1,+1 + f+1,—1 +f+1,+1

Similarly, using the Equations (18-21) and (23-26), Equation
(34) can be reformulated as

2 .
2 Kp(cs, + cor€ — C5 10161 o1 74 celeaelaze1

=

(cer +€+ celocelae1 —é “e1“e1

ey (35)
+K,(cele +eé+cye “e1“e1 —éea,la,]
_ Zq 2q
(cep +e+ celazelaze1 ea, )

Then, the IT2-FPI output at z,can be obtained by substituting
Equations (33) and (35) in Equation 27

Kle( 2( 1 +ael 61) + (Cl?l + CElaelael) )

e = +Kpé (40‘10‘32“2 (36)
_eZ( 1+ ael 61) + (631 + C‘-’laelaﬂ
Then, Equation (36) can be reformulated as:
ufa = queqe + KI eq® 37
where
Z
K.’ eq KP(S , KI eq —K,B1 (38)
5% — 4Ce1a91%1
1 2
—e2(—1+ a,! el) + (Cor + Cor @l d (39)
B =1
Here, KP “eq and Klz_zq are the equivalent proportional and

integral gains of the resulting IT2-FPI controller associated

with zLevel (Zq), respectively.

2) Case-2 (KPCél < chel)

If Kpcs1 < K;cpq, then the consequents (ui ]-) are sorted as:
Ug g <U 1 <O0<uU_g1<Uygy (40)

Since we are investigating the behavior around the steady
state, it can be further imposed as:

(41)
which indicates that the switch points of the KM are L= 2 and
R=2[1]. Similarly in the Case—l,ulzq
. Zq

ul=

—+%q . —Zq . z, , z, .
f—l,—1u-1'-1 + f+1,—1u1.-1 + £—f,+1u-1,1 + £+f,+1u1,1
<% —-%aq —+%a zq
f1 1+f+1 1+f 1+1+f+1+1

+ eeocglae1

. . Zq . Zq .
U1 =U <U SUqq
are defined as:

. Z,
and 1,7

(42)

e1 El

+ ea:ela:e1

+ cqrea

0 Kp(co1€ — ée + celea

1
(Cer — e+(:eloce1 el
KI( cel+cele+cela

(43)

Zq ,%q

el 31 elael

+ ea:moce1

(cer — €+Ce10le1 o

and
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Z,
A -
u. =

z . z 5 —Zq . —Zq .
q q
z_l,_lu—l,—l + £+1,_1u+1,—1 + f_1'+1u—1,+1 + f+1'+1u+1,+1

Z —Zq —Z4
! +f—1+1+f+1+1

(44

Zq
J-1,—- 1+f

W= Kp(cp1€6 + ée + celea I

el el—eea (Z

81 €1

N
(Cer +e+ cela 107

é1 el
K,(cel + cg1€ — cela

- eaelael

+ celeocgla81

(45)

El €1

(Cer + e+ celarmoce1 - e“e1“e1)
Then, the output of the IT2-FPI can be obtained by
substituting Equations (43) and (45) in Equation (27)

. Z, Zg\2 Z. z.\2
Kpé (—ez(—l +ada?) + (coo +caa,la,]) )

. +Ke(4ctea,ia,l) (46)
u=
—e2(—1+aftalt)’ + (cor + cerflalt)’
Then, Equation (46) can be reformulated as:
ura = KPqeqe + KI eq 47)
where
KP eq KPS , K, eq K,ﬁz (48)
Z,
5,7 =
Zq _ 4691 aelael (49)
.82 -
_ez( 1+ ael el) + (Cel + Cer ae1ae1

Here, Kp oq and K, ., are the equivalent proportional and
integral gains of the resulting IT2-FPI controller associated
with zLevel (Zq), respectively.
3) Case-3 (Kpcsy = KiCpr)
If Kpcsy = KjCeq, thenui_y 1 =1yy 4 = 0 and

U g1 <Upp1 =0=0Ug49 <Uyp4q (50)
Thus, there are more than one possible switching point for the
KM which are R,L € {1,2,3}. Therefore, similar analysis
cannot be performed here since the switching points cannot be
predetermined [1]. Thus, we will not examine the case
Kpé; = K;e, in this study. However, this does not affect the
above analysis.

D. The Analytical Derivations for zT2-FPI Controller

In this subsection, we will use the derived equations of the
IT2-FPI associated with zLevel (Zq) to express the output of
the zT2-FPI around the steady state from a mathematical point
of view. As it has been presented in the subsection 3.2, the
output of the zT2-FPI is an aggregation of the outputs of IT2-
FPIs (and maybe T1-FPI) each associated with a specific
zLevel (zq). Then, the output of the zT2-FPI can be obtained
by substituting Equation (37) (for Case-1) or Equation (47)
(for Case-2) in Equation (9):

Zl(K}fieqe+K e)+zz(KP e+KI “eq )

11 2T2-FPI — Leq (51)
Zq + Zy
Then, Equation (51) can be reformulated as:
T2 PPl = Ky e + K oqe (52)
where
K2+ + z,K72
KP oq = (Zl P_eq ZZ P eq) Leq = (Zl 1 eq Za 18 _eq (53)

Zy + Zy Zq + Zy
Here, Kp .4 and K| . are the equivalent Proportional gain and

the equivalent Integral gain of the resulting zT2-FPI
controller, respectively. It should be noted that the Kp ., and
K; eq can be defined in two different ways since equalities of

and K.

P eq I_eq
for Kpcgq > Kjceq (Case-1) Equation (38) should be employed
while for Kpcy; < Kjcp.; (Case-2) Equation (48) should be
employed to obtain the equivalent gains of the zT2-FPI.

For Case-1, then the equivalent gains are

depends on the values Kpcgq and K;c,4. Thus,

K2 = Kpbi' (e cor :i, 1) K., =K, forzlLevelz, (54)
K22, = Kpby* (e cor g}, el) K, =K, forzLevelz, (55)

Substituting Equation (11) and Equation (12) into Equation
(55) wherey =y = v, K:zeq can be reformulated as function

KP eq KP6 (e Cen @ 2' ezi'y) (56)
Thus Equation (53) can be reformulated for Case-1 as follows:

z z z z; z z
(267 (e covafl a2t) + 2287 (e cen 0 alt 7))

K cq = 21+ 7, Ke (57)
Klieq = KI
Similarly for Case-2, then the equivalent gains are
K7 eq = Kp, K oq =KiBy (e cor,al},ay) forzlevelz;  (58)
Kp? Ceq = Kb K2 q =KiBy (e cor a2, a2 ) forzlevelz, (59)
Similarly using Equation (11) and Equation (12), K,me can be
reformulated as function
K/ eq = = KiB;* (e, cer aj}, agt,y) (60)

Thus Equation (60) can be reformulated for Case-2 as follows:
KP eq = KP

K; (2152 (e Ce1, a'e1 “e1) +ZZB2 (e Ce1, a'e1 a y))
z,+ 7,

(61)

1_eq

IV. EFFECT OF THE SMF ON THE TYPE-2 FUZZY PI
CONTROLLER PERFORMANCE

In this section, we will try to illustrate the effect of the SMF
on controller performance. As it has been asserted in
Subsection 3.2, the SMF of a T2-FS can be constructed in
three different ways with respect to the defined parameter y.
Thus, we will first investigate the effect of the size of the SMF
when y = 0 (interval SMF) and then the effect the shape of
the SMF for a fixed SMF size (u,) when 0 < y < 1 (to have
the shapes in Fig. 4b or 4c) on the control performance. For
both cases, we will analyze the variations of the equivalent PI
gains and their effects on the control performance. In order to
have an easier analysis, we will examine the control actions of
the zIT2-FPI by presenting the equivalent controller gain
(K¢ ¢q) and integral time constant (T; .,) of the PI controller
which are defined as:

Kc_eq = Ti_eq = KP_eq/KI_eq (62)
We would like to remind that, a decreased value of K , gives
less proportional action and slower control action, i.e. the
damping of the system will increase; while a decreased value
of T; .q provides more integral action and a faster control
performance, i.e. the damping of the system will decrease
[28]. We will examine the control performances of the zIT2-
FPI controllers for the following system:

G(s) =

KP_eq'

G+ (©3)
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where K is the gain and 7 is the time constant of the system.
The nominal system parameters are K = 1 and 7 = 1. We will
also examine the robustness of the zT2-FPI controller when
the system is perturbed (K = 1.9,7 = 0.7) (i.e. to enable
examining the system response against parameter variations).
We will define each input domain (e and ¢é) of the zT2-FPI
controller with two T2-FSs as shown in Fig. 3, where c;; =

21— %2 — %1 22 21 — 4% — 4%
Cjiy=C3=1, Ccor=cr=c;=1 a'=a; =a,; and
a” =a;? =a?. In order to examine how the SMF of the

T2-FSs affects the transient state performances, a unit step
reference is applied. Moreover, input and output disturbances
with the magnitudes of “0.2” have been applied in 20" and
40™ seconds, respectively to observe the disturbance rejection
performances.

A. Effect of the size of the FOU on the controller
performance

In this subsection, we will investigate the effect of the size
of the FOU on the control performance when y = 0, (when an
interval FS is employed as the SMF). As it has been asserted
in subsection 3.2, the zT2-FPI will reduce to an IT2-FPI
structure. Thus, the heights of the lower MF of each zSlice
will be equal, i.e. @ = a”* = a”® when y = 0. Moreover, as it
has been derived in subsection 3.3, the effect of the FOU on
the equivalent controller gains varies with respect to the
baseline T1-FPI controller parameters.

1) Case-1 (Kpcsy > KjCop)
When y = 0, Equation (57) will simplify to

KP_eq = KP61' KI_eq = Klﬁl (64)
where
5 = 4ct a? 1 65)
P \—e2(—1 4 a2)? + (coy + co1 @?)2)’ b=

Consequently, the equivalent controller gain and integral time
constant of the zIT2-FPI reduce to:

Kpé
Kc,eq = Kpé;, =1

Ti?eq -

(66)
1
It can be seen from Equation (66) that, the zT2-FPI realizes

a non-linear PI where both equivalent controller gain (Kc_eq)

and integral time constant (Ti_eq) is varying as a result of the

extra degrees of freedom provided by the FOUs. It can be
observed that:

1) When Kpcs; > Kjcpq, only 8; is a function of
é,cs,and a while B, is a constant value around the
origin (e = 0,é = 0,2 = 0). To illustrate the variation of
6,(6,cs1,a) , we will plot the change for a certain
interval of é with four fixed values a = {0.5,0.6,0.7,0.8}
(the same shapes are repeatable for various values of @)
which is illustrated in Fig.5a. We would like to underline
that the given intervals of é € [—0.5,0.5] has been chosen
only for illustrative purposes so that the effect of the FOU
on the gains can be seen clearly. It should be noted that
the derivation in Equation (30) is valid on for the intervals
which satisfy Equation (13).

2) When the FOUs increase, then &, (¢, csq, @) decreases for
the same é as shown in Fig.5a. It can be seen that since
the 6;(é, csq, ) is smaller than unity around the steady

state, thus the equivalent controller gain (K .q) and
integral time constant (T; .,) will always be smaller than
the baseline T1-FPI controller ones (K., T;). However,
since both K. ., and T; 4 decrease, a larger FOU might
decrease the damping of the zT2-FPI controller around
the steady state, and hence reduces rise time while this
may also increase the overshoot. Thus, the fuzzy control
system may even become unstable in the presence of
unmodelled dynamics, nonlinearities and uncertainties.
In the rest of the paper, we will not focus on Case-1 since in
conventional or self-tuning fuzzy controller design strategies
usually the aim is to decrease the integral action sufficiently
around the steady state to have robust system performance
against noises and parameter variations [16], [29], hence we
will mainly focus in this paper on Case-2 mentioned in the
following subsection.
2) Case-1 (Kpcsy < KjCpy1)
When y = 0, Equation (61) will simplify to
Kp eq = Kpb2  Kjeq = Ki32 67)
where
5 =1 Ao’ 68
2=1 F= (—ez(—l + a?)2 + (co1 + Cex a2)z) (68)
Consequently, the equivalent controller gain and integral time
constant of the zIT2-FPI reduce to:

Kc_eq = Kp,

Kp

KiB,

It can be concluded that, the zT2-FPI realizes a non-linear PI

where only the integral time constant (Ti_eq) is varying as a

result of the extra degrees of freedom provided by the FOUs.

Thus, it can be observed that:

1) When Kpé; < K;eq, only 3, is a function of e, c,; and «
while §, is a constant value around the origin (e = 0,é =
0,2 = 0). To illustrate the variation of B, (e, c.q, @), we
will plot the change for a certain interval of e with four
fixed values a = 0.5,0.6,0.7 and 0.8 which is illustrated
in Fig.5b. It should be noted that the given interval of
e € [—0.5,0.5] has been chosen only for illustrative
purposes so that the effect of the FOU on the gains can be
seen clearly.

2) As shown in Fig.5b, when the FOUs increase then
B, (e, cqq, @) decrease for the same e. It should be noted
that since the B, (e, c.1, @) is smaller than unity around the
steady state, the equivalent integral time constant (Ti_eq)
will always be larger than the baseline T1-FPI controller
ones (T;). Consequently, larger FOUs will result in larger
integral time constant gain (Ti_eq) around the origin
which will increase the damping of zT2-FPI in
comparison to the baseline T1-FPI controller ones. Since
the equivalent integral action decreases as the system
output reaches the reference signal, this will increase the
damping and may decrease the overshoot and the
resulting zT2 FPI controller is potentially more robust
against parameter variations around the steady state.
However, increasing the size of the FOU of the type-2
fuzzy system might slow the system response in
comparison with the type-1 fuzzy counterpart. Thus, the

Ti_eq = (69)

1063-6706 (c) 2013 |IEEE. Personal use is permitted, but republication/redistribution requires | EEE permission. See
http://www.ieee.org/publications_standards/publicationg/rights/index.html for more information.



This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TFUZZ.2014.2336267, |EEE Transactions on Fuzzy Systems

disturbance rejection performance might be worse (too
slow) since a relatively small control signal change will
be generated around the steady state as the FOU
increases. Consequently, a proper tuning of a might give
the opportunity increase the speed of the control system
while preserving the robustness against parameter
variations around the steady state.

To examine how the size of the FOUs affect the control
system performances, the control performance of the fuzzy
controllers for the cases ¢ = 1 (i.e. a T1-FPI controller) and
a = 0.2 (i.e. an IT2-FPI controller since y = 0) are illustrated
in Fig. 6a for the nominal system while in Fig. 6b for the
perturbed system. For illustrative purposes, the parameters of
the zT2-FPI are set as Kp = 0.2023 and K; = 0.46 such that
Kpcs1 < Kjcpq is satisfied. As it can be clearly seen a larger
FOU (i.e., a smaller a value) increases the damping of the
zT2-FPI, and reduces the overshoots and oscillations in the
transient state response. However, as the FOU increases, the
system response becomes slower and the disturbance rejection
times increases (as shown in time steps 20™ and 40™ sec in
Fig. 6a and Fig.6b) since a much smoother control signal will
be generated around the steady sate since the integral
equivalent gain K ., is smaller in comparison to its type-1
counterpart.

B. Effect of the shape of the SMF on the controller
performance

In this subsection, we will investigate the effect the shape of
the SMF for a fixed FOU size when 0 <y < 1 (resulting in
the SMF shapes in Fig. 4b and 4c) on the controller
performance. As it has been asserted, the zT2-FPI will be
constructed as a collection of two IT2-FPI controllers.
Moreover, the effect of the shape of the SMF on the
equivalent controller gains varies with respect to the baseline
T1-FPI controller parameters. However, as we have
underlined at the end of subsection (4.1.1), we will only focus
on Case-2 (Kpcgy < Kjcpq) where the integral action is
decreased around the steady state to have robust performance
against noises and parameter variations. Thus, the consequent
parameters of the zT2-FPI are set as K, = 0.2023 and K; =
0.46. Since we employ @} = a,; = a and a™ = a;? = a2,
Equation (11) and (12) simplifies to a” = (1 — a)y + a.
Consequently, Equation (61) will simplify to

KP,eq = Kp&3 KLeq =KP;
(Zlﬁzzl (e,cer, @) + Zzﬂzzz (e,cor, @, V)) (70)
63 =1 Bs= zZ1tz
1 2
where
z _ 4c2a?
b (e @) = —e2(—1+ a?)? + (cs1 + Coy ?)?

(71)

B3 (e, cor @, y) =
4cq(y(1 - a) + @)
-1+ (- a) + @)?)? + (co1 + cer (Y1 — @) + a)?)?
Consequently, the equivalent controller gain and integral
time constant of the zIT2-FPI reduce to:

K
I1P3

Tieq = (72)

It can be concluded that, the zZT2-FPI for 0 < y < 1 realizes
a non-linear PI where only the integral time constant (Ti_eq) is
varying as a result of the shape of the SMFs varies. It can be
observed that:

1) Only B; is a function of e, c,q,a andy while &5 is a
constant value around the origin (e = 0,é = 0,2 = 0).
The variation of PBs(e,c.q,a,y) with respect toy is
illustrated in Fig.5c for a certain interval of e is illustrated
in with four fixed values y = 0,0.3,0.6 and 1.0 where a
is fixed and set as a = 0.5 (the size of the FOU(uw,) is
fixed). Here also the case y = 0 (where the zT2-FPI
reduces to an IT2-FPI) is also presented for comparison.
The given interval of e € [—0.5,0.5] has been chosen
only for illustrative purposes so that gain variation can be
seen clearly.

2) As shown in Fig.5c, the equivalent integral time constant
(Ti_eq) will always bigger than the IT2-FPI (zT2-FPI with
y = 0) one’s but is always smaller than the baseline T1-
FPI one’s. Consequently, a proper tuning of the defined
parameter y might give the opportunity increase the speed
of the control system while preserving the robustness
against parameter variations around the steady state.

In order to validate these observations, we will briefly
examine the effect of the tuning parameter y on the control
performance for the process given in Equation (63) and we
will employ o = 0.2. In order to examine how the shape of the
SMF effects the control performances with respect to the
parameter y, the step response and disturbance rejection
performances are examined for the cases y = 1 (a secondary
FS as shown in Fig4c), y = 0.1 (a secondary FS as shown in
Figdb) and y = 0 (Interval secondary FS, i.e. an IT2-FPI). The
control performances of the zZT2-FPI control systems are given
in Fig. 7a for the nominal system while Fig. 7b shows the
control performances for the perturbed system. As it can be
seen, the zT2-FPI structure with the y = 0.1 value decreased
the settling time with a small overshoot while enhancing the
disturbance rejection performances and preserving the
robustness against parameter variations in comparison with the
IT2-FPI (y = 0). Thus, the tuning parameter y of the zZT2-FS
gives the opportunity to the control system to have a fast rise
time and a small overshoot as well as a short settling time
while enhancing the disturbance rejection performance.

V. THE ZSLICES BASED ON-LINE TUNING STRATEGY

In this section, we will propose two tuning mechanism for
the zT2-FPI structure to improve the transient and disturbance
rejection performances while preserving the robustness of an
IT2-FPI controller. As we have illustrated in Section 4. The
size of FOU and the shape of the SMF within a zT2-FPI
controller have an important effect on transient system and
disturbance rejection performance. In the control engineering
literature, it has been stated that objectives such as transient
state performance, robustness against parameter variations,
input and output disturbances and noise should be taken in
account while designing the controllers [17]. However, a
controller might not be able to improve both the robustness
and the control performance at the same time. This problem is

1063-6706 (c) 2013 |IEEE. Personal use is permitted, but republication/redistribution requires | EEE permission. See
http://www.ieee.org/publications_standards/publicationg/rights/index.html for more information.



This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TFUZZ.2014.2336267, |EEE Transactions on Fuzzy Systems

usually solved by a trade-off between control performance and
robustness [18]. Thus, as we have illustrated in the Section 4,
determining carefully the size or shape of the third dimension
of T2-FSs might be a good opportunity to enhance both the
transient state and disturbance rejection performance of the
zT2-FPI controller while preserving the robustness against
parameter variations, noise and uncertainties. Considering the
mathematical derivations presented in Section 4, an
appropriate y (which determines the shape of the SMF) or the
FOU size (where y = 0) of the ZT2-FPI can be generated in an
online manner to have a robust fast system response while
enhancing the disturbance rejection performances. Thus, we
will propose first an online tuning mechanism to generate the
FOU size (y = 0) of the zT2-FPI controller. We will then
propose an online tuning mechanism to generate an
appropriate y (0 < y < 1) of the zT2-FPI controller.

A. Online tuning strategy for the FOU size of the zT2-FPI
controller (FT-zT2-FPI)

In this subsection, we will present an online tuning
mechanism to generate the FOU size (y = 0) based on the
derivations in Subsection (4.1). Sincey = 0, Equation (11)
and (12) will reduce to a;' = a;? and a;' = a;2. We will
first define the following equations for the tuning strategy of
the FOU size:

Z Z Z
@i, = (1-ai)p + (73)
Z Z VA
Ao, = (1- ey )+ ey (74)
where p is a new tuning parameter (0 <p <1).

Consequently, the tuning interval for a;lww is then a;; <

a;' <1 while for a;!
new new

Z1
enew
heights of the lower MFs (which will set equal to the ones of
the OIT2-FPI in Section 6). Thus, the zZT2-FPI controller will
become a TI-FPI forp=1, while for 0<p <1 will
converge to IT2-FPI. Thus, an appropriate p (which
determines the FOU size) can be generated to speed the
system response while preserving the robustness as it has been
asserted in subsection (4.1). In this context, we will use the
feedback error (e) for tuning the parameter in an online
manner. Since the interval for p is within the range [0, 1], the
interval of the error [-1, 1] is mapped to the interval [0, 1] as
follows:

the tuning interval is aezg <

a < 1. Here, ae?; and aj; are the lower bounds of the

0,(e) = Abs(e) (75)

o,(e) =1 — Abs(e) (76)

One of these functions can be directly assigned as the tuning
parameter p. In this context, the step response of the closed
loop system is divided into four main regions as illustrated in

Fig. 8 where r is the reference signal and y is the system

output. The defined tuning parameter should take different

values at each region to achieve a satisfactory performance.

The following heuristic tuning strategy can be used:

e At region 1, the feedback error value is positive and the
system response approaches the set-point, therefore the
damping of control system should be increased in time to
accelerate the system response sufficiently and prevent
possible overshoot. Thus, the value of p should be

decreased in time to accelerate the system response
sufficiently. Thus, the tuning parameter can be tuned as

p =@ *a,(e) (77)
Here, the value of “¢p” is taken to be “1” for all the
regions except the first region. Since the error value
possesses its extreme value at the region 1, the value of
“@” can take values like 0.4 or 0.5 so as to prevent the
possible overshoots in the system response.

e At region 2, the system error value is negative and the
system response drifts away from the set-point therefore
the damping of control system should be decreased to
reduce the overshoot. Thus, p should be increased
sufficiently as follows:

p = oy.(e) (78)

e At region 3, the system error value is negative and the
system response approaches the set-point, therefore the
damping of control system should be decreased in time to
accelerate the system response sufficiently. Thus, the
tuning parameter is tuned as

p =o(e) (79)

e At region 4, the system error value is positive and the
system response drifts away from the set-point, therefore
the damping of control system should be decreased to
reduce the undershoot. Thus, p should be increased
sufficiently as;

p = o;(e) (80)

If the error (¢) and change of error (¢) has entered and

remained within a specified error band, such as 2%, then the

tuning mechanism can be turned off and p can be set to a fixed
value such as 0 to have a robust system performance around
the steady state.

B. Online tuning strategy for the shape of the SMF on the
zT2-FPI controller (ST-zT2-FPI)

In this subsection, we will present a simple mechanism to
tune the shape of the SMF on the zT2-FPI controller in an
online manner. As it has been shown in the derivations in
Subsection (4.2), tuning the shape of the SMF can
substantially improve the transient and disturbance rejection
performances while preserving the robustness of an IT2-FPI
controller. We will propose a heuristic tuning strategy, which
is similar to the one presented in the previous subsection since
the effect of y on the system response is similar to the effect of
p), to generate an appropriate ¥ in an online manner :

e Atregion 1, the value of y should be decreased in time to
speed the system response sufficiently as:
Yy =¢@=xa,(e) (1)
Here, the value of “¢” is taken to be “1” for all the
regions except the first region. Since the error value
possesses its extreme value at the first region, the value of
“@” can take values like 0.4 or 0.5 so as to prevent the
excessive acceleration of the system response which may
cause possible overshoots.
e Atregion 2, y should be increased sufficiently to decrease
the damping of control system as follows:
y =o.(e) (82)
e At region 3, the damping of control system should be
decreased in time to accelerate the system response
sufficiently. Thus, the tuning parameter is tuned as
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y =o1(e) (83)

e At region 4, y should be increased sufficiently to reduce
the undershoot as follows:

y =0z(e) (84)
If the error (¢) and change of error (é¢) has entered and
remained within a specified error band, such as 2%, then the
tuning mechanism can be turned off and y can be set to a fixed
value such as 0.4 or 0.5 to have a robust system performance
and a fast disturbance rejection response around the steady
state.

VI. THE zT2 FPI CONTROLLER DESIGN STRATEGY

In this section, we will present the design strategy employed
for ZT2 FPI controllers. Since a systematic design even for
IT2-FLCs is still a challenging problem, we will design the
zT2-FPI controller by employing an evolutionary algorithm
called Big Bang-Big Crunch (BB-BC) optimization. Thus, we
will start by presenting briefly the BB-BC method and then we
will present the design strategy employed for zT2 FPI
controllers. It should be noted that, other evolutionary
algorithms can also be employed to design the controllers.
However, this does not affect the effectiveness of the
presented results in this paper.

A. A brief overview on BB-BC Optimization

Erol and Eksin [30] proposed a new evolutionary algorithm
named BB-BC. The working principle of this method can be
explained as the transformation of a convergent solution to a
chaotic state and then back to a single tentative solution point.
BB-BC method consists of two main steps namely “Big Bang”
and Big Crunch”. In the BB-BC algorithm, the first step is the
“Big Bang” phase where candidate solutions are randomly
distributed over the search space. After the “Big Bang” phase,
a contraction operator is applied such as the “Big Crunch”
phase to form a center or a representative point for further
“Big Bang” operations [30]. The contraction operator
computes the center of mass which is defined as:

51 S
xcszlf—kxk/kzzlf—k

where x, is the position of the center of mass, f k is the cost
value of the k" candidate x*, and T is the population size.
Then, in the next “Big Bang” phase, the new candidates are
calculated as:
x" = x, + (rw(xmax - xmin))/l (86)
where r is a random number; @ is a parameter limiting the
size of the search space, x,,,, and x,,;, are the upper and lower
limits; and / is the iteration step [30].

B. The BB-BC optimization of the zT2 FPI Controller
Structure

(85)

In this subsection, we will present the application of BB-BC
optimization to design the parameters of the antecedent MF of
the zT2 FPI controller. Since T2-FLS is a generalization of
T1-FLS, we will first design a baseline T1-FPI and then
extend the controller to design the IT2-FPI and zT2-FPI
controllers.

We will optimize the TI-FPI controller presented in
Equation (2) to minimize the Integral Absolute Error (IAE)

10

value via the BB-BC optimization. Thus, the optimization
variables for the BB-BC algorithm are defined as xpq_gp; =
(cs1,Co1, Kp, K;). While in the optimization of the IT2-FPI
controller, we will employ a; =as_1 =as and a, =
Q._1 = Qpy so that the properties of the antecedent MFs of
IT2-FPI controller structure presented in Equation (4) are
satisfied and accordingly only the heights (@, a,) of the
lower antecedent MFs are optimized to minimize the IAE
value, while the cores (csq,C01) and consequent parameters
(Kp, K;) are fixed and set to the same values of the Optimized
T1-FPI (OT1-FPI) structure. Thus, the optimization variables
for the BB-BC algorithm are defined as X;7,_pp; = (a4, @,).

As it has been shown in Subsection (3.2), the zZT2-FPI can be
constructed as a collection of IT2-FPI controllers. Thus, we
will set the cores of the MFs and the consequent parameters of
zT2-FPI to the same values of ones of the IT2-FPI. In the
design of the FT-zT2-FPI (y =0), we will set the MF
parameters of Optimized IT2-FPI (OIT2-FPI) as the lower
bounds of the antecedent MFs of the FT-zT2-FPI (presented in
Equations (73) and (74)), i.e. aéf; = a, and a;; = a,. The
parameters for MFs of the FT-zT2-FPI (afg:[ew, azt ) will be
online calculated as presented in Section (5.1). In the design of
the ST-zT2-FPI (0 < y < 1), we will set the MF parameters
of OIT2-FPI as heights of the lower MFs of the ST-zT2-FPI
associated with the zSlices z;, i.e. agl =a, and a’' = a,.
The parameters of the MFs associated with the zSlices z,
(ajz, aezz) will be online obtained via the tuning mechanism
presented in Section 5.2. The pseudo-code of the controllers
design method is given in Table I.

VII. SIMULATION EXPERIMENTS AND RESULTS

In this section, the performance of the proposed online FT-
zT2-FPI and ST-zT2-FPI are compared with the OT1-FPI and
the OIT2-FPI controllers on two systems which have non-
minimum phase and nonlinear dynamics, respectively. In this
context, we will examine the transient state response,
disturbance rejection performances and the robustness against
nonlinear dynamics, parameter uncertainties and noise of the
controllers. Thus, three performance measures are considered
which are the settling time (7;), and the overshoot (OS%)
while the third performance measure is the IAE value.
Throughout the studies, two MFs are used to characterize each
input domain (e, €) of the fuzzy structures where the cores of
the MFs are fixed to ¢s; = ¢,y = 1. The design of the T1-FPI,
IT2-FPI and zT2-FPI controllers have been accomplished as it
has been stated in Section 5. In the simulation studies, all
controllers are implemented as the discrete-time versions
obtained with the bilinear transform with the sampling time
T,=0.1s. The simulations were performed on a personal
computer with an Intel Pentium Dual Core T2370 1.73 GHz
processor, 299 GB RAM, and software package
MATLAB/Simulink 7.4.0.

A. Simulation Results on System [
Consider the non-minimum phase process given by Astrom
and Hagglund [28],

G(s) = K1 —1s)

(s+1)3 (87)
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where K is the gain and 7 determines the position of the right
half plane zero and the nominal values are K = 1 and 7 = 1.
The obtained optimal parameter sets for the controllers are
tabulated in Table II.

The wunit step responses and disturbance rejection
performances of the fuzzy control systems are investigated for
the nominal parameter set K = 1,7 =1 (Nominal System)
and for three perturbed parameter sets which are K = 1.2,7 =
1.6  (Perturbed System-1), K =0.8,7 =2.5 (Perturbed
System-2) and K = 1.5,7 = 0.5 (Perturbed System-3) to
examine their robustness against parameter variations. The
output and input disturbance with the magnitudes of “0.2”
have been applied in 50" and 100™ seconds, respectively. The
control performances of the fuzzy control systems are
illustrated in Fig. 9.The transient state performance measures
are given Table III while the output (/[4AE,) and input (IAE,,)
disturbance rejection performance measures are tabulated in
Table IV.

As it can be clearly seen in Table III and Table IV, the
OIT2-FPI is more robust against parameter partitions in
comparison to its type-1 counterpart. The OIT2-FPI system
reduced the OS% and oscillations by reducing the speed of the
closed system response and accordingly has higher 7y and IAE
values and resulted with poor disturbance rejection
performances. However, the proposed zT2-FPI structures
enhanced both the transient state and disturbance rejection
performances of all systems. For instance, if we examine the
results for Perturbed System-1 (presented in Fig.9a), when
compared to the OTI-FPI, the ST-zT2-FPI reduces the
overshoot by about 24% (=abs(26%-34%)/34%); it also
decreases the settling time by about 26% and the total IAE
value by about 9%. Note that, the OS% and IAE values of the
FT-zT2-FPI are quite close to the ST-zT2-FPI ones. However,
in comparison to the ST-zT2-FPI structure, the FT-zZT2-FPI
inherits a relatively higher undershoot and oscillations.
Moreover, when we examine the disturbance rejection
performances from Table IV, it can be clearly seen that when
compared to the OIT2-FPI controller, the zT2-FPI structures
have better output (/4E,;) and input (JAE,) disturbance
rejection performance values. However, the best performance
values are obtained by the ST-zT2-FPI which decreased IAE,
value by about 34% and IAE, value by about 40% in
comparison to OIT2-FPI. Similar comments can be made for
the perturbed system responses. It can be concluded that the
transient and disturbance rejection performances of the ST-
zT2-FPI is better than the OT1-FPI, FT-zT2-FPI and OIT2-
FPI controllers while it is robust against parameter variations
and disturbances.

In order to demonstrate the convergence of the tuning
parameters of the FT-zT2-FPI and ST-zT2-FPI, we will show
in Fig. 9 the change of the tuning parameters (y, p) for the
presented parameter settings. As can be seen in Fig. 9, the
value of the tuning parameters relatively increases to
accelerate the system response sufficiently while preventing
possible overshoot as the system response approaches the set-
point. The same performances of (y,p) follows for all the
following experiments, however due to the space constraints,
we will not show the change of the tuning parameter in the
rest of the paper.

11

B. Simulation Results on System Il

Consider the nonlinear system given by Mudi and Pal [29] as

’y®)  dy(®) (88)

— = -7 2
u(t —L) = —5—+——+ky(®)

where L is the time delay and k is the gain. Moreover, we will
assume that the output inherits band limited white noise to
examine also the robustness of the controllers against noise.
The obtained optimal parameter sets of the fuzzy controllers
for L = 0.4,k = 0.25 (Nominal System) are given in Table II.

The step responses and disturbance rejection performances
of the controllers are investigated for the nominal parameter
set and for the perturbed parameter set which is L = 0.8,k =
0.15 (Perturbed System) to examine their robustness against
parameter uncertainties. The system responses are illustrated
in Fig. 10 while the performance measures are given in Table
V. Here, the output and input disturbance with the magnitudes
of “0.2” have been applied in 50" and 100" seconds,
respectively.

The OIT2-FPI structure was able to reduce the overshoot
and provide robustness against parameter variations, noise and
parameter variations in comparison to its type-1 while
reducing the system response time which resulted as poor
disturbance rejection performances. On the other hand, both
zT2-FPI structures provide satisfactory transient state and
disturbance rejection performances in the presence of noise as
has been shown in Fig.10. For the nominal system, the FT-
zT2-FPI and the ST-zT2-FPI structures have almost identical
performance values but the FT-zT2-FPI is slightly better as
given in Table V. While in the perturbed system responses,
when compared to OTI-FPI, the ST-zT2-FPI reduces the
overshoot by about 34%; it also decreases the settling time by
about 39% and reduced the total IAE value by about 18%.
Although the FT-zT2-FPI has an identical OS with the ST-
zT2-FPI, it has a bigger settling time and IAE values by about
22% and 15%, respectively in comparison to the ST-zT2-FPL
Moreover, the system response of the FT-zT2-FPI inherits a
fairly large undershoot and oscillations which are avoided by
the ST-zT2-FPI. Moreover, when we examine the disturbance
rejection performance measures given in Table V, it can be
clearly seen that when compared to the OIT2-FPI structure,
the FT-zT2-FPI enhances the both /AE,, and IAE,, values by
about 64% for the perturbed system. Note that, although the
disturbance rejection performance is satisfactory in the sense
of the JAE, and IAE,, values, the system response is poor
since it inherits a large overshoot and oscillations. It can be
concluded that the FT-zT2-FPI provided a robust control
performance against nonlinear dynamics, noise and
disturbances while providing better the performance measures
than the OT1-FPI and OIT2-FPI as tabulated in Table V.

C. General Comments on the zT2-FPI control system
performance

As we have illustrated in the simulation studies, online
tuning the size and shape of the SMFs of the zZT2-FPI can
enhance the system performance in comparison to its type-1
and type-2 counterparts. In the first proposed FT-zT2-FPI
(since y =0 it is in fact an IT2-FPI with an online FOU
tuning mechanism) structure, we have shown that tuning the
size of the FOUs of the IT2-FPI might not be an effective way
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since the system response inherits oscillations and undershoots
similar to its type-1 counterpart in presence of noise,
parameter variations, disturbances and nonlinear dynamics.
While in the presented results of the proposed ST-zT2-FPI
confirm that tuning the shape of the SMFs with fixed FOU
size provides robustness against noise, parameter variations
and nonlinear dynamics. There are improvements both in the
transient state and disturbance rejection performances such as
reducing the overshoot and settling time and eliminating
undershoots and oscillations. Thus, in the real-time studies of
the mobile robot where the possibility of noise and
unmodelled nonlinear dynamics are high (which will be
presented in the following section) only the ST-zT2-FPI
structure will be employed and abbreviated as “EzT2-FPI”.
Moreover, to establish if the proposed zT2-FPI more
complex structures will cause drastic impact on the controllers
real-time response, we have investigated the computation time
needed by the zT2-FPI, IT2-FPI and T1-FPI structures to map
an input to an output for all possible combinations of the input
values in their corresponding universe of discourses, i.e., e€[-
1,+1] and é€[-1,+1]. It was found that the average
computation times of the TI1-FPI, IT2-FPI and zT2-FPI
structures are 0.12ms, 0.29ms and 0.42ms respectively, where
the obtained maximum computation time values are 13.62ms,
19.57ms and 22.62ms, respectively. Although there is some
increase in the average computation time of the zT2-FPI in
comparison to the T1-FPI and IT2-FPI, the obtained maximum
computation times of the IT2-FPI and zZT2-FPI are quite close.
Hence, the real-time control application of the zT2-FPI is
feasible for systems with relatively small sampling periods
and it will be shown later that the proposed zT2-FPI produces
a superior transient state and disturbance rejection
performances in comparison to the T1-FPI and IT2-FPI.

VIII. REAL-WORLD EXPERIMENTS AND RESULTS

In this section, we will compare the performance of the
OT1-FPI, OIT2-FPI and EzT2-FPI (ST-zT2-FPI) controllers
in a cascade structure to solve the path tracking control
problem of a real-world mobile robot. Thus, we will start by
presenting kinematic motion equations of the mobile robot and
then present the proposed cascade structure for the tracking
control problem of the mobile robots. Finally, the real-time
control performance of the presented type-1 and type-2
structures are examined.

A. The Kinematic Motion Equations of the Mobile Robot

The schematic diagram of the Pioneer 3-DX mobile robot’s
architecture is illustrated in Fig. 11a. The kinematic motion
equations of the mobile robot have a nonintegrable constraint
with the assumption that the robot cannot slip in a lateral
direction in the form as:

A(q)q = xsinf — y cos @ (89)
where A(g) is the constraint matrix defined over the state

vector g(t) = [x(t) y(t) 6(2)]". The first order kinematics model

is in the following equation:
qg=s(@v wl (90)

where

12
cosf O

s(g) = [sin@ 0] ©on
0 1

and v(z) and w(?) are the linear and angular velocities of the
mobile robot. Moreover, the bounded velocity and
acceleration constraints are considered [31]. To control the
system given in Equation (89), the reference trajectory should
also be described as:
cosB, 0
qr = [sin 0, O] U,
0 1
where ¢,(1) = [x,(t) y(t) 0,()]" is the reference state vector and

u(t)=[v,(t) w,(t)]" is the reference control signal. Then, an
error state can be defined as follows:

cos@ sinf O xr_x
e = = —sm9
9 —9

cos 0 0
Consequently, the trackmg control problem is converted into a
regulation problem [32].

92)

93)

B. The Proposed Cascade Control Structure for the Mobile
Robot Tracking Control

In this subsection, we will present a cascade structure to
solve the path tracking control problem of the mobile robot. In
this study, we will consider the linear velocity (v(?)) to be
constant while the angular velocity of the mobile robot as the
manipulated variable (w(?)). Consequently, the mobile robot
model should have a single input and three controlled
variables, it has been reported that the system performance is
also satisfactory when two controlled variables (6(z) and y())
are considered since x(z) can be defined as a function of 6(2)
and y(?)) [33], [34]. The employed overall cascade architecture
is illustrated in Fig. 12. The implemented cascade structure
consists of three main blocks which are the transformation
block, the outer and the inner controller. In the transformation
mechanism, the robot pose (x(z), y(), 6(t)) and the desired
reference trajectory is used to compute the local error signal
on y- axis via:

e, = cos 6 (y, —y) —sin6 (x, — x) (94)
This error signal is then fed as the input to the outer controller
to generate the reference angle 8,.(¢) which will correspond to
the necessary heading angle of the inner controller to track the
trajectory.

In the real time applications, the inner controller is chosen as
PI controller and its parameters are optimized to minimize the
IAE performance index via the BB-BC optimization
algorithm. Here, the linear speed of the mobile robot is set as
v(t)=200cn/s and the starting point of the mobile robot was
the center on the origin of the coordinate system (x=0m,
y=0m) with the initial heading of 6=0. The optimum values of
parameters are found as Kp = 3.01 and K~0.24 for the
reference steering angle 0,..; = /2. The presented OT1-FPI,
OIT2-FPI and EzT2-FPI are implemented as the outer
controller for performance comparison, respectively. The
design procedure presented in Section 5 has been employed
for a y-axis step reference with a value of 500cm. The
obtained values of OTI1-FPI are Kp = 0.25,K; = 0.9,c4q =
4.5,c.1; = 2 and for the OIT2-FPI are a; = 0.42,a, = 0.64.
In the design of EzT2-PI, the defined parameter (y) is online
tuned while the other parameters are set as given in Section 5.
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C. Real-Time Closed Loop Control Performance Analysis

In this subsection, we will present real world experiments
using the PIONEER 3-DX mobile robot (shown in Fig. 11b) to
evaluate the proposed EzT2-FPI structure. The pose of the
mobile robots (x(2),y(2),0(t)) has been computed at each
sampling time (#,=0.1s) using the odometry system. It is well
known that odometry is a technique which has an
accumulative error which implies the need to update the
estimation from data provided from an external sensor system
at a predetermined sampling period [31], [32]. This issue is
separate from the control problem, and has not been addressed
in the paper. The experimental environment of the mobile
robot is shown in Fig. 1lc. It should be noted that the
presented trajectory in Fig. 11c is just for visualization of the
reference trajectory. The reference trajectory is predefined and
implemented in the reference path mechanism which is
illustrated in Fig. 12.

In the real-time control studies, different analyses are
presented to investigate the control performances of the OT1-
FPI, OIT2-FPI and EzT2-FPI structures. Thus, we will
examine the transient state response and disturbance rejection
performances of the controllers for various operating points
and investigate robustness against parameter uncertainties,
nonlinear dynamics, disturbances and noises. To make a fair
comparison, three performance measures are considered which
are Ty, 2608 and

IAE, = jlyr —y| fory — axis reference values
95)
IAE, = flxr —x| for x — axis reference values

1) Y-Axis Trajectory Control Performance Analysis

This section presents an experimental comparison of the
cascade structures for a constant y-axis reference value. We
will examine the control performance of the fuzzy PI
controllers in three cases. We will first start the control
performance of the controllers at the operating point (Case-1:
yr(t)=500cm, v(t)=200m/s) at which the controllers were
designed. Then, at the same operating point, we will increase
the constant linear velocity 15% (Case-2: yr(t)=500cm,
v(t)=230m/s) to see how the controllers are robust against
parameter uncertainties. Moreover, the robustness of the
controllers against nonlinear dynamics is investigated by
defining another y-axis reference trajectory (Case-3:
yr(t)=300cm, v(t)=200m/s).

The tracking results on the x-y axis for all three cases are
shown in Fig. 13 while performance measures are given in
Table VI. The experimental results of the EzZT2-FPI structure
show that the mobile robot converges to the reference
trajectory in short time when compared to the OT1-FPI and
OIT2-FPI counterparts. For instance, if we examine the results
for Case-1, when compared to OTI-FPI, the EzT2-FPI
structure reduces the overshoot by about 61%; it also
decreases the settling time by about 43% and it reduces the
total IAEy value by about 27%. The transient performance
measures of the OIT2-FPI are also satisfactory. OIT2-FPI
enhanced both the overshoot and settling time but with a
relatively high IAEy performance value which is almost 1.3
times bigger than the EzZT2-FPI ones. Similar comments can
be made for Case-2. Moreover, if we examine the results of

13

Case-3 it can be clearly seen that the T1-FPI system response
is oscillating while both the OT2-FPI and EzZT2-FPI were able
to converge to reference value. However, as tabulated in Table
VI, EzT2-FPI structure resulted in the lowest Ts and IAEy
performance values when compared to the OIT2-FPI
counterpart. It can be concluded that, the EzZT2-FPI structure
preservers the robustness against parameter uncertainties and
nonlinear dynamics while enhancing the transient state
performance in comparison to the type-1 and type-2 fuzzy
counterparts.

2) X-Axis Trajectory Control Performance Analysis

We have tested the performances of the controllers also for
x-axis reference trajectory with a the initial pose of
(x(®),y(?),0(1))=(0m, Om,37/2). Since the controllers were
designed for y axis trajectory, this could be a good way to
investigate the transient performances and how robust the
controllers are against nonlinear dynamics and parameter
variations. Thus, we will examine the control performance of
the fuzzy PI controllers in two operating points which are
x(1)=500cm, v(#)=200m/s (Case-4) and x.2)=500cm,
v(t)=230m/s (Case-5). In Fig.14, the transient convergence of
the mobile robot to x-axis reference trajectory is given for the
two examined cases. The EzT2-FPI provides a better control
performance than the type-1 and type-2 fuzzy structures as
given in Table VII. For all cases, only the presented the OIT2-
FPI and the EZT2-FPI were able to converge to the desired
value. However, the EzT2-FPI structure was able to accelerate
the system response and enhance the /AE, value in comparison
to the IT2-FPI while the OT1-FPI was not able to handle
different operating conditions. The results confirm that the
EzT2-FPI structure has the ability to enhance the transient
state and be more robust against nonlinear dynamics and
parameter uncertainties at various operating points in
comparison to the other controllers.

3) Disturbance Rejection Performance Analysis

This subsection examines the disturbance rejection
performances of the fuzzy controllers. We will examine the
robustness against disturbances by presenting both the input
and output disturbances. The robustness against disturbances
will be examined for the nominal velocity (v(2)=200cm/s) and
then we will increase the velocity by about 15%
(v(1)=230cm/s) to investigate the robustness in the presence of
parameter uncertainties. The mobile robot is in steady state at
the operating point (y(2)=0, 6(t)=0, w(t)=0).

At first, a step input disturbance (d,,(t)) with a magnitude
of “0.5” has been applied the mobile robot. The input
disturbance performance for the nominal (Case-6:
v(t)=200cm/s) and perturbed (Case-7: v(2)=230cm/s) are
presented in Fig.15. If we examine the performance results
given in Table VIII, it is clear that when compared to IT2-FPI,
the EzT2-FPI structure reduces I4E,, value by about 46% for
the nominal linear velocity while for the perturbed linear
velocity, the EzT2-FPI improves the performance by about
12% . It should be noted that the IAE,, value of the OT1-FPI
has the lower value for the nominal velocity while a higher
value for the perturbed velocity in comparison with the EzT2-
FPI controller’s values. The results confirm that OT1-FPI is
not robust in various operating conditions and nonlinearities
while the EzT2-FPI structure is more robust against input
disturbances and parameter variations and is capable to
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enhance the disturbance rejection performance of OIT2-FPI
structure.

Secondly, a step output disturbance (d,(t)) with a
magnitude of “200” has been applied the mobile robot. The
output disturbance rejection performances of the fuzzy
controllers for the nominal (Case-8: v(#)=200cm/s) and
perturbed (Case-9: v(#)=230cm/s) linear velocity are presented
in Fig.16. The performance measures of the fuzzy controllers
are tabulated in Table VIII. The system response of the OT1-
FPI structure is oscillating for the nominal speed while
resulted with a satisfactory disturbance rejection performance
for the perturbed speed. This confirms that OT1-FPI is not
robust in different operating conditions. Nevertheless, for both
linear speeds the OIT2-FPI and EzT2-FPI were able to obtain
a non-oscillating system response. In comparison to OIT2-FPI,
the EZT2-FPI structure was able to accelerate the disturbance
rejection performance significantly and consequently reduced
IAE,, value to about 15% for the nominal velocity while for
the perturbed velocity by about 23%.

The performance measures of the disturbance rejection
studies confirm that the EzT2-FPI is more capable of handling
disturbances and is more robust against nonlinear dynamics
and uncertainties while providing a fast and satisfactory
disturbance rejection performance when compared to IT2-FPI
structure.

IX. CONCLUSIONS AND FUTURE WORK

It has been shown in various works that the IT2-FLCs might
be able to handle high levels of uncertainties since it they have
a smoother control surface around the steady state. Thus, it
had been deduced that IT2-FPI controllers are potentially
more robust; however, the settling time may increase and
disturbance rejection performance may degrade in comparison
with its type-1 counterparts. Thus, to combine the features of
the T1-FPI and IT2-FPI controllers (speed and robustness), we
developed a general type-2 fuzzy PI controller which provided
an acceptable trade-off between the robust control
performance of the IT2-FPI and the acceptable transient and
disturbance rejection performance of the T1-FPI controllers. It
should be stressed that the paper focused on the case followed
in conventional or self-tuning fuzzy controller design
strategies where the aim is to decrease the integral action
sufficiently around the steady state to have robust system
performance against noises and parameter variations.

In this paper, we proposed a novel zT2-FPI structure where
the SMFs of the antecedent T2-FSs are adjusted in an on-line
manner. We first presented the internal structure of the
proposed zT2-FPI controller which is in fact a series of
slightly modified IT2-FPI controllers due to the zSlices theory.
We proposed a simple method to design zZT2-FPI controllers
by a single design parameter which determines the shape of
the SMFs of the antecedent T2-FSs. We provided theoretical
explanations showing how the size and shape of the SMFs
affects the controller performance from a mathematically point
of view for the first time in literature. We have presented
analysis showing that increasing the size of the FOUs of the
ZT2-FPI can potentially make the system more robust against
parameter variations and improve the transient state
performance such as reducing the overshoot and oscillations
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on the cost of a slower system response and disturbance
rejection performance aspects when compared to the type-1
counterparts. We also provided theoretical analysis showing
that tuning the shape of the SMFs of the zT2-FPI controllers is
an efficient way to provide an acceptable trade-off between
the transient state and disturbance rejection performance of the
zT2-FPI controller while preserving the robustness against
parameter variations, noise and uncertainties. Based on our
observations of the tuning parameters p (which is used to tune
the size of the FOU) and y (which is used to design the shape
of the SMFs) on the system response; we proposed two
heuristic tuning mechanism to shape the system response to
obtain an efficient and appropriate control signal that will be
able achieve a desired transient state response and an efficient
disturbance rejection performance while preserving the
robustness of IT2-FPI controllers. Moreover, we presented a
BB-BC optimization based zT2-FPI design strategy.

We presented several simulation studies to validate the
proposed approaches where the EzT2-FPI structures were
compared with an OT1-FPI and OIT2-FPI structures with
respect to defined performance measures. We have illustrated
that tuning the shape of the SMF of the zZT2-FPI structure is a
more efficient control strategy instead of tuning the size of
FOU of the zZT2-FPI (actually a self-tuning IT2-FPI) structure.
We also illustrated that the proposed controller has relatively
low computational cost which makes it feasible for real-time
control applications with relatively small sampling periods
since zT2-FPI employed the zSlices theory and tuned by a
single parameter. We presented also real time control studies
to evaluate the controllers on the real-time control
performance of the PIONEER 3-DX mobile robot which
inherit large amounts of nonlinearities and uncertainties
caused by the internal dynamics and/or feedback sensors of
the controlled system. The presented comparative experiments
support the effectiveness of the proposed EzT2-FPI design
approach. The experimental control performance results
confirmed that the proposed EzT2-FPI structure can enhance
the transient state and disturbance rejection control
performances and it is also more robust to nonlinear dynamics,
disturbances, noise and uncertainties when compared to the
OT1-FPI and OIT2-FPI controllers for the handled benchmark
systems.

It can be concluded that the proposed EzT2-FPI structure
gives the opportunity to enhance both the transient state
performance and disturbance rejection performance while
preserving the robustness against nonlinear dynamics, noises
and parameter uncertainties in different operating points and
conditions which is not possible with the type-1 and interval
type-2 counterpart for certain class of systems.

For our future work, we aim to develop and design zT2-FPI
controllers having more than two zSlices (Q > 2) and extend
the presented design approach. Moreover, we aim to focus on
more sophisticated tuning mechanisms which might improve
the control performance of the zZT2-FPI control system.
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TABLE I. THE PSEUDO-CODE OF BB-BC BASED FUZZY CONTROLLER DESIGN METHOD

Step1 Define the parameters of the BB-BC optimization, i.e. the population size and the number of iterations.
Step 2  Define the controller type (T1-PI/IT2-FPI) and the corresponding parameter set (xX7,.rp/Xr2-rp;) to be optimized.
Step 3 Generate an initial population randomly for the parameter set of the controller (Initial Big Bang Phase).
Step4  Simulate the closed loop control system for each population member.

Calculate the IAE performance values for the generated population members.
Step5 Calculate the center of mass via Equation (85).

Choose the best fit individual or the center of mass as the point of Big Bang Phase (Big Crunch Phase).
Step 6  Calculate new population members around the new point calculated in Step 6 via Equation (86). (Big Bang Phase).
Step 7 Return to Step 4 until stopping criteria has been met.

TABLE II. THE PARAMETER SETS OF THE FUZZY PI CONTROLLERS

System-1 System-11
(KP' KI) (aé ) Ae ) (ajol' “2) (a?' ajl (KP' Kl) (aé ) Ao ) (aggl' aeznl) (a?' a:1
OT1-FPI (0.20,0.21) - - - (0.09,0.10) - - -
OIT2-FPI (0.20,0.21)  (0.15,0.20) - - (0.09,0.10)  (0.10,0.11) - -
FT-zT2-FP1 ~ (0.20,0.21) = (0.15,0.20) - (0.09,0.10) - (0.10,0.11) -
ST-zT2-FPI _ (0.20,0.21) - - (0.15,0.20) (0.09,0.10) - - (0.10,0.11)

TABLE III. TRANSIENT STATE PERFORMANCE COMPARISON OF THE FUZZY CONTROLLERS FOR SYSTEM-I

Nominal System Perturbed System-1 Perturbed System-2 Perturbed System-3

(OF] Ts IAE 0os Ts IAE (OF] Ts IAE 0os Ts IAE

OT1-FPI 13% 17.5s 7.15 34% 252s  9.27 22% 28.1s 10.41 21% 18.1s  6.05
OIT2-FPI 0% 11.0s  6.59 25%  28.6s  10.72 11% 29.6s 10.34 10% 19.2s  6.11
FT-zT2-FPI 3% 10.1s 6.91 27% 25.1s  8.64 14% 23.5s 991 13% 16.2s 5.80
ST-zT2-FPI 1%  10.2s  6.60 26% 18.6s 845 12% 244s  9.85 11% 16.8s  5.73

TABLE IV. DISTURBANCE REJECTION PERFORMANCE COMPARISON OF THE FUZZY CONTROLLERS FOR SYSTEM-I
Nominal System  Perturbed System-1  Perturbed System-2  Perturbed System-3

IAEy, IAEq,  IAEy IAEq, IAEy, 1AEq, IAEy, IAEq,
OTI1-FPI 138 1.28 1.81 2.19 2.04 1.86 115 1.46
OIT2-FPI 294  3.12 242 322 3.48 3.29 1.94 3.07

FT-zT2-FPI 158 1.45 1.92 2.17 2.37 1.99 133 1.66

ST-zT2-FPI 135 137 1.60 1.92 1.88 1.66 1.12 1.53

TABLE V. PERFORMANCE COMPARISON OF THE FUZZY CONTROLLERS FOR SYSTEM-II

Nominal System Performance Perturbed System Performance
Transient State Disturbance Rejection Transient State Disturbance Rejection
oS TS IAE IAEq, IAEq, oS TS IAE IAEq, IAEq
OT1-FPI 23% 15.5s  6.04 1.72 2.48 56% 29.5s 9091 1.76 5.12
OIT2-FPI 6% 10.5s 5.38 8.20 15.13 37% 64.2s 15.88 4.75 13.96
FT-zT2-FPI 8%  10.8s 5.52 1.69 2.45 37% 232s  9.59 1.69 5.22
ST-zT2-FPI 7% 10.7s 542 1.75 2.62 37% 18.1s  8.16 1.24 4.88

TABLE VI. PERFORMANCE COMPARISON OF THE FUZZY CONTROLLERS FOR THE Y-AXIS REFERENCE TRAJECTORIES
Case-1 Case-2 Case-3
s (OF] IAE, Ts 0os IAE, Ts (OF] IAE,
OT1-FPI  14.1s 17.6% 188756 14.9s 122% 191820 Oscillating System Response
OIT2-FPI  10.7s  0.0% 175990 9.8s  0.0% 159550  20.1s 0.0% 201900
EzT2-FPI  8.0s  6.8% 137984 4.7s  25% 116710 15.6s 0.0% 132927

TABLE VII. PERFORMANCE COMPARISON OF THE FUZZY CONTROLLERS FOR THE X-AXIS REFERENCE TRAJECTORIES
Case-4 Case-5
Ts (OF] 1AE, Ts 0os 1AE,
OT1-FPI  162s 0.0% 497930 Oscillating System Response
OIT2-FPI  16.8s 0.0% 509690  16.6s 0.0% 511230
EzT2-FPI  14.9s 0.0% 457880 14.2s 0.0% 398690

TABLE VIIL. DISTURBANCE REJECTION PERFORMANCE COMPARISON OF THE FUZZY CONTROLLERS
Input Disturbance Rejection  Output Disturbance Rejection

Case-6 Case-7 Case-8 Case-9

1AEq, 1AEq, 1AEq, 1AEq,

OT1-FPI 091031 311610 * 166301
OIT2-FPI 213180 381720 298320 209960
EzT2-FPI 113460 271970 255700 159620

*QOscillating System Response
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