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Numeracy is as important as literacy and exhibits a

similar frequency of disability. Although its etiology

is relatively poorly understood, quantitative genetic

research has demonstrated mathematical ability to

be moderately heritable. In this first genome-wide

association study (GWAS) of mathematical ability and

disability, 10 out of 43 single nucleotide polymorphism

(SNP) associations nominated from two high- vs. low-

ability (n = 600 10-year-olds each) scans of pooled

DNA were validated (P < 0.05) in an individually

genotyped sample of *2356 individuals spanning the

entire distribution of mathematical ability, as assessed

by teacher reports and online tests. Although the effects

are of the modest sizes now expected for complex traits

and require further replication, interesting candidate

genes are implicated such as NRCAM which encodes a

neuronal cell adhesion molecule. When combined into a

set, the 10 SNPs account for 2.9% (F = 56.85; df = 1 and

1881; P = 7.277e–14) of the phenotypic variance. The

association is linear across the distribution consistent

with a quantitative trait locus (QTL) hypothesis; the

third of children in our sample who harbour 10 or

more of the 20 risk alleles identified are nearly twice

as likely (OR = 1.96; df = 1; P = 3.696e–07) to be in the

lowest performing 15% of the distribution. Our results

correspond with those of quantitative genetic research

in indicating that mathematical ability and disability

are influenced by many genes generating small effects

across the entire spectrum of ability, implying that more

highly powered studies will be needed to detect and

replicate these QTL associations.
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Mathematics is fundamental to many fields such as science,
engineering, economics and medicine, and the understand-
ing of basic numeracy and related skills is a crucial component
of normal brain function. Despite widespread appreciation of
the increasing importance of numeracy in modern society,
research has revealed poor average performance in many
countries, with extremely low enrolment in mathematical
subjects after age 16 (Mazzocco & Myers 2003; Smith 2004).
Defining disability in mathematics rests on establishing a
cut-off, which can be performed in a variety of ways. One
approach defines disability as obtaining arithmetic scores at
least 2 years below expected grade level (American Psychi-
atric Association 1994). With this definition, mathematical
disability has an estimated frequency of 6% in school chil-
dren (Gross-Tsur et al. 1996), a prevalence similar to that
of reading disability (Law et al. 1998). Understanding the
etiology of mathematical ability and disability may prove an
essential step in tackling mathematical underachievement,
and could provide fresh insights into human brain function.

Quantitative genetic research indicates a genetic compo-
nent to individual variation in mathematical ability, yielding
heritability estimates of 0.2–0.9 (Alarcón et al. 2000; Husén
1959; Kovas et al. 2007a,b; Light et al. 1998; Loehlin &
Nichols 1976; Oliver et al. 2004; Thompson et al. 1991;
Wadsworth et al. 1995). In the absence of obvious neu-
rological impediment mathematical disability is a complex
disorder. As with variation in normal levels of mathematical
ability, quantitative genetic studies have attributed a similar
level of genetic influence to mathematical disability (Alarcón
et al. 1997; Kovas et al. 2007a,b; Oliver et al. 2004). Impor-
tantly, quantitative genetic findings also suggest that rather
than being a distinct clinical category, mathematical disability
is the quantitative extreme of the normal distribution of abil-
ity – influenced by many of the same genetic factors affecting
normal variation in ability (Alarcón et al., 1997; Kovas et al.
2007a,b; Oliver et al. 2004). This supports a quantitative
trait locus (QTL) approach to the molecular genetic study of
mathematical ability and disability (Plomin et al., 2009).

At present no molecular genetic research specifically inves-
tigating mathematical ability or disability has been reported.
With linkage approaches lacking the power required to detect
the small effects expected in complex traits (Plomin et al.
2008), and with no obvious candidate genes to explore, a
scan of the entire genome for associations with mathemati-
cal ability is desirable. Highly multiplexed microarrays permit
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such genome-wide coverage. However, the cost involved
in individually genotyping the large sample sizes required to
detect small QTL effects is prohibitive to most researchers.
DNA pooling methods offer a possible solution. The DNA of
multiple individuals may be combined and assayed on SNP
microarrays to accurately detect differences between groups
across the entire genome (Butcher et al. 2004, 2005a, b;
Docherty et al. 2007; Meaburn et al. 2005; Pearson et al.
2007; Steer et al. 2007). Although individual genotyping
remains the ultimate test of association, such pooling stages
can be used to nominate sites for further investigation.

Here, we use pooled DNA from 10-year-olds of high vs. low
mathematical ability (N = 600 each) in a two-stage GWAS
of mathematical ability and disability. The top-performing 46
SNPs nominated in these two scanning stages were individ-
ually genotyped in a sample of 2356 individuals spanning the
entire distribution of ability, to test not only the association
with low vs. high mathematical performance, but also the
QTL hypothesis that most SNPs associated with mathemati-
cal ability at the extremes are also associated with the entire
range of mathematical ability.

Materials and methods

Participants
Participants were part of the Twins Early Development Study (TEDS),
a longitudinal study involving a representative sample of over 11,000
sets of twins born in England and Wales between 1994 and 1996
(Oliver & Plomin 2007; Trouton et al. 2002). Comparisons to UK
census data reveal that the TEDS sample continues to be represen-
tative of the UK population in terms of demographic characteristics
(Harlaar et al. 2005). Throughout this study the sexes were anal-
ysed simultaneously to increase power, as quantitative genetic
analyses have revealed neither qualitative nor quantitative sex dif-
ferences in the genetic factors affecting mathematical ability (Kovas
et al. 2007b; Oliver et al. 2004). We excluded children with specific
medical syndromes such as Down’s syndrome and other chromo-
somal anomalies, cystic fibrosis, cerebral palsy, hearing loss, autism
spectrum disorder, organic brain damage, extreme outliers for birth
weight, gestational age, maternal alcohol consumption during preg-
nancy, special care after birth, non-white ethnic origin (to mitigate
population stratification), English spoken as second language at home
(to facilitate a fair comparison of test performance scores) and those
without DNA samples available. Following this, the sampling frame
consisted of 5019 children selected on the basis of mathematics
teacher ratings or web-assessed test data at age 10: 4077 with
teacher ratings, 3918 with web-test data and 2976 twins with both.

Measures

Composite measure
The selection of participants for this study was based on a composite
measure of national curriculum-based teacher ratings and web-based
mathematical tests for the 2976 children for whom both measures
were available. Our multivariate genetic research indicates that these
two types of measure are correlated phenotypically and genetically
[0.53 and 0.62, respectively (Kovas et al. 2007b)] and combining them
produces a more reliable measure for our GWAS. Each measure was
standardized to a mean of zero and standard deviation of one.
The mean of the two measures was then standardized to form the
composite score. For an additional 1101 children, only teacher ratings
were available and for 942 children only web-based measures were
available. To increase the power of our sample to detect QTLs of small
effect, these children were also included, with their one available
score standardized to a mean of zero and standard deviation of one.

Web-based testing
The merits of web-based approaches have been well documented
and findings appear consistent with traditional methods of data col-
lection (Haworth et al. 2007). The battery used in this study included
questions from three components of mathematics: ‘Understand-
ing Number’, ‘Computation and Knowledge’ and ‘Non-Numerical
Processes’ (Kovas et al. 2007c) (see Supporting Information for a
more detailed description). These components correspond to the UK
National Curriculum (NC) and thus increase the relevance of the study
to education. Battery items were based on the National Foundation
for Educational Research 5–14 Mathematics Series, which is linked
closely to curriculum requirements in the United Kingdom and the
English Numeracy Strategy (nferNelson 2001). The results across the
three categories were combined to generate a composite score of
ability across the diverse domain of mathematics because multivari-
ate genetic analyses reveal that the components are genetically highly
correlated (Kovas et al. 2007c), suggesting that the genetic effects
influencing ability across diverse areas of mathematics are general
(Plomin & Kovas 2005). In the cohort from which the present sample
was drawn, this general mathematics web-test score has yielded a
heritability estimate of 0.49 (95% CI: 0.40–0.58) (Kovas et al. 2007a).

National curriculum-based teacher ratings
Mathematical ability was also measured by teachers’ assessments
on UK NC Key Stage 2 criteria for mathematical attainment (QCA
2001). The NC is a framework used by all government-maintained
schools across the United Kingdom to ensure that teaching and
learning is balanced and consistent. NC-based ratings therefore
provide a reliable and uniform measure of mathematical ability
across our sample. Teacher assessments have been revealed to
be valid measures of academic achievement, particularly for mathe-
matics, reading and language (Hoge & Coladarci 1989). The teachers
assessed three aspects of mathematical ability: Using and apply-
ing mathematics; Numbers and algebra; and Shapes, space and
measures (see Supporting Information and NC website for fur-
ther details – http://curriculum.qcda.gov.uk/index.aspx). We created
a mathematics composite mean score by summing standardized
scores for the three ratings because our multivariate genetic anal-
yses reveal that the ratings are highly correlated genetically (Kovas
et al. 2007a), indicating that the genetic effects are general (Plomin
& Kovas 2005). The heritability of this composite teacher-rating in
the TEDS sample has been estimated as 0.64 (95% CI: 0.56–0.72)
(Kovas et al. 2007a).

Design and procedures

Stages 1 and 2: SNP microarrays and pooling (SNP-MaP)
screen of low vs. high groups
In order to maximize the power of this DNA pooling study to detect
associations of the small effect sizes expected here, a high- vs.
low-ability design was employed (Jawaid et al. 2002). After collating
the mathematics scores of the 5019 10-year-olds, a cut-off at the top
and bottom 16th percentiles was used to select 300 individuals from
the high extreme and 300 from the low extreme of performance
for the first screening stage. A cut-off at the top and bottom 20th
percentiles was used to select 300 high- and 300 low-performing
individuals for the second screening stage. Only one member of
a twin pair was selected within each screening stage – however
sample 2 contained 73 monozygotic twins and 83 dizygotic twins
of individuals from sample 1. Both screening stages followed the
same design: within the high- and low-ability groups individuals were
randomly allocated to one of 10 pools. Thus, 10 independent pools
of mixed sex were created for each group, with each pool containing
the DNA of 30 individuals. Genomic DNA for each individual was
extracted from buccal swabs (Freeman et al. 2003), suspended in
ethylenediaminetetraacetic acid (EDTA) TE buffer (0.01 M Tris-HCl,
0.001 M EDTA, pH 8.0) and quantified in triplicate using PicoGreen®
dsDNA quantification reagent (Cambridge Bioscience, Cambridge,
UK). Upon obtaining reliable quantification triplicate readings
(±0.5 ng/μl), 100 ng of DNA for each individual was added to their
respective pool. To avoid compromise because of pipetting errors
1 μl was deemed the minimum volume that could be reliably added
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to a pool. DNA samples found to be at a concentration greater than
100 ng/μl were diluted before being added to a pool. The range of final
concentrations across the 20 pools for high and low mathematical
ability was 14.77–16.13 ng/μl and 15.33–17.03 ng/μl, respectively.

SNP microarray allelotyping of pooled DNA
DNA pools were prepared for hybridization to GeneChip® Mapping
500K Arrays (Affymetrix, California, USA) in accordance with the
standard protocol for individual DNA samples documented in the
GeneChip® Mapping 500K Assay Manual. This platform has been
previously validated for use with DNA pooling techniques (Docherty
et al. 2007). In both pooling stages, each of the 20 pools, along
with a reference DNA individual provided by the manufacturer (sam-
ple number 100103), was assayed on a separate microarray set.
Each microarray was scanned using the GeneChip® Scanner 3000
with High-Resolution Scanning Upgrade and GeneChip® Operating
software (GCOS) v1.4. Cell intensity (.cel) files were created using
GeneChip® Genotyping Analysis Software (GTYPE v4.0). Relative
allele signal (RAS) scores have been demonstrated as reliable and
valid indices of allele frequency in pooled DNA (Butcher et al. 2004;
Craig et al. 2005; Docherty et al. 2007; Kirov et al. 2006; Liu et al.
2005; Meaburn et al. 2005, 2006). Here, probe intensities were
derived from the CEL files and combined to produce RAS scores
using the SNP-MaP package (Davis et al. 2009) for the R statis-
tical computing environment (R Development Core Team 2008).
X-chromosome SNPs and SNPs with minor allele frequencies lower
than 5% were removed from the analysis because of limited statisti-
cal power. SNPs were also removed because of poor performance in
the WTCCC study using the same arrays (Wellcome Trust Case Con-
trol Consortium 2007). This left 358,948 autosomal SNPs for analysis.
RAS scores from each probe quartet for these SNPs were analysed
for association with high/low status using linear mixed-effects mod-
els in R (Bates & Sarkar 2006). High/low pool status was modelled
as a fixed effect; array and assay strand were modelled as random
effects. We did not attempt to derive true P-values for SNP asso-
ciations from the pooling stages, which were intended as a screen
of the genome to nominate SNPs for individual genotyping. Rather,
estimated P-values were simply used to rank SNPs, and the 3000 top-
ranked SNPs from the first stage were taken forward to the second
stage, where the same analysis was used to select SNPs for stage 3.

Stage 3: Individual genotyping across the normal
distribution
To validate the pooling results and to extend the analysis of the
high and low extremes to a normally distributed population sample,
the 46 top-ranked SNPs from the second stage were individually
genotyped: 41 using the Sequenom MassARRAY iPlex Gold® sys-
tem (Sequenom, San Diego, USA) and 5 using Applied Biosystems’
TaqMan® assay (Applied Biosystems, California, USA). The medium-
throughput Sequenom MassARRAY iPlex Gold® system processes
‘plexes’ of up to 40 SNP-assays simultaneously. Only compatible
assays may be combined into a single plex. Because of this, and
to economize on cost and man-hours, the 41 SNPs we investigated
here using the Sequenom iPlex Gold® system were coupled with
SNP-assays from other studies and spread across three plexes of
26, 33 and 36 SNPs. The sample for the individual genotyping stage
comprised 2356 individuals (one member of each twin pair) drawn
from a normal distribution of mathematics scores. 380 individuals
within this sample overlapped with the 600 individuals in the second
pooling stage. Of these 380 individuals, 66 had monozygotic twins
and 78 had dizygotic twins within sample 1. The remainder of sample
3 also contained 142 monozygotic and 243 dizygotic twins of individ-
uals from sample 1, and 82 monozygotic and 105 dizygotic twins of
individuals in sample 2.

Individuals calling on fewer than 70% of the SNPs within each
‘plex’, and also within the TaqMan®-genotyped samples, were
retyped, as were SNPs with a call rate lower than 95%. 22 indi-
viduals with persistently low call rates were removed entirely from
the analysis leaving a final sample of 2334 individuals. However,
on a ‘within-plex’ basis, 175, 172, 244 and 185 individuals were
removed from the analysis of SNPs within the 26-plex, 33-plex, 36-
plex and Taqman-genotyped SNPs, respectively. Three SNPs with
persistently low call rates were also removed. The 43 remaining

SNPs were assessed for Hardy – Weinberg equilibrium and analysed
using linear models in R, fitting an additive model to test for associa-
tion with mathematics, then testing for evidence of non-additivity by
likelihood ratio test comparison of nested models (Balding 2006). The
10 significantly associated (P < 0.05) SNPs in sample 3 were then
combined together to form a SNP-set score between 0 and 20 for
each of the individuals in sample 3. This score equalled the number of
mathematics-increasing alleles each individual possessed, and was
analysed using linear models in R to gauge the effect of the SNP
set on mathematics. Sample 3 was then dichotomized, and logistic
regression used to test association of the 10 SNPs and the SNP-set
score with low mathematical performance.

Power
Power was estimated using the Genetic Power Calculator (Purcell
et al. 2003). To account for the pooling procedure, estimates for the
first two stages were based upon effective sample sizes of 68% the
true size (Barratt et al. 2002). Using this criterion, under the additive
model samples 1 and 2 had 80% power at the P < 0.05 level to
detect a causal (i.e. D′ = 1.0 with a variant influencing mathematical
ability) association with an allelic variant of 20% frequency and 1%
and 1.25% effect size, respectively; with a marker in linkage disequi-
librium (D′ = 0.8) with a causal variant of 20% frequency and 1.55%
and 2% effect size, respectively. It is worth noting that P-values were
used solely as a means of ranking SNP performance in the pooling
stages. A threshold of P < 0.05 has been used simply to provide
an estimate of the power of samples 1 and 2. With mathematical
ability assessed as a quantitative trait under the additive model, at the
P < 0.05 level the individual genotyping sample had 80% power to
detect a causal variant of 20% frequency and 0.41% effect size; with
a marker in linkage disequilibrium (D′ = 0.8) with a causal variant of
20% frequency and 0.65% effect size. The genotypic model provides
the same power to detect non-additive effects, but has less power
to detect additive effects. When dichotomized for case (defined as
the lowest performing 15%) vs. control analyses, under the additive
model at the P < 0.05 level the individual genotyping sample had
80% power to detect risk alleles for mathematical disability of 20%
frequency and 0.75% effect size, and a marker in linkage disequi-
librium (D′ = 0.8) with a causal variant of 20% frequency and 1.2%
effect size.

Results

Figure 1 displays quantile – quantile plots of the ranked P-
values obtained from comparing the pooled DNA of 300
individuals of high mathematical ability to that of 300 individ-
uals of low mathematical ability in samples 1 and 2. Figure 1a
includes P-values from sample 1 for all of the 358,948 SNPs
assessed. Although a small number of SNPs rise above the
identity line, few fall outside the bootstrapped 95% confi-
dence intervals on the null hypothesis, suggesting only slight
deviation from chance association. The top-performing 3000
SNPs from sample 1 were tested for association in the same
direction in sample 2. Figure 1b displays one-tailed test P-
values for these SNPs in sample 2. Although none of the
SNPs reach genome-wide significance, a far greater deviation
from expectation under the null hypothesis is demonstrated
here, indicating a possible enrichment of true associations
relative to all of the SNPs tested in the first scanning stage.

It should be noted that technical artefacts or population
stratification might also result in such a deviation. Batch
effects were avoided by the randomization and simultaneous
processing of high/low mathematical ability pools within each
scanning stage. Although we were unable to use conven-
tional tests for population stratification in the pooling stages,
strong stratification effects were not expected because par-
ticipants were of the same ethnicity and drawn from a
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Figure 1: Q-Q plot for samples 1 and 2. Negative log base 10 P-values from a mixed-effects model likelihood ratio test are plotted
against theoretical quantiles from the null distribution. The straight line at x = y represents the null distribution and the grey areas
represent 95% bootstrapped confidence intervals on the null. Panel (a) includes all SNPs passing quality control assayed in sample 1
and reveals only slight deviation from chance association; panel (b) displays only the top 3000 SNPs from sample 1 tested in sample 2
(one-tailed). Deviation from expected is greater here, indicating an increase in the presence of true associations.

representative UK population-based sample. Furthermore,
qq-plots revealed that the 12 autosomal ancestry-informative
regions (the 13th X-chromosomal region was not analysed
here) identified by the WTCCC as revealing strong geograph-
ical differentiation across the United Kingdom (Wellcome
Trust Case Control Consortium 2007) did not associate
with mathematical ability in either sample 1 or sample 2
(see Fig. S1), and none of the SNPs selected for individ-
ual genotyping from the two-stage scan fell within these
ancestry-informative regions.

Figure 2 displays genomic plots of P-values from samples
1 and 2. Marked in black are the top-performing 46 SNPs
from the 3000 SNPs tested in sample 2. For financial rea-
sons, 46 was the maximum number of SNPs we could afford
to carry forward to an individual genotyping stage. Figure 2
indicates that few of the 46 SNPs revealed the most extreme
between-group differences in either sample, and so would
have been overlooked in either one of the genome-wide
scans alone. Table 1 provides more detailed results for these
46 SNPs in samples 1 and 2.

These 46 SNPs were tested for QTL association via individ-
ual genotyping in a third sample of 2356 individuals spanning
the entire distribution of mathematical ability. Although SNPs
with call rates below 95% were retyped, 3 of the 46 SNPs
yielded persistently low call rates and were excluded from
further analyses. 22 individuals with persistently low call
rates were also completely excluded at this stage, leav-
ing a sample of 2334 individuals. In our sample there was
no significant effect of sex on either mathematical ability
or its association with any of the remaining 43 SNPs; for

this reason and to increase power the sexes were analysed
together. All 43 SNPs were in Hardy – Weinberg equilibrium
at the P > 0.01 level.

Figure 3 displays a quantile – quantile plot of the P-values
obtained for the 43 individually genotyped SNPs in sam-
ple 3, which demonstrates that more associations were
observed than would be expected under the null hypothe-
sis. The observed distribution deviates from the expected
distribution very early on, suggesting that more associations
of small effect size might be detected in a larger sample
with more power. Table 2 contains detailed individual geno-
typing results. Under the additive model for association,
10 SNPs (rs11225308, rs363449, rs17278234, rs11154532,
rs12199332, rs12613365, rs6588923, rs2300052, rs6947045
and rs1215603) remain significantly associated (P < 0.05)
with individual differences in mathematical ability. More-
over, the first three associations in Table 2 remain significant
after Bonferroni correction for all 43 SNPs tested. These
intronic SNPs are located within MMP7, GRIK1 and DNAH5,
respectively (see Table 3).

The effect sizes of these 10 SNPs are small – with the
largest at rs11225308 accounting for 0.58% of the vari-
ance in ability in the sample and the smallest at rs1215603
accounting for only 0.13%. However, when all 10 SNPs
are combined in an additive model to form a ‘SNP set’,
together they account for 3.4% (F = 6.52; df = 10 and 1872;
P = 5.766e–10; N = 1883) of the phenotypic variance. This
method takes into account the relative effect sizes of each
SNP in our sample and weights them in the model accord-
ingly. As our sample may not have the power to accurately
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Figure 2: Whole-genome plots of P-values obtained from samples 1 and 2. Only those SNPs revealing between-group RAS
differences in the same direction across both samples are plotted. Of the 3000 SNPs revealing the greatest differences in sample 1,
the top-performing 46 in sample 2 were selected for further study. These SNPs are marked in black.

distinguish the exact magnitude of such small effect sizes,
we also created a ‘SNP-set score’ for each individual in
sample 3 by summing the math-increasing alleles they pos-
sess. This SNP-set score, in which each SNP is weighted
equally, accounts for 2.9% (F = 56.85; df = 1 and 1881;
P = 7.277e–14; N = 1883; see Fig. 4) of the variance in
math ability in our sample. Figure 4 suggests that the rela-
tionship is linear across the distribution of mathematical
ability, consistent with the QTL hypothesis. We also inves-
tigated the association of this 10-SNP set with the two
component measures of the mathematics composite score.
Although sample sizes were reduced, the SNP set accounted
for 2.2% of the variance in teacher ratings (F = 34.47; df = 1
and 1531; P = 5.302e–09; N = 1533) and 2.1% of the vari-
ance in web-test performance (F = 31.96; df = 1 and 1484;
P = 1.883e–08; N = 1486). When the same method was
used to calculate a 43-SNP-set score from all SNPs tested
in sample 3, we found it accounted for 3.2% (F = 46.18;
df = 1 and 1380; P = 1.600e–11; N = 1382) of the variance
in mathematics composite score in our sample. Figure 3 indi-
cates the presence of true associations of effect sizes too
small to be detected with the power of our sample.

Table 3 displays the results of further investigation of
the 10 SNPs reaching nominal significance. After replicating
these associations under the additive model, a likelihood ratio
test of nested models was conducted to assess any possible
non-additivity in their action. If cognitive capacities have been

subject to directional selection, additive variance would be
eroded leaving dominance variance unaffected, which would
result in non-additive associations (Crnokrak & Roff 1995).
None of the10 SNP associations identified here reveal sig-
nificant non-additive action, although with such small effect
sizes power is limited to distinguish between additive and
non-additive models. Moreover, this result does not disprove
directional selection because the SNPs were nominated in
the first two stages under an additive model based on allele
frequencies; also, genome-wide association studies of this
sort are likely to detect indirect association with SNPs in link-
age disequilibrium with functional variants (Donnelly 2008).

In addition to the analysis of mathematical ability as a con-
tinuous trait, sample 3 was dichotomized to assess the effect
of these 10 SNPs on the lowest performing 15% of the sam-
ple. Although power is reduced in this approach, 4 of the 10
SNPs revealed significant associations with low performance
(Table 3). The 10-SNP-set score was highly significantly asso-
ciated with low performance (P = 4.18e−09; df = 1881;
N = 1883), and individuals within our sample with 10 or more
of the 20 risk alleles were nearly twice as likely as those with
9 or fewer risk alleles to fall within the low performance group
(OR = 1.96; 95% confidence intervals = 1.50–2.55; df = 1;
P = 3.696e−07; N = 1883). Figure 5 displays the results,
which confirm the effect on low performance suggested in
Fig. 4. A Kolmogorov – Smirnov test reveals that the distribu-
tion of risk alleles carried is significantly different in the case
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Table 1: Pooling results for the 46 top-performing SNPs in samples 1 and 2

Sample 1 Sample 2

SNP rsID Chr Position
Low
RAS

High
RAS RAS diff Chi P-value

Low
RAS

High
RAS RAS diff Chi

One-tail
P-value

rs952312 1 80256562 0.686 0.643 0.043 10.67 0.001 0.727 0.682 0.044 5.60 0.009
rs694598 1 103046767 0.672 0.628 0.045 8.75 0.003 0.697 0.660 0.037 8.73 0.002
rs6701879 1 204684389 0.620 0.664 −0.043 6.06 0.014 0.606 0.644 −0.038 11.58 3.3E–04
rs4649372 1 230646220 0.445 0.491 −0.046 9.48 0.002 0.404 0.451 −0.047 9.16 0.001
rs696244 1 233728167 0.564 0.513 0.051 10.85 0.001 0.549 0.499 0.050 9.07 0.001
rs1881396 2 27698105 0.377 0.320 0.057 11.47 0.001 0.377 0.315 0.062 15.63 3.8E–05
rs2059357 2 186034194 0.416 0.377 0.038 6.84 0.009 0.372 0.324 0.048 15.07 5.2E–05
rs12613365 2 191055555 0.434 0.463 −0.029 6.08 0.014 0.410 0.448 −0.038 7.12 0.004
rs1502885 4 79205538 0.582 0.633 −0.051 7.26 0.007 0.605 0.649 −0.044 9.49 0.001
rs4956093 4 108529657 0.570 0.509 0.061 7.14 0.008 0.576 0.507 0.068 10.22 0.001
rs17278234 5 13990476 0.551 0.592 −0.041 6.67 0.010 0.554 0.598 −0.044 9.53 0.001
rs7745469 6 110069819 0.535 0.581 −0.046 11.08 0.001 0.519 0.560 −0.041 6.69 0.005
rs11154532 6 130567068 0.525 0.593 −0.069 7.91 0.005 0.536 0.638 −0.102 13.58 1.1E–04
rs12199332 6 157185419 0.611 0.654 −0.044 5.85 0.016 0.620 0.678 −0.058 8.94 0.001
rs2278677 6 166495777 0.354 0.425 −0.071 7.42 0.006 0.284 0.341 −0.058 7.38 0.003
rs39118 7 29320557 0.380 0.437 −0.056 12.85 3.4E–04 0.356 0.394 −0.038 6.07 0.007
rs4236383 7 46856016 0.534 0.495 0.039 6.13 0.013 0.542 0.508 0.034 5.20 0.011
rs6947045 7 107287183 0.313 0.359 −0.047 7.33 0.007 0.306 0.343 −0.036 7.69 0.003
rs2300052 7 107875730 0.686 0.632 0.054 9.05 0.003 0.687 0.640 0.047 6.75 0.005
rs40941 7 107990161 0.569 0.521 0.048 6.10 0.013 0.568 0.526 0.041 6.41 0.006
rs7791660 7 122916256 0.657 0.623 0.034 5.84 0.016 0.686 0.654 0.033 5.62 0.009
rs11778957 8 54659415 0.512 0.462 0.051 10.05 0.002 0.523 0.473 0.050 7.93 0.002
rs10098370 8 105880919 0.693 0.638 0.055 12.66 3.7E–04 0.723 0.687 0.036 6.18 0.006
rs700965 9 97550959 0.322 0.373 −0.051 6.68 0.010 0.282 0.331 −0.049 8.19 0.002
rs4314720 9 112411728 0.324 0.358 −0.034 6.87 0.009 0.323 0.356 −0.033 6.65 0.005
rs7085203 10 130600913 0.690 0.664 0.026 6.33 0.012 0.713 0.674 0.039 10.12 0.001
rs7932127 11 7546172 0.589 0.525 0.063 9.07 0.003 0.563 0.524 0.039 6.00 0.007
rs16907131 11 20925249 0.717 0.677 0.040 6.33 0.012 0.772 0.735 0.037 6.82 0.005
rs10501162 11 36703331 0.310 0.380 −0.070 23.93 1.0E–06 0.293 0.329 −0.036 6.06 0.007
rs1369458 11 78438121 0.408 0.343 0.065 9.07 0.003 0.350 0.308 0.042 6.74 0.005
rs11225308 11 101904688 0.597 0.646 −0.050 7.81 0.005 0.565 0.628 −0.062 8.91 0.001
rs6588923 11 106125102 0.824 0.861 −0.037 10.12 0.001 0.795 0.829 −0.034 8.23 0.002
rs7115849 11 130149959 0.802 0.831 −0.028 10.20 0.001 0.782 0.814 −0.032 8.78 0.002
rs1215603 12 105041007 0.605 0.561 0.044 8.62 0.003 0.582 0.537 0.045 7.31 0.003
rs9670398 13 89692996 0.674 0.634 0.040 6.63 0.010 0.705 0.659 0.046 8.03 0.002
rs4771280 13 97136856 0.683 0.641 0.042 8.80 0.003 0.710 0.675 0.035 7.27 0.004
rs9300810 13 102806158 0.616 0.677 −0.061 7.29 0.007 0.650 0.697 −0.047 8.25 0.002
rs4144132 14 95761402 0.638 0.675 −0.037 6.84 0.009 0.625 0.675 −0.050 8.28 0.002
rs2593170 15 50010709 0.528 0.583 −0.055 7.09 0.008 0.549 0.606 −0.057 9.71 0.001
rs8043884 16 63140767 0.585 0.652 −0.067 12.01 0.001 0.595 0.627 −0.032 6.26 0.006
rs6502244 17 2300059 0.260 0.296 −0.036 11.17 0.001 0.243 0.280 −0.037 6.90 0.004
rs12601191 17 36361635 0.636 0.596 0.041 5.91 0.015 0.661 0.626 0.035 9.23 0.001
rs12962177 18 48464878 0.452 0.503 −0.051 7.05 0.008 0.444 0.485 −0.041 8.76 0.002
rs17085111 18 67590335 0.570 0.514 0.057 6.16 0.013 0.599 0.531 0.068 10.66 0.001
rs16964420 19 35802073 0.483 0.546 −0.063 7.57 0.006 0.473 0.542 −0.069 6.82 0.005
rs363449 21 29906146 0.635 0.572 0.063 12.21 4.8E–04 0.641 0.599 0.042 6.98 0.004

The 3000 top-performing SNPs in sample 1 were tested for association in sample 2 and the top-performing 46 were selected for
individual genotyping in sample 3. The table is arranged by genomic location. SNP rsID, dbSNP rsID; Chr, chromosome; Position,
physical position; Low/High RAS, relative allele signal score for the Affymetrix-assigned ‘allele A’ in low/high mathematics ability group.
Broadly speaking RAS scores can be thought of as an estimate of allele frequency within a group; Chi, Chi-squared value obtained
from a mixed-effects model likelihood ratio test with 1 degree of freedom; P-value, P-value obtained from a linear mixed-effects model
likelihood ratio test. One-tail test because only associations in the expected direction are accepted as significant.
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Figure 3: Q-Q plot for mathematics associ-

ation results of the 43 SNPs individually

genotyped in sample 3. Grey region indi-
cates bootstrapped 95% confidence intervals.
10 SNPs reach nominal significance and 3 sur-
vive Bonferroni correction for multiple testing.
The observed distribution deviates from the
expected very early on, suggesting the presence
of further associations which might be detected
in a sample with more power.

and control populations (D = 0.1753; P-value = 6.477e–07).
The proportion of cases falls as the SNP-set score (i.e. the
number of performance-increasing alleles) rises. The sensi-
tivity and specificity of the SNP set to identify a child as low
performing is 0.46 and 0.88, respectively, which translates
to a positive predictive value (PPV) of 0.46 and a negative
predictive value (NPV) of 0.70 within our sample.

Finally, we analysed sample 3 with the overlapping 380
(16%) individuals from sample 2 removed. Of the 10
SNP associations reported, those of rs11225308, rs363449,
rs12199332 and rs17278234 remain nominally significant
after this exclusion (P < 0.05, data not shown). A SNP-set
score combining these four SNPs accounts for 1.2% of
the variance in mathematical ability in this smaller sample
(F = 19.21; df = 1 and 1594; P = 1.246e–05; N = 1596).
Individuals with four or more of the eight risk alleles are
nearly 1.5 times as likely to fall within the lowest performing
15% of the sample (OR = 1.39; 95% CI = 1.02–1.90; df = 1;
P-value = 0.031; N = 1596; PPV = 0.18; NPV = 0.86).

Discussion

This first GWAS of mathematical ability and disability has
nominated 46 SNP associations across two high- vs. low-
ability samples, 10 of which have been validated in a third
sample spanning the entire distribution of ability as a test
of the QTL hypothesis. As we report no large effects,
our results are compatible with those of studies of other
cognitive abilities (Butcher et al. 2005a, 2008; Meaburn et al.
2007) and complex traits (McCarthy et al. 2008), and suggest
that genetic influence on mathematical ability is caused by
multiple QTLs of small effect. Even so, when combined into

a set, the 10 SNPs account for 2.9% of the phenotypic
variance in our sample. The nomination of this set of SNPs
in two high- vs. low-ability samples, and the significant
influence the set demonstrates over individual differences
across the normal distribution of ability, supports the QTL
hypothesis that the same genes affect the entire spectrum
of phenotypic expression. The QTL hypothesis is bolstered
further by the findings that the 10-SNP set demonstrates
a linear association with mathematics scores across the
distribution (Fig. 4), and that children in our sample with 10 or
more of the 20 risk alleles are nearly twice as likely to be in the
low-performing group. The 10-SNP set has some predictive
value for low mathematical performance in our sample
(PPV = 0.46, NPV = 0.70). With no large effects expected, if
future research in larger, more highly powered independent
samples can replicate and add to our findings, there may
come a time when such a SNP set will be useful in predicting
genetic risk for mathematical difficulties or genetic precocity.

The main limitation of this study is power. Although the
sample size was large, its power is limited to detect SNP
associations of the small effect size that emerged from the
GWAS. The pooling approach used to nominate SNP asso-
ciations reduced power further (Barratt et al. 2002). This
is reflected in the fact that genome-wide significance lev-
els were not reached in the two-stage scan. Although the
addition of the second scanning stage improved the SNP-
selection process, and ensured co-twins were in different
samples, performing a joint analysis of samples 1 and 2
would have increased power (Skol et al. 2006). Neverthe-
less, the economical pooling method retained 80% power
to detect QTLs of 1% and 1.25% effect sizes in samples 1
and 2, respectively, and nearly a quarter of SNPs selected
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Table 2: Results for 43 SNPs individually genotyped in sample 3

SNP rsID Chr Position Allele A Allele B MAF N Mean AA Mean AB Mean BB F
Additive
model P % Variance

rs11225308 11 101904688 G T 0.23 2179 −0.289 −0.037 0.047 12.78 0.0002 0.58
rs363449 21 29906146 C G 0.38 2177 −0.072 0.012 0.141 10.63 0.0006 0.49
rs17278234 5 13990476 C T 0.31 2183 −0.157 −0.031 0.062 9.99 0.0008 0.46
rs11154532 6 130567068 C T 0.23 2173 −0.096 −0.062 0.047 6.51 0.0054 0.30
rs12199332 6 157185419 A G 0.20 2111 −0.015 −0.093 0.044 5.69 0.0086 0.27
rs12613365 2 191055555 G T 0.25 2179 −0.038 0.036 0.090 3.87 0.0246 0.18
rs6588923 11 106125102 A G 0.12 2111 −0.253 −0.051 0.020 3.78 0.0260 0.18
rs2300052 7 107875730 A G 0.30 2109 0.103 0.015 −0.032 3.04 0.0407 0.14
rs6947045 7 107287183 C T 0.43 2179 −0.070 0.041 0.014 2.87 0.0451 0.13
rs1215603 12 105041007 C T 0.44 2179 −0.046 0.008 0.055 2.83 0.0463 0.13
rs40941 7 107990161 C T 0.35 2101 −0.053 0.057 −0.004 2.42 0.0599 0.12
rs1881396 2 27698105 G T 0.21 2181 −0.070 −0.037 0.026 2.33 0.0634 0.11
rs4649372 1 230646220 A T 0.25 2180 0.181 −0.015 −0.014 2.15 0.0716 0.10
rs2593170 15 50010709 C T 0.41 2168 −0.044 −0.011 0.039 1.92 0.0832 0.09
rs9300810 13 102806158 C G 0.17 2112 0.017 −0.027 −0.111 1.74 0.0937 0.08
rs4314720 9 112411728 A G 0.21 2177 −0.018 0.021 0.088 1.51 0.1097 0.07
rs39118 7 29320557 A C 0.11 2182 −0.015 0.055 0.017 1.43 0.1157 0.07
rs694598 1 103046767 A T 0.21 2104 0.003 0.041 −0.028 1.39 0.1189 0.07
rs11778957 8 54659415 A G 0.39 1937 0.047 −0.047 0.012 1.11 0.1458 0.06
rs7085203 10 130600913 C T 0.14 2180 −0.018 0.065 −0.087 0.88 0.1743 0.04
rs9670398 13 89692996 A T 0.24 2138 0.107 0.002 −0.006 0.80 0.1851 0.04
rs4956093 4 108529657 A C 0.39 2148 −0.020 0.011 0.030 0.72 0.1987 0.03
rs2278677 6 166495777 C T 0.10 2111 −0.006 0.014 0.228 0.66 0.2088 0.03
rs16964420 19 35802073 A G 0.31 2084 −0.070 0.008 0.011 0.64 0.2127 0.03
rs16907131 11 20925249 A G 0.06 2175 0.049 0.045 −0.005 0.56 0.2274 0.03
rs7932127 11 7546172 C T 0.27 2176 0.161 −0.032 0.004 0.54 0.2307 0.02
rs4236383 7 46856016 C T 0.34 2100 −0.004 0.026 −0.027 0.54 0.2313 0.03
rs4144132 14 95761402 C T 0.17 2149 −0.085 0.008 0.019 0.53 0.2341 0.02
rs10098370 8 105880919 A G 0.18 2112 0.270 −0.030 0.000 0.48 0.2449 0.02
rs6502244 17 2300059 C T 0.13 2176 0.061 0.017 −0.009 0.43 0.2568 0.02
rs6701879 1 204684389 C T 0.19 2112 −0.085 −0.003 0.006 0.33 0.2836 0.02
rs1502885 4 79205538 A T 0.17 2138 −0.311 0.057 −0.002 0.21 0.3235 0.01
rs4771280 13 97136856 C G 0.28 2178 −0.001 −0.006 0.055 0.19 0.3324 0.01
rs7791660 7 122916256 C T 0.19 2064 −0.002 −0.002 0.085 0.14 0.3526 0.01
rs8043884 16 63140767 A C 0.28 2180 0.019 −0.013 0.007 0.04 0.4249 0.00
rs17085111 18 67590335 C T 0.37 2180 0.036 −0.027 0.018 0.03 0.4264 0.00
rs700965 9 97550959 C T 0.33 2109 −0.017 0.030 −0.057 0.02 0.4495 0.00
rs7115849 11 130149959 A G 0.08 2181 −0.116 0.004 0.000 0.00 0.4823 0.00
rs1369458 11 78438121 A G 0.13 2087 0.004 −0.006 0.102 0.00 0.5187 0.00
rs7745469 6 110069819 C T 0.38 2097 0.008 0.005 −0.006 0.07 0.6023 0.00
rs952312 1 80256562 C T 0.08 2112 0.175 −0.062 0.008 0.41 0.7400 0.02
rs12962177 18 48464878 C T 0.48 2109 0.029 −0.010 −0.019 0.63 0.7861 0.03
rs2059357 2 186034194 C G 0.25 2082 0.029 −0.017 −0.070 1.76 0.9076 0.08

The table is ordered by additive model P-value (one-tailed), the light grey area highlights the nominally significant SNPs and the
darker grey area highlights those SNP associations withstanding bonferroni correction for multiple testing. SNP rsID, dbSNP rsID; Chr,
chromosome; Position, physical position; MAF, minor allele frequency; N, sample N; Mean AA, mean quantitative trait mathematics
scores for individuals with AA genotype; F, F-statistic from the additive model on 1 and N − 2 degrees of freedom; Additive model P,
one-tailed P-value from additive model; % Variance, variance in mathematics ability explained by the additive model.

from these samples replicated with QTL associations in the
individually genotyped sample 3. Still, as Fig. 3 suggests a
presence of additional associations of small effect sizes that
sample 3 is underpowered to detect, further investigation in
more highly powered samples is desirable.

The creation of a composite mathematics score from
teacher ratings and web-test results represents a second

limitation. However, as these two component measures
were highly phenotypically and genetically correlated, and
as we have reported equally strong 10-SNP-set associations
for both measures, we believe this was a valid way to
increase our sample size. Another issue concerns the large
number of false positive results expected when conducting
multiple tests on a genome-wide level. Our two-stage design

Genes, Brain and Behavior (2010) 9: 234–247 241



Docherty et al.

T
a
b

le
3

:
A

dd
iti

on
al

an
al

ys
es

of
in

di
vi

du
al

ge
no

ty
pi

ng
da

ta
fo

r
10

to
p-

pe
rf

or
m

in
g

S
N

P
s

se
le

ct
ed

fo
r

m
at

he
m

at
ic

s
‘S

N
P

se
t’

S
N

P
rs

ID
C

hr
P

os
iti

on
A

lle
le

N
A

dd
iti

ve
m

od
el

F
A

dd
iti

ve
m

od
el

P
G

en
ot

yp
ic

m
od

el
F

G
en

ot
yp

ic
m

od
el

P
N

on
-

ad
di

tiv
ity

F
N

on
-

ad
di

tiv
ity

P
C

as
e-

co
nt

ro
lP

O
R

(C
I)

N
ea

re
st

ge
ne

rs
11

22
53

08
11

10
19

04
68

8
G

21
79

12
.7

8
0.

00
02

7.
43

0.
00

03
2.

07
0.

15
02

0.
00

01
1.

43
(1

.1
2

–1
.8

2)
M

M
P

7
rs

36
34

49
21

29
90

61
46

C
21

77
10

.6
3

0.
00

06
5.

43
0.

00
22

0.
24

0.
62

31
0.

00
17

1.
50

(1
.0

3
–2

.2
5)

G
R

IK
1

R
s1

72
78

23
4

5
13

99
04

76
C

21
83

9.
99

0.
00

08
5.

05
0.

00
32

0.
11

0.
73

95
0.

04
37

1.
20

(0
.9

4
–1

.5
3)

D
N

A
H

5
R

s1
11

54
53

2
6

13
05

67
06

8
C

21
73

6.
51

0.
00

54
3.

45
0.

01
59

0.
40

0.
52

64
0.

00
05

1.
42

(1
.1

1
–1

.8
1)

S
A

M
D

3
R

s1
21

99
33

2
6

15
71

85
41

9
A

21
11

5.
69

0.
00

86
4.

13
0.

00
81

2.
57

0.
10

94
0.

25
63

1.
13

(0
.8

8
–1

.4
6)

A
R

ID
1B

R
s1

26
13

36
5

2
19

10
55

55
5

G
21

79
3.

87
0.

02
46

1.
95

0.
07

13
0.

03
0.

86
40

0.
24

27
1.

10
(0

.6
7

–1
.8

9)
FL

J2
01

60
R

s6
58

89
23

11
10

61
25

10
2

A
21

11
3.

78
0.

02
60

2.
14

0.
05

90
0.

50
0.

48
02

0.
06

63
1.

26
(0

.9
4

–1
.6

6)
G

U
C

Y
1A

2
R

s2
30

00
52

7
10

78
75

73
0

G
21

09
3.

04
0.

04
07

1.
60

0.
10

11
0.

16
0.

68
87

0.
08

63
1.

42
(0

.8
8

–2
.4

0)
N

R
C

A
M

R
s6

94
70

45
7

10
72

87
18

3
C

21
79

2.
87

0.
04

51
2.

70
0.

03
38

2.
52

0.
11

28
0.

18
03

0.
96

(0
.7

0
–1

.3
3)

D
LD

R
s1

21
56

03
12

10
50

41
00

7
C

21
79

2.
83

0.
04

63
1.

42
0.

12
12

0.
01

0.
93

58
0.

05
43

1.
25

(0
.9

1
–1

.7
4)

N
U

A
K

1

Th
e

ta
bl

e
is

or
de

re
d

by
ad

di
tiv

e
m

od
el

P
-v

al
ue

(o
ne

-t
ai

le
d)

.
Th

e
fir

st
th

re
e

S
N

P
as

so
ci

at
io

ns
su

rv
iv

e
B

on
fe

rr
on

i
co

rr
ec

tio
n

fo
r

m
ul

tip
le

te
st

in
g.

S
N

P
rs

ID
,

db
S

N
P

rs
ID

;
C

hr
,

ch
ro

m
os

om
e;

P
os

iti
on

,
ph

ys
ic

al
po

si
tio

n;
A

lle
le

,
al

le
le

as
so

ci
at

ed
w

ith
lo

w
er

m
at

he
m

at
ic

al
ab

ili
ty

in
ou

r
sa

m
pl

e;
N

,
S

am
pl

e
N

;
A

dd
iti

ve
m

od
el

F
,

F
-s

ta
tis

tic
fr

om
th

e
ad

di
tiv

e
m

od
el

on
1

an
d

N
−

2
de

gr
ee

s
of

fr
ee

do
m

;A
dd

iti
ve

m
od

el
P

=
on

e-
ta

ile
d

P
va

lu
e

fr
om

ad
di

tiv
e

m
od

el
;%

V
ar

ia
nc

e
=

va
ria

nc
e

in
m

at
he

m
at

ic
al

ab
ili

ty
ex

pl
ai

ne
d

by
th

e
ad

di
tiv

e
m

od
el

;G
en

ot
yp

ic
m

od
el

F
=

F-
st

at
is

tic
fr

om
th

e
ge

no
ty

pi
c

m
od

el
on

1
an

d
N

−
3

de
gr

ee
s

of
fr

ee
do

m
;G

en
ot

yp
ic

m
od

el
P

,o
ne

-t
ai

le
d

P
-v

al
ue

fr
om

ge
no

ty
pi

c
m

od
el

;N
on

-a
dd

iti
vi

ty
F

,F
-s

ta
tis

tic
fr

om
th

e
ad

di
tiv

e
vs

.g
en

ot
yp

ic
m

od
el

co
m

pa
ris

on
on

1
de

gr
ee

of
fr

ee
do

m
;N

on
-a

dd
iti

vi
ty

P
,P

-v
al

ue
fr

om
lik

el
ih

oo
d

ra
tio

te
st

co
m

pa
ris

on
of

ad
di

tiv
e

an
d

ge
no

ty
pi

c
m

od
el

s;
C

as
e-

co
nt

ro
lP

=
on

e-
ta

ile
d

P
-v

al
ue

fr
om

lo
gi

st
ic

re
gr

es
si

on
te

st
(w

ith
1

de
gr

ee
of

fr
ee

do
m

)o
fa

ss
oc

ia
tio

n
w

ith
ca

se
st

at
us

de
fin

ed
as

th
e

lo
w

es
t-

pe
rf

or
m

in
g

15
%

;O
R

(C
I),

O
dd

s
ra

tio
fo

r
ca

se
ris

k;
N

ea
re

st
ge

ne
,N

ea
re

st
ge

ne
an

no
ta

tio
n

fr
om

N
et

A
ff

x
(h

tt
p:

//w
w

w
.a

ff
ym

et
rix

.c
om

/a
na

ly
si

s/
in

de
x.

af
fx

).

242 Genes, Brain and Behavior (2010) 9: 234–247



Association study of mathematical ability

Figure 4: Correlation between SNP-set

score and mathematical ability. SNP-set
scores were created for individuals in sample
3 by summing performance-increasing allele
scores across the 10 associated SNPs identi-
fied – rs11225308, rs363449, rs17278234,
rs11154532, rs12199332, rs12613365,
rs6588923, rs2300052, rs6947045 and
rs1215603. Here, average math scores are
plotted against SNP-set scores. Grey bar chart
demonstrates the number of individuals with
each SNP-set score. The graph runs only from 4
to 19 as there were no individuals with SNP-set
scores of 0 to 3 or 20. When association
between SNP-set score and mathematical
performance was tested across all individuals in
sample 3 using linear models, the SNP-set was
found to account for 2.9% (F = 56.85; df = 1
and 1881; P = 7.277e–14) of the variance in
mathematics score – i.e. a correlation of 0.17.

was intended to go some way towards dealing with this
problem. However, there are still many SNPs exhibiting RAS
differences in one or both of our first two samples that
may reflect true associations, yet have not been further
investigated here because of financial restrictions. We have
not corrected any of the P-values obtained from the pooled
samples for the number of tests performed. This is because
these first two stages were intended simply as a means of
screening SNPs for inclusion into the individual genotyping
stage of our design. The P-values were used only to rank
SNPs in the first two pooling stages. As multiple-testing
correction would not alter the rank order of the SNPs, it would
not have affected the outcome of these screening stages.

Another limitation is the overlap of n = 380 between
samples 2 and 3. As the exclusion of these individuals
greatly depletes the extremes – and therefore the statistical
power – of sample 3, and as these overlapping individuals’
genotypes and quantitative trait scores for mathematics is
new information which was lost in the pooling stage, we
decided not to exclude them from the main analysis. How-
ever we did re-run all analyses on the smaller sample, with
some promising results. In addition to this direct overlap,
156 sample 1 individuals have co-twins in sample 2, and 716
sample 3 individuals have co-twins in samples 1 or 2. As this
may positively bias our findings by over-inflating P-values it is
one of the most important limitations of the study, however
when striving for the largest possible N from a twin sample,
such an overlap was unavoidable.

Although the three samples were not completely indepen-
dent, information gathered from samples 1 and 2 concerned
allelic and mathematical-performance group averages, and
was used solely to identify SNPs for testing in a third sample
comprising only one twin of a pair, using individual genotypic
and phenotypic information. Nevertheless, we have selected

and then tested SNPs in samples which overlap entirely in
the phenotypic measures used, and also to a large extent
genetically. Although this matching of measures and sample
demographics overcomes many of the problems faced in
the replication of molecular genetic findings, it also limits
the ability to generalize our findings to a wider population.
Further investigation of these SNPs in independent samples
with greater statistical power is vital before we can draw any
definite conclusions regarding their contributions to mathe-
matical ability and disability. Indeed, our findings will almost
certainly be subject to a ‘winner’s curse’ effect [discussed
in Newton-Cheh & Hirschhorn (2005) and Kraft (2008)], in
which the already small effect sizes reported have actually
been overestimated in our discovery sample. The future of
molecular genetic investigation into mathematics will ideally
involve far larger, more highly powered samples to detect
the expected small effects.

Although none of the SNPs identified fall within coding
regions, or any known binding/splicing sites of interest,
they can contribute to a SNP set of potential markers for
mathematical ability and disability. They may also highlight
possible candidate genes for mathematical ability and disabil-
ity (Table 3). One example is that of NRCAM, a gene encoding
the Bravo/NrCAM neuronal cell adhesion molecule (Grumet
M, 1997), a protein involved in neuron-neuron connections in
the developing and mature nervous system, and implicated
in synaptic plasticity and memory processes (Hoffman 1998).

In addition to this involvement in brain function, NRCAM
has been reported to be associated with autism (Bonora
et al. 2005; Marui et al. 2008). Although the intronic SNP
implicated here (rs2300052) has not been studied in relation
to autism, it is in high LD (r2 > 0.70) with all previously
associated NRCAM-tagging SNPs (Bonora et al. 2005; Marui
et al. 2008) based on HapMap data (The International
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Figure 5: Relationship of SNP-set score

to prevalence ratio of low mathematical

performance (defined as the lowest per-

forming 15%). SNP-set scores were gauged
by summing the performance-increasing allele
scores across the 10 associated SNPs identi-
fied – rs11225308, rs363449, rs17278234,
rs11154532, rs12199332, rs12613365,
rs6588923, rs2300052, rs6947045 and
rs1215603. The graph runs only from 4 to
19 as there were no individuals with SNP-set
scores of 0 to 3 or 20. Plot displays (a) relative
frequencies of SNP-set scores within case
(low mathematical performance) and control
groups and (b) the relationship of SNP-set score
to prevalence of cases of low mathematical
performance. Analysis across all individuals
in sample 3 revealed the SNP-set to be
significantly associated with cases of low
mathematical performance (P = 4.18e–09;
df = 1881; N = 1883).

HapMap Consortium 2007). Of the SNPs previously associ-
ated with autism, rs2300052 is in highest LD (r2 = 0.83) with
rs2300045. Common haplotypes estimated from HapMap
data indicate an association between the rs2300052 allele
conferring lower mathematical ability and the rs2300045
allele conferring autism risk. This is in keeping with the
observation that although some autistic savants exhibit high
mathematical ability, autism is generally associated with
lower IQ, and even within high-functioning individuals with
Asperger’s syndrome, mathematical ability is significantly
lower (Chiang & Lin 2007). Although some studies reject
NRCAM as an autism candidate (Hutcheson et al. 2004), our
data suggest a possible link between low mathematical
performance and autism risk through NRCAM function,
although effects are likely to be small.

Of particular interest are MMP7, GRIK1 and DNAH5,
the genes associated with the top three ranking SNPs in
our study, whose associations remained significant after
Bonferroni correction for multiple testing. MMP7 encodes

a member of the matrix metalloproteinase (MMP) family.
MMPs are involved in the breakdown of extracellular matrix
during normal physiological processes such as embryonic
development, growth and tissue repair (Chakraborti et al.
2003). GRIK1 encodes an ionotropic glutamate receptor
kainate 1. Kainate receptors mediate neurotransmission and
synaptic plasticity (Bortolotto et al. 1999; Huettner 2003),
and dysfunction has been implicated in a number of psy-
chiatric phenotypes (Gratacòs et al. 2008; Woo et al. 2007).
DNAH5 encodes the dynein axonemal heavy chain 5 protein.
Dynein is the force-generating component of cilia, the correct
functioning of which is essential in all areas of embryonic
growth (Hornef et al. 2006), and DNAH5 in particular has
been demonstrated as vital for normal brain development
(Ibanez-Tallon et al. 2004).

The intricate involvement of these genes in develop-
ment – especially the direct links of GRIK1 and DNAH5 to
brain development – is indicative of the variety of genes one
might expect to exert small effects over cognitive abilities
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such as mathematics. It is likely then that the influence of
such genes would also be evident in other cognitive domains.
Indeed, quantitative genetic research indicates a substantial
genetic overlap between reading, mathematical and general
cognitive ability (g) (Kovas et al. 2005; Markowitz et al. 2005).
Although the 10 QTL associations identified here neither fall
within previously reported dyslexia linkage regions (McGrath
et al. 2006; Paracchini et al. 2007), nor overlap with find-
ings of association studies of reading (Meaburn et al. 2007;
Seshadri et al. 2007) and g (Butcher et al. 2005a, 2008),
there may still be an overlap in their influence. Along with
the essential replication of our results in large independent
samples, one interesting future direction may be to explore
the generalist genes hypothesis at the molecular genetic
level, by investigating the effects of these SNPs on other
cognitive abilities.
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Addendum

Corrections added after publication 16 December 2009.

The authors would like to correct the sample size of the study population from the original reported value of ‘‘2449’’ to ‘‘2356’’. Due
to this change, the following values on the respective pages have been updated accordingly.

Page 234, in the Abstract:
The sample size ‘‘2449’’ has been corrected to ‘‘2356’’.

Page 235, in the Introduction:
The sample size ‘‘2449’’ has been corrected to ‘‘2356’’.

Page 236, under Materials and Methods, in the section ‘‘Stage 3: Individuals Genotyping across the normal distribution’’:
The sample size ‘‘2449’’ has been corrected to ‘‘2356’’.

The sentence ‘‘126 individuals with persistently low call rates were also completely excluded at this stage, leaving a sample of 2323
individuals.’’ has been revised to ‘‘22 individuals with persistently low call rates were also completely excluded at this stage, leaving
a sample of 2334 individuals.’’

The sentence ‘‘However, on a ‘within-plex’ basis, 268, 265, 337 and 278 individuals were removed from the analysis of SNPs
within the 26-plex, 33-plex, 36-plex and Taqman-genotyped SNPs, respectively.’’ has been revised to ‘‘However, on a ‘within-plex’
basis, 175, 172, 244 and 185 individuals were removed from the analysis of SNPs within the 26-plex, 33-plex, 36-plex and
Taqman-genotyped SNPs, respectively.’’

Page 236, under Materials and Methods, in the section ‘‘Power’’:
‘‘0.4% effect size’’ has been changed to ‘‘0.41% effect size’’
‘‘2% effect size’’ has been changed to ‘‘1.2% effect size’’

Page 237, under Results:
The sample size ‘‘2449’’ has been corrected to ‘‘2356’’.

The sentence ‘‘126 individuals with persistently low call rates were also completely excluded at this stage, leaving a sample of 2323
individuals.’’ has been revised to ‘‘22 individuals with persistently low call rates were also completely excluded at this stage, leaving
a sample of 2334 individuals.’’

Page 240, under Results:
The sentence ‘‘Finally, we analysed sample 3 with the overlapping 380 (15%) individuals from sample 2 removed.’’ has been revised
to ‘‘Finally, we analysed sample 3 with the overlapping 380 (16%) individuals from sample 2 removed.’’
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