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Abstract

This paper discusses the way that different operational characteristics including ex-
isting capacity, scale economies, and production policy have an important influence on
the capacity outcomes when firms compete in the market place. We formulate a game-
theoretical model where each firm has an existing capacity and faces both fixed and
variable costs in purchasing additional capacity. Specifically, the firms simultaneously (or
sequentially) make their expansion decisions, and then simultaneously decide their pro-
duction decisions with these outputs being capacity constrained. We also compare our
results with cases where production has to match capacity. By characterizing the firms’
capacity and production choices in equilibrium, our analysis shows that the operational
factors play a crucial role in determining what happens. The modeling and analysis in the
paper gives insight into the way that the ability to use less production capacity than has
been built will undermine the commitment value of existing capacity. If a commitment to
full production is not possible, sinking operational costs can enable a firm to keep some
preemptive advantage. We also show that the existence of fixed costs can introduce cases
where there are either no pure strategy equilibrium or multiple equilibria. The manage-
rial implications of our analysis are noted in the discussion. Our central contribution in
this paper is the innovative integration of the strategic analysis of capacity expansion and
well-known (s, S) policy in operations and supply chain theory.

Keywords: capacity expansion; existing capacity; fixed cost; lead time; game theory;
competitive strategy

1 Introduction

The objective of this paper is to increase our understanding of how the competitive asymmetries

between existing capacities and between investment/production costs affect firm capacity decisions.

When a firm faces a challenge from a competitor who can introduce new capacity (either an incumbent

firm with existing capacity or a potential entrant), it can be hard to decide whether to respond

aggressively to rivals through adding capacity (Hayes et al., 2005). The firm needs to make a trade-

off: making no response or making too small a capacity addition will result in accommodating the
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rival, while making too large a capacity addition will result in unused capacity or depressed prices.

Furthermore, capacity decisions affect most, if not all, other operating decisions including production

planning and inventory levels, human resource decisions, and decisions on logistics and distribution

(Hendricks et al., 1995). So capacity response in a competitive environment is a crucial operations

challenge with a significant impact on firm profitability. An important feature of this paper is that

the combined impact of existing capacities and fixed costs of investment is considered in our formal

analysis. Thus we can shed light on the means by which ex ante asymmetries in operational factors

can influence the firm decision on responding to its rival’s capacity expansion.

1.1 Background

There are two linked ideas that are important in understanding strategic capacity decisions. First,

there is the notion that capacity can be accumulated. A firm may have some pre-existing capacity

which is then added to by further investment. The second idea is that capacity acts as a constraint on

production. Indeed, a firm’s capacity is often defined as its maximum production rate. But research

on competitive capacity investment has often dropped the second of these ideas: while maintaining

the idea of accumulation, problems of analytic tractability have frequently led researchers to assume

that a firm makes decisions on production and capacity at the same time (e.g., Anand and Girotra,

2007; Goyal and Netessine, 2007; Swinney et al., 2011). This leads to a clearance strategy in which

a firm will use all of its capacity in production even if this turns out to be to its disadvantage. In

our view this is only an appropriate model in cases where a firm has no option to make production

decisions before discovering its rival’s capacity choices (such as may occur if there are long lead times

for major components); or, needs to maintain high capacity utilization because of high fixed costs of

starting and stopping the production process; or, has available some mechanism to make a credible

full production commitment to preempt the market (Hayes et al., 2005). Hence even though we use

the terminology of a clearance strategy, as is normal in the operations management literature (see Van

Mieghem and Dada, 1999), we do not mean to imply that a firm necessarily makes a choice about

the strategy to use. It is more likely that a clearance strategy is a consequence of industry structure

(Lieberman, 1987b; Goyal and Netessine, 2007).

In many circumstances firms first invest in capacity through building a factory or production

line, and then operate the production facility over a period of months or years. When decisions

on production quantities are made at a later time, it is often not possible to commit to a certain

production level at the time when the capacity investment is made. In such cases firms may well

choose to produce at a lower level than their maximum capacity (Hayes et al., 2005) and we refer

to this as a holdback strategy following the operations management literature (see Van Mieghem

and Dada, 1999). Note that we view the production policy, either holdback or clearance, as a fixed

characteristic of the industry, but in practice the situation can be more complicated as firms need

to make adjustments over time in response to market conditions. For instance in semiconductor

manufacturing a firm may need to cut production when demand levels are falling, since if it sells all

its capacity to the marketplace the resulting surplus production can push prices even lower (Wu et

al., 2005). In this case the degree to which holdback is employed is a function of changing market
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conditions which are unknown at the outset. However, in this paper we concentrate on the simplest

case in which a production quantity is set only once (following the operations literature including

Anupindi and Jiang (2008)) and uncertainty in market conditions is sufficiently small that it can be

ignored (following the economics literature including Dixit (1980)).

We will assume full information and in this case a firm can deduce its competitor’s capacity

investment decisions at the time that it makes its own investment. Thus no further information

becomes available and there is nothing to stop a production decision being made at the time of

investment (as occurs for example in Rhim et al. (2003)). But holdback production simply reflects

the common circumstance that there is no mechanism for commitment to such a production decision in

advance (Chen et al., 2002; Hayes et al., 2005). It is unclear in the literature whether, with holdback

production, there might be a situation where in equilibrium a firm invests in capacity and this is

not used. For example we might guess that when an aggressive large investment can ensure that a

competitor will not invest, then this may lead to an equilibrium solution where the investing firm ends

with more capacity than is needed. Our detailed analysis will show that this never happens in the

holdback setting. Nevertheless using holdback will result in different equilibrium outcomes than the

clearance case when only one of the firms invests.

The history of Du Pont fighting with Kerr-McGee in the U.S. bulk chemical industry (see Ghe-

mawat, 1984) illustrates the fact that lead time is important in strategic capacity investment. In this

case, the challenger in the industry, Kerr-McGee, announced its own capacity investment plan before

the expansion of the incumbent, Du Pont, had fully materialized. The presence of significant lead

time for adding capacity provided Kerr-McGee with the ability to force its competitor, Du Pont, to

revise its initial capacity plan. This strategic response to a capacity expansion announcement meant

that Du Pont was unable to increase its market share and allowed Kerr-McGee to avoid being in the

strategically disadvantaged position of investment follower. This case shows that given the long lead

time involved in capacity expansion, neither firm can move fast enough to establish a leader-follower

environment. Koeva (2000) indicates that average lead time for significant capacity investments is 26

months for a range of 23 industries including utilities, chemical plants, and rubber processing plants.

Thus, when there is a long lead time, capacity investment is best considered as a simultaneous move

competition rather than a sequential move competition.

There is often a significant fixed cost that is incurred in capacity expansion in capital-intensive

sectors for line production and process industries such as semiconductors, petrochemicals and flat-

panel-monitor manufacturing, where production capacity is expensive and can take a long time to

build (Hayes et al., 2005; Wu et al., 2005). In an empirical study of the U.S. petroleum refining

industry, Asano (2002) shows that the size of fixed cost of investment is important to firms’ investment

decisions regardless of firm size. From the point of view of capacity strategy, we might expect that a

fixed cost will raise a hurdle against small levels of investment and may make it easier for an incumbent

to deter a new entrant by building excess capacity (e.g., Rhim et al., 2003).

In this paper, we will try to unravel the impact of a number of different operational factors

mentioned above that can play a part in determining the outcomes of competitive capacity expansion.
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1.2 Summary of Analysis

We propose a game-theoretical model explicitly addressing the four factors we have mentioned: existing

capacity, lead time, production policy, and investment fixed costs. Our work differs from the majority

of papers in this area by explicitly considering the ex-ante asymmetries that exist in both existing

capacities and investment costs.

By including a pre-existing capacity endowment for the two firms we are able to model both cases

with an incumbent and an entrant. We will give a complete analysis including situations where one of

the firms has a capacity endowment which is larger than would be optimal. This may happen when

the game we analyze comes after some decisions on preliminary investment that are made with an

uncertain forecast of the market size. Thus our model can be useful in analyzing the later stages

of a more extended strategic competition with uncertainty at the first stage about final demand.

Specifically, we are able to discuss a situation in which an incumbent firm has already taken the

opportunity to build or buy additional capacity prior to an entering firm deciding on its capacity

investment. In this environment an incumbent firm can still take the opportunity to build more

capacity at the same time as the entering firm and our model is designed to reflect this.

We model a duopoly where each firm decides to invest (INV ) or not to invest (NI ), and then

chooses its capacity expansion level if it selects the INV strategy. The two firms produce the same or

perfectly substitutable product; they both have access to the same deterministic forecast of demand;

and, at the production stage, they know the capacity level of the other firm. Thus, after the capacity

investment decisions have been made (the capacity game), the firms can evaluate their profit in a

capacity-constrained production game. The market price is a function of the total production amount

offered to the market by the two firms, and the production policy available to each firm (holdback or

clearance) is fixed according to the industry structure.

We first characterize the pure-strategy Nash equilibrium in the production game and develop a

best response function for each firm, given the capacity of its competitor, as a function of the initial

capacities, the investment and operational costs, and the market structure parameters. Then, given

plausible assumptions that the variable cost of capacity is not too high, we characterize the subgame-

perfect Nash equilibrium in the capacity game with simultaneous decisions. The equilibrium outcome

in the alternating decision scheme is developed later for the sake of comparison. In the simultaneous

decision setting, we show that all the various equilibrium possibilities can arise depending on the

magnitude of existing capacity, even when other problem parameters are fixed. In this paper we

will spend most time giving a thorough analysis of the problem with fixed costs, production holdback

strategies, and simultaneous capacity decisions. This is the most difficult case to analyze and has been

neglected in the literature up to now: arguably, this is the case that occurs most often in practice (see

Hayes et al., 2005).

The lead time determines whether the appropriate model is one where the firms move simultane-

ously or where they move sequentially. Sequential capacity decisions can only occur when the lead

time (i.e., the time required to make a firm commitment on capacity) is short enough so that one firm

can act prior to its competitor making a capacity decision. In any other case it is better to model the

game using simultaneous capacity decisions.
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1.3 Related Literature

The operations literature on competitive capacity expansion is not very extensive, since most attention

has been focused on the monopoly setting: see Van Mieghem (2003) for a comprehensive survey. The

majority of capacity expansion models with a single firm have given explicit consideration to fixed costs

in order to demonstrate economies of scale in operations (e.g., Ye and Duenyas, 2007). However, most

oligopoly models in this research stream ignore the existence of fixed costs in order to obtain analytical

results (e.g., Anand and Girotra, 2007; Goyal and Netessine, 2007). For example, Van Mieghem and

Dada (1999) consider several firms that produce the same product and face a linear demand curve

with a stochastic intercept. Each of the firms has to decide on its capacity, production quantity, and

price. They show that the price, capacity, inventory, and profit are increasing in demand variability.

They consider firms that all employ holdback in production, but their results rely on firm symmetry

to find a subgame perfect equilibrium in pure strategies for capacity competition. We complement this

stream of research by incorporating fixed costs into a competitive capacity model without assuming

that firms are symmetric (see, e.g., Chevalier-Roignant et al., 2011).

We will analyze duopoly models where two firms, with or without existing capacities, strategically

invest in capacity in the presence of fixed costs and lead time. Similar models, frequently referred to as

“commitment (entry) games” in the industrial organization (IO) literature, use deterministic demand

and sunk/fixed costs in order to explain whether or not strategic excess capacity can be built either to

deter new entry or to preempt existing rivals (e.g., Spulber, 1981). The entry-deterrence argument is

that existing excess capacity enables incumbents to threaten to expand output and cut prices following

entry, thereby making entry unprofitable. Hence, deterrence is achieved by intensifying the post-entry

competition anticipated by the entrant. This strategic preemption increases the first mover’s profit

but lowers overall industry profit through this excess industry capacity (Dearden et al., 1999). Most

IO models assume that firms use all of their available capacity (i.e., exercise clearance in production)

even if the market-clearing price is below their variable costs. This assumption allows the interactions

of firms’ best response functions to be greatly simplified. However, Dixit (1980) and Ware (1984) point

out that the pre-commitment is generally not perfect. While the investment decision is irrevocable,

the capacity having been invested will be used only if it is profitable to do so (Krishnan and Röller,

1993). In other words, when competing firms can employ holdback in production then it becomes

much harder to use a preemptive capacity expansion to deter an entrant. Our paper complements

existing IO research by considering a simultaneous move game and allowing each firm to have some

existing capacity; this allows a better match to situations that are prevalent in practice.

2 Model Description

There are two firms indexed i = 1, 2 in a duopoly: the firms are profit maximizers and risk neutral.

This is a two-stage sequential game: specifically, investments are made in the first period (the capacity

game) and production decisions are made in the second period (the production game). At the second

stage a firm’s output is subject to its capacity constraint: this is its initial capacity endowment plus

any additional capacity arising from the investment in the first stage. We only consider the profits
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made from decisions on capacity investment in period 1 and production in period 2; so we ignore any

production activity that takes place prior to period 2 using pre-existing capacity. Throughout this

paper, we assume that all information is common knowledge.

In period 1, each firm can decide to either keep the same capacity level as the existing capacity

amount (NI ), or increase capacity over the existing capacity amount (INV ). At the start of the game,

firm i’s pre-existing capacity is zi and its capacity level after making the investment decision is denoted

by xi. Thus xi ≥ zi ≥ 0 and xi − zi is the capacity addition for firm i. Capacity investment is costly

and we suppose that there is a fixed cost of Ki incurred in choosing the INV strategy. Investment is

irreversible.

We assume that neither firm can delay its investment decision until it discovers the investment

decision of the other; that is, any delay between the two firms’ investment decision is sufficient small

so that the first stage can be considered simultaneous. In period 2, the firms simultaneously decide

their production quantities (denoted by yi ≥ 0) given their investment decisions in period 1. Note that

production will usually take place over a long period; and thus the two periods are typically of very

different lengths. Figure 1 summarizes the timing of our model. In Section 6 we will briefly discuss

an alternating investment decision scheme, where the first stage is a sequential-move noncooperative

game and the second stage remains as a simultaneous-move noncooperative game.

Figure 1: The Sequence of Events

A firm’s total cost is made up of two parts. First, a capacity decision xi − zi > 0 for firm i incurs

an investment cost Ki +Wi (xi − zi) , where Wi is the cost per unit of investment (and there is zero

cost if there is no investment and xi = zi). Second, the production decision yi ∈ [0, xi] for firm i

involves an operational cost Viyi, where Vi is the cost per unit of production.

The inverse demand curve is deterministic and linear, and we can always scale units such that the

price is given by P (Q) = A−Q, where Q ≥ 0 is the total supply put into the market by the two firms

and the demand intercept A is a positive constant. It has been argued that this model with firms

competing in quantities (Cournot competition) is appropriate for the description of the medium to

long-term equilibrium in a spot market (see Tirole, 1988). Within a capacity constrained environment

even allowing Bertrand type price competition can lead to a Cournot competition at the point of
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capacity investment (Kreps and Scheinkman, 1983). In the same way Anupindi and Jiang (2008)

have suggested that price competition can also be modeled in this way if firms have some flexibility

to exercise control on quantity through production or delivery. Due to its analytical simplicity, the

choice of linear demand is conventional and this is often a good approximation to more general demand

functions (see Shapiro, 1986). A downward sloping linear inverse demand curve can also be thought of

as the result of utility-maximizing behavior of customers with quadratic, additively separable utility

functions (see Singh and Vives, 1984).

In the online supplementary material, we give the proofs that are not reported in the paper.

3 Production Game with Holdback

We begin with the production game. Suppose that firms have already played the first stage capacity

game, and are endowed with capacities xi and xj . In this second stage, the firms play a constrained

quantity-setting game.

Upon observing the capacities (xi, xj) and conjecturing firm j’s output of yj , firm i solves the

following decision problem:

πi (xi, xj) = max
yi∈[0,xi]

{P (yi + yj) yi − Viyi} ,

where the objective function is the operating profit of firm i in period 2 and P (yi + yj) = A− yi− yj .

Note that we do not include any discounting of the profits in this formulation, though a model

with discounted cash flows can be converted into the form we give here with suitable changes in the

parameters and units of quantity. The decision variable yi must lie in [0, xi] which is the feasible set

of outputs given that firm i employs holdback (if clearance is used then yi = xi). This yields the

first-order optimality condition:

∂ [P (yi + yj) yi − Viyi]

∂yi
= A− 2yi − yj − Vi = 0,

and we can check that the second-order optimality conditions are satisfied. Solving for yi as a function

of yj gives the best response of firm i in production:

yai (yj) :=
A− Vi − yj

2
.

Without capacity constraints, the Nash equilibrium outcome in the production game can be calculated

by solving the two best responses, yai (·) and yaj (·), simultaneously. To do this, we need an assumption:

Assumption 1. A− 2Vi + Vj > 0 for i = 1, 2 and j ̸= i.

Then we have the following lemma:

Lemma 1. Under Assumption 1 and given infinite capacity for the two firms, the unique Nash equi-

librium in the production game is
(
yci , y

c
j

)
where

yci ≡
A− 2Vi + Vj

3
for i = 1, 2 and j ̸= i.
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Assumption 1 is needed in order to ensure that yc1 and yc2 are positive. Note that ∂2πi
/
∂y2i =

−2 < 0 and ∂πi/ (∂yi∂yj) = −1 < 0 for i = 1, 2 and j ̸= i, so the equilibrium output
(
yci , y

c
j

)
is

unique. This assumption is commonly adopted in the analytical literature to ensure that the marginal

cost of production and operations is lower than expected maximum price (i.e., A) and both firms have

an incentive to sell positive quantities of their products in the market (see, e.g., Tirole, 1988). It also

rules out the trivial case wherein it is never profitable to produce and sell products. In fact, many

analytical operations management studies implicitly make this assumption by scaling production costs

to zero (e.g., Anand and Girotra, 2007; Goyal and Netessine, 2007; Swinney et al., 2011).

If both firms’ capacities exceed the equilibrium outputs (i.e., xi ≥ yci for i = 1, 2), the unique

second-stage equilibrium in the production game is given by (yc1, y
c
2). If xi < yci and xj < ycj , the

unique equilibrium in the production game is given by (x1, x2). This is because given that yj = xj ,

the best response of firm i’s output, yai (xj), is larger than firm i’s capacity constraint of xi, and a

symmetric result holds for firm j. In the asymmetric case where xi ≥ yci but xj < ycj , the equilibrium

in production is described by the following result.

Lemma 2. When xi ≥ yci and xj < ycj , where i = 1, 2 and j ̸= i, the Nash equilibrium in the

production game is (min [xi, y
a
i (xj)] , xj).

Proof. Given yj , the operating profit function for firm i, P (yi + yj) yi − Viyi, is quadratic with a

maximum at yai (yj). Hence, given a capacity constraint yi ≤ xi for firm i, the best response is yi =

min [xi, y
a
i (yj)]. So yi = min [xi, y

a
i (xj)] is the best response to yj = xj . To show a Nash equilibrium,

it only remains to prove that yj = xj is the best response to yi = min [xi, y
a
i (xj)]. Due to the fact

that yi ≤ yai (xj) we know that 2yi ≤ A − Vi − xj and xj < ycj implies 3xj < A − 2Vj + Vi. Adding

these inequalities we have 2yi < 2A − 2Vj− 4xj . Rearranging this gives xj < yaj (yi) which in turn

establishes yj = xj as required. �

Figure 2 maps the first-stage capacity choices onto the second-stage equilibrium output choices,

according to Lemmas 1 and 2. The combination of capacity levels gives rise to four possible outcomes

of the production game. The four regions identified in the figure are defined as follows:

Φ0 ≡
{
(xi, xj)

∣∣∣ 0 ≤ xi < yai (xj) and 0 ≤ xj < yaj (xi)
}

Φ4 ≡
{
(xi, xj)

∣∣∣ 0 ≤ xi < yci and xj ≥ yaj (xi)
}
,

Φ5 ≡
{
(xi, xj)

∣∣∣xi ≥ yai (xj) and 0 ≤ xj < ycj

}
,

Φ6 ≡
{
(xi, xj)

∣∣∣xi ≥ yci and xj ≥ ycj

}
.

The numbering here arises because of the further sets Φ1, Φ2 and Φ3 used in the proof of Theorem 1

and defined in the online supplementary material. We can summarize our results for the production

game under holdback production as follows.

Lemma 3. Suppose that Assumption 1 holds. The equilibrium behavior in the production holdback

game is:

(i) if (xi, xj) ∈ Φ0, the equilibrium outputs are xi and xj;
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Figure 2: Mapping of Capacity onto Production Equilibrium

(ii) if (xi, xj) ∈ Φ4, the equilibrium outputs are xi and yaj (xi);

(iii) if (xi, xj) ∈ Φ5, the equilibrium outputs are yai (xj) and xj;

(iv) if (xi, xj) ∈ Φ6, the equilibrium outputs are yci and ycj .

This result is similar to Eaton and Ware (1987) and Krishnan and Röller (1993), but under different

cost functions for investment and production activities.

4 Best Response in Capacity Game

Now we are ready to consider the choice of capacity investment at the first stage. In order to simplify

the problem, we strengthen Assumption 1 to give:

Assumption 2. A− 2Vi + Vj > 6Wi for i = 1, 2 and j ̸= i.

We can write this assumption as yci > 2Wi for i = 1, 2. This is an assumption that will be satisfied in

most situations unless the market is very price inelastic and the variable cost of additional capacity

is high. It is possible to derive best response functions without making this assumption, but it gives

rise to a large number of cases and it is still necessary to make some other assumptions to derive an

analytical solution to the capacity game. By introducing this assumption, we can avoid trivialities

that capacity levels after the investment are less than the equilibrium outcomes in the production

game. As for Assumption 1, this assumption and its variants have been implicitly imposed in many

analytical capacity-related studies to ensure that capacity investment is still profitable even if both

firms expand their capacity levels at the same time, see Section 5 for the details.
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Given firm j’s capacity choice of xj , firm i’s operating profit function can be derived from Lemma

3:
πi (xi, xj) = P (xi + xj)xi − Vixi if (xi, xj) ∈ Φ0,

= P
(
xi + yaj (xi)

)
xi − Vixi if (xi, xj) ∈ Φ4,

= P (yai (xj) + xj) y
a
i (xj)− Viy

a
i (xj) if (xi, xj) ∈ Φ5,

= P
(
yci + ycj

)
yci − Viy

c
i if (xi, xj) ∈ Φ6.

Let

Ri (xi, xj) := πi (xi, xj)−Wi (xi − zi)−Ki

be the profit of firm i, net of investment and production costs. Observing the existing capacity pair

(zi, zj) and conjecturing firm j’s capacity choice of xj , firm i’s optimal profit at the investment stage

is

Πi (zi, xj) =

{
πi (zi, xj) if πi (zi, xj) ≥ Ri (x

∗
i , xj) ,

Ri (x
∗
i , xj) otherwise,

where x∗i is the maximizer of function Ri (xi, xj) subject to xi > zi with the given xj . The equation

for Πi shows that given zi and xj , firm i invests up to x∗i if the return from this investment is over

the investment expense; otherwise, the firm does not invest. From this observation, we can expect

that the best response of firm i’s investment to its rival’s decision xj will depend on some threshold.

If firm i’s existing capacity zi is above the threshold, then its profit without investing is high enough

and it should not build any new capacity; if not, it should build an additional amount of capacity

x∗i − zi. However, we can be certain of this behavior only if the profit function πi (zi, xj) is monotonic

in zi for the range 0 ≤ zi ≤ x∗i corresponding to Ri (·, xj) being unimodal. In our case it turns out

that the functions involved may not be unimodal. Nevertheless, using a careful analysis (given in the

proof of the next result) we can show that it is still possible to characterize firm i’s best response in

the capacity game for a given capacity choice of firm j and the existing capacity of firm i using the

same kind of approach. The result is given in Theorem 1 and a symmetric result holds for the best

response of firm j.

Theorem 1. Let

SL
i (xj) ≡ yai (xj)−

Wi

2
,

sLi (xj) ≡ SL
i (xj)−

√
Ki,

sBi ≡ 3

2
yci −Wi −

√
2Ki +

(
yci
2

−Wi

)2

,

ϑi ≡ A− Vi −Wi − 2
√

yci (y
c
i −Wi), and

ϕi (xj) ≡ SL
i (xj)−

√(
SL
i (xj)

)2 − yci (y
c
i −Wi) +Ki.

If Assumption 2 holds and there is holdback in production, then an optimal response for firm i, given

firm j’s capacity decision xj, is

x∗i (xj) =

{
Si (xj) if zi ≤ si (xj) ,

zi otherwise,
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where the expansion level function of firm i is

Si (xj) ≡

{
SL
i (xj) for xj ≤ ϑi,

yci for xj > ϑi.

and the expansion point function of firm i is

si (xj) ≡


sLi (xj) for xj < ϑi,

ϕi (xj) for ϑi ≤ xj < yaj
(
sBi

)
,

sBi for xj ≥ yaj
(
sBi

)
.

We refer to si as the expansion point function and Si as the expansion level function. When the existing

capacity zi is at the expansion point then the firm is indifferent between investing in additional capacity

and not investing. The result of the above theorem is similar to the famous two-critical number (s, S)

policy from inventory theory (Scarf, 1960): Given the rival’s available capacity, when the cumulative

capacity is below the expansion point, it is optimal to bring it up to the expansion level; otherwise,

it is optimal to leave it unchanged. Note that the expansion point and the expansion level depend

on the other firm’s capacity choice in the first stage. It is not hard to show that the function si is

continuous (for details see the online supplementary material) but the function Si is not continuous,

as shown in Figure 3.

The intuition behind Theorem 1 is as follows. When firm j’s capacity choice of xj is lower than

ϑi and firm i’s initial capacity of zi is less than the expansion point, i.e., (zi, xj) ∈ Ω1 (Ω1, Ω2, and

Ω3 are defined in Figure 3), firm i will invest up to SL
i (xj) based on its profit maximization and both

firms will produce up to their capacities in the production game. When (zi, xj) ∈ Ω2, firm i should

invest up to yci . This has the effect of forcing firm j to produce at a level ycj which is less than its

capacity xj (in the proof we show that in this region ycj < ϑi < xj). When (zi, xj) ∈ Ω3, firm i will not

invest since the production return from any investment activity is less than the investment expense.

As is clear from Figure 3, for certain values of existing capacity zi, the best response of firm i

moves from investing to not investing and then back to investing as the capacity choice of firm j

increases. The calculation of the best response function is complex because of the holdback possibility

in production. Even without the fixed costs Ki we still obtain a curved boundary given by the function

ϕi.

5 Equilibrium Analysis

After analyzing the production game and the best responses in the capacity game, we now consider

the firms’ equilibrium behavior in the capacity game. It will be helpful to begin by defining some

preliminary quantities. We define
(
xCi , x

C
j

)
as the intersection point of functions SL

i (·) and SL
j (·),

and thus the point we reach if both firms decide to invest. We have

xCi ≡ yci −
2Wi −Wj

3
for i = 1, 2 and j ̸= i.

Assumption 2 makes A− 2Vi + Vj − 2Wi +Wj > 0 and A− 2Vj + Vi − 2Wj +Wi > 0, so the values of

xCi and xCj are positive. Note that Si (·) intersects Sj (·) only once at the point
(
xCi , x

C
j

)
under the

following mild assumption:

11



Figure 3: The Best Response of Firm i in Capacity Game with Holdback Production

Assumption 3. Wi ≤ 2Wj for i = 1, 2 and j ̸= i.

Under this assumption, the uniqueness of the (INV, INV) strategy is assured. It is noted that this sort

of assumption and its variants have been explicitly or implicitly adopted in most analytical literatures

on capacity competition and industrial organization (see, e.g., Tirole, 1988).

We define

bi ≡ si
(
xCj

)
and bj ≡ sj

(
xCi

)
.

Thus bi is the largest value of zi for which firm i invests, given that firm j also invests (so that we

reach a solution where both firms invest).

Finally, we define ci as the solution of the equation

c = si
(
SL
j (c)

)
. (1)

We can describe this as the smallest value of zi for which firm i does not invest, given that firm j

does invest, and firm j chooses its investment amount assuming firm i does not invest. Consideration

of the geometry of the situation shows that there can only be one solution of (1). The slope of SL
j (·)

is −2. We look for the intersection of this with the expansion point function s−1
i (·), shown as a bold

line in the left illustration of Figure 3. Since the slope of the s−1
i (·) line below ϑi is −1/2, this line

can only intersect SL
j (·) from above. Note that this also implies that

z < si
(
SL
j (z)

)
if and only if z < ci. (2)

Because the values of bi and ci depend on the form of si (·), it is not straightforward to write closed-form

formulae for either of them.
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The best response function derived in the last section puts us in a position to determine the

equilibrium of the capacity game. We limit our analysis to subgame-perfect Nash equilibrium in pure

strategies (SPNE) that are described in the following theorem.

Theorem 2. Suppose that Assumptions 2 and 3 hold. Then,

(i) the (INV, INV) strategy with (xi, xj) = (xCi , x
C
j ) is a SPNE in the capacity game if and only if

the existing capacities satisfy condition (A): zi < bi and zj < bj;

(ii) the (INV, NI) strategy with (xi, xj) = (SL
i (zj) , zj) is a SPNE in the capacity game if and only if

the existing capacities satisfy condition (B): zi < si(zj) and cj ≤ zj < ϑi;

(iii) the (INV, NI) strategy with (xi, xj) = (yci , zj) is a SPNE in the capacity game if and only if the

existing capacities satisfy condition (D): zi < si(zj) and zj ≥ ϑi;

(iv) the (NI, NI) strategy with (xi, xj) = (zi, zj) is a SPNE in the capacity game if and only if the

existing capacities satisfy condition (F): zi ≥ si(zj) and zj ≥ sj(zi).

Proof.

Part (i). Let (xCi , x
C
j ) be a SPNE for the capacity game. That is firm i chooses to invest up to xCi

and hence, by Theorem 1, zi < si

(
xCj

)
; at the same time, firm j chooses to invest up to xCj and so,

zj < sj
(
xCi

)
. This establishes the result in one direction. Conversely, under the conditions zi < si(x

C
j )

and zj < sj(x
C
i ), if firm j invests to the level xCj , then the firm i will invest to the level SL

i

(
xCj

)
= xCi

by Theorem 1. And, similarly if firm i invests to the level xCi . So (xCi , x
C
j ) is a SPNE for the capacity

game.

Part (ii). Let (SL
i (zj) , zj) be a SPNE for the capacity game. Thus firm i chooses to invest up to

SL
i (zj) and hence, from Theorem 1, zi < si (zj) and zj < ϑi; at the same time, firm j does not invest

and so, zj ≥ sj
(
SL
i (zj)

)
. Thus, from our previous observation (2) (Section 5), we have zj ≥ cj . This

establishes the result in one direction. Conversely, under conditions zi < si(zj) and cj ≤ zj < ϑi,

if firm j chooses not to expand its capacity level, then the firm i will invest to the level SL
i (zj) by

Theorem 1. Since we have cj ≤ zj < ϑi, we can conclude from (2) that zj ≥ sj
(
SL
i (zj)

)
. Hence, if firm

i invests to the level SL
i (zj), then the firm j chooses not to expand its capacity level. So (SL

i (zj) , zj)

is a SPNE for the capacity game.

The other parts of the Theorem follow similarly. �

Parts (ii) and (iii) of the above theorem have symmetric versions with the roles of i and j reversed,

i.e., conditions (C): zj < sj(zi) and ci ≤ zi < ϑj ; and (E): zj < sj(zi) and zi ≥ ϑj .

Applying this theorem, we can find the corresponding SPNE for the ten possible regions Λ1, ...,Λ10

listed in Table 1 and shown in Figure 4. The example shown in Figure 4 is one which satisfies the

following two conditions: First,

bi > ci for i = 1, 2 (3)

13



and second,

xsi < ϑj for i = 1, 2 and j ̸= i (4)

where
(
xsi , x

s
j

)
is the intersection point of function si (·) and sj (·). Under these two conditions, there

are overlaps between the regions applying for parts (i) and (ii) of Theorem 2. In other words, these

conditions imply that regions Λ2, Λ3, Λ4, and Λ9 will exist. Without condition (3), there may be no

SPNE for some choices of parameters having

bj ≤ zj < sj
(
SL
i (zj)

)
.

In Section 5.1, we will give numerical examples for which no SPNE exists for certain existing capacities,

and for which either condition (3) or (4) does not hold. Notice that our results in Theorem 2 and Table

1 are general – without the restriction of conditions (3) and (4) – and only restricted by Assumptions

2 and 3.

Table 1: Equilibrium Behavior in Capacity Game

Region Conditions Satisfied SPNE of Investment Strategy Equilibrium Capacity

Λ1 (A) (INV, INV ) (xC
i , x

C
j )

Λ2 (A), (B), and (C)
(INV, INV ), (INV,NI)

and (NI, INV )

(xC
i , x

C
j ), (y

a
i (zj)−Wi/2, zj)

and (zi, y
a
j (zi)−Wj/2)

Λ3 (A) and (B) (INV, INV ) and (INV,NI) (xC
i , x

C
j ) and (yai (zj)−Wi/2, zj)

Λ4 (A) and (C) (INV, INV ) and (NI, INV ) (xC
i , x

C
j ) and (zi, y

a
j (zi)−Wj/2)

Λ5 (B) (INV,NI) (yai (zj)−Wi/2, zj)

Λ6 (C) (NI, INV ) (zi, y
a
j (zi)−Wj/2)

Λ7 (D) (INV,NI) (yci , zj)

Λ8 (E) (NI, INV ) (zi, y
c
j)

Λ9 (B) and (C) (INV,NI) and (NI, INV )
(yai (zj)−Wi/2, zj) and

(zi, y
a
j (zi)−Wj/2)

Λ10 (F ) (NI,NI) (zi, zj)

The firms’ equilibrium behavior in the capacity game is illustrated in Figure 4. For the sake of expo-

sition, we will assume that both firms have identical costs in the following discussion. Roughly speak-

ing, if both have low existing capacities in comparison with expected future demand, i.e., (zi, zj) ∈ Λ1,

then there is an equilibrium (INV, INV ) in which they prefer to expand their capacity levels; if there

is high existing capacity in comparison with expected future demand, i.e., (zi, zj) ∈ Λ10, then there is

an equilibrium (NI, NI ) in which they prefer not to invest; and if, in comparison with expected future

demand, one firm has relatively low existing capacity but the other firm has relatively high existing

capacity, i.e., (zi, zj) ∈ Λ7 or Λ8 , then there is an equilibrium (INV, NI ) or (NI, INV ) in which one

firm prefers to invest but the other prefers not to invest.
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Figure 4: Mapping of Existing Capacity Pair onto Investment Equilibria

To help understand the way that the regions in Table 1 arise from the expansion point and the

expansion level functions, we consider the point marked O1 in Figure 4. What are the possible

equilibrium outcomes if (zi, zj) = O1? The possibility of neither firm investing is ruled out because

zj < sj(zi) (and also zi < si(zj) ), so that either firm not investing would cause the other to decide

to invest. Also the possibility of both firms investing is ruled out because zj > bj . If both firms were

to invest then they should make xi = xCi and xj = xCj . However, if firm j knows that firm i will

have capacity xCi , then the investment cost will not be worthwhile since zj > bj = sj
(
xCi

)
. So we can

deduce that in an equilibrium, only one firm will invest. If firm j invests but firm i does not, then we

will end at the point (xi, xj) = O2. But, this cannot be an equilibrium since at point O2 firm i would

choose to invest because xi is below its expansion point. On the other hand, if firm i invests but firm

j does not, then we will end at the point (xi, xj) = O3. This is a possible equilibrium outcome, (INV ,

NI), since we have zj = xj > sj(xi) at this point and so knowing the value of xi firm j would choose

not to invest.

Notice that in this case (and more generally if (zi, zj) ∈ Λ5 or Λ6) the weak firm, with lower existing

capacity, can expand its capacity level and force its competitor (with higher existing capacity) not to

invest, because the other firm cannot get enough revenue to cover its investment expenditure if both

of them were to invest. The strong firm, with higher existing capacity, finds it not worthwhile to make

an additional investment facing the aggressive challenger, and the challenger (firm i) finally obtains a

larger market share.

Our next result relates to the similarity between holdback and clearance in an equilibrium environ-

ment. We will return to this issue in Section 6. Suppose that firm i invests in additional capacity and

in the production stage of the game does not use all its capacity. Then a small reduction in investment

will not effect the production amounts and will result in reduced investment costs and an improved

profit. Hence we obtain the following result (which can also be checked directly by considering the

production quantities that occur in the different regions in Table 1).
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Lemma 4. Suppose that there is an equilibrium in which firm i invests in additional capacity, then

at the production stage firm i will set its production level equal to its capacity.

5.1 Multiple equilibria

When (zi, zj) ∈ Λ2,Λ3,Λ4, or Λ9, multiple equilibria occur in the capacity game. The obvious problem

with multiple equilibria is that the firms may not foresee which equilibrium will prevail. Mahajan

and van Ryzin (2001) argue that a symmetric equilibrium is more reasonable than an asymmetric

equilibrium according to the focal point effect proposed by Schelling (1960). Thus, in our case (INV ,

INV ) is a more likely equilibrium than (INV , NI) and (NI, INV ) for (zi, zj) ∈ Λ2. But, there

exists no symmetric equilibrium for (zi, zj) ∈ Λ3,Λ4, or Λ9, in which each firm would prefer a different

equilibrium, for example firm i prefers (INV , NI) over (NI, INV ). Hence, it is possible that a

non-equilibrium outcome results since firm i plays one equilibrium strategy of (INV , NI) while firm j

chooses the other equilibrium strategy of (NI, INV ). However, if there exists some process of preplay

communication then Schelling argues that the players could become focused on one equilibrium. For

instance, if firm i can convince firm j of its persistence in the INV strategy we might well expect

them to play (INV , NI). See Cachon and Netessine (2004) for a discussion of the implications of

multiple equilibria in game theory models of operations and supply chain.

On the other hand if there are no fixed costs, the multiple equilibrium regions, Λ2,Λ3,Λ4, and Λ9,

disappear since the expansion point and the expansion level functions are identical (i.e., si (·) = Si (·)
when Ki = 0). Thus setting Ki = Kj = 0, Theorem 2 implies:

Corollary 1. In a production holdback environment with no fixed costs of investment, there always

exists a unique SPNE for any existing capacities (zi, zj).

In other words, the existence of fixed costs adds more strategic uncertainty in the capacity game,

as suggested by Porter (1980). If there are no clues prior to starting the game (i.e., preplay commu-

nication), both firms may simultaneously play the INV strategy aiming for an equilibrium in which

the other player does not invest. This can happen for (zi, zj) ∈ Λ2,Λ3,Λ4 or Λ9 when scale economies

in investment are significant, and will imply some industry excess capacity. The examples we give in

section 5.3 confirm that this is not just a theoretical possibility.

Remark 1. When there are fixed costs of investment, for certain existing capacities in the capacity

game there may be either multiple equilibria, or no equilibrium.

5.2 Production versus investment costs

This formulation also allows us to investigate the consequences of sunk investment costs (represented

by Wi). We expect that when costs are moved away from the production decision (represented by

Vi) and instead are incurred at the time of investment (represented by Wi) then this will enable

the investing firm to demonstrate greater commitment - hence allowing more effective preemptive

investment strategies in the holdback environment. For example, this could happen if firm i was to

commit to purchase raw materials at the same time as building capacity; or if firm i was to choose a

higher level of automation. If this effect occurs, we can expect that the region where firm j is able to
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gain from investing, even though firm i has already built a large capacity, will be reduced. In other

words, we expect that the region including Λ6 and Λ8 will be reduced. Formally,

Corollary 2. Suppose that Assumptions 2 and 3 hold and suppose that Vi and Wi are changed as

follows: V new
i = Vi −∆ and Wnew

i = Wi +∆. Then, the region Λ6 ∪ Λ8 decreases as ∆ increases.

Proof. To complete this proof, we consider moving a cost ∆ from Vi to Wi, so V new
i = Vi −∆ and

Wnew
i = Wi+∆. It is easy to see that this increases the Cournot equilibrium amount yci by an amount

2∆/3 and decreases ycj by an amount ∆/3. Hence ϑj increases. Note that yai (xj) is increased by ∆/2

and so both sLi (·) and SL
i (·) are unchanged. Moreover SL

j (·) is unchanged, so ci will also be unchanged.

Finally observe that sBj decreases since ycj decreases and

∂sBj
∂ycj

=
3

2
−

ycj/2−Wj√
2Kj +

(
ycj/2−Wj

)2
> 0.

It is straightforward to see from Figure 4 that the net effect is to reduce Λ6 ∪ Λ8, since we have

extended Λ6 to the right and reduced the horizontal upper boundary of Λ8 (which is at sBj ). �

We can also investigate the effect of moving a cost from Vi to Wi on firm i’s profit. Using simple

algebra (see the on-line supplementary material), we obtain:

Remark 2. In a production holdback environment, the ability of a firm to preempt an entering firm

can be strengthened by moving a cost from the variable cost of production to the variable cost of

investment. Profits for the incumbent will be increased except in cases where there is a large excess

initial capacity.

As Porter notes (1980: 101): ‘Perhaps the single most important concept in planning and executing

offensive and defensive competitive moves is the concept of commitment. ... The persuasiveness of a

commitment is related to the degree to which it appears binding and irreversible.’ Previous models

have usually treated capacity commitment as employing a production clearance strategy. These results

show that in this environment a type of commitment can occur that arises from the structure of

the costs of investment and production, even though there cannot be any binding or irreversible

determination of the future production level. Furthermore this type of commitment, achieved by

advancing production costs, will have a positive impact on firm performance if there is not too large

an excess capacity. This is a new observation in model-based capacity strategy research (Ghemawat

and Cassiman, 2007). This analytical finding fits the empirical observations in competitive strategy

(Chen et al., 2002) and suggests that, in a production holdback environment, a firm may benefit from

investing in production lines involving higher investment cost but lower operating costs (for example

through opting to use a higher degree of automation).

5.3 Examples of Asymmetric Firms

Our model allows us to consider cases with asymmetric costs between firms. We illustrate how our

theoretical results apply to asymmetric cases by exploring the following three examples to gain addi-

tional insights. It is noted that all of the examples satisfy Assumption 2.
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Example 1. There are two firms in a concentrated market, firm 1 with a high cost technology and

firm 2 with a low cost technology. The firms have cost functions: V1 = 1, W1 = 1.4 and K1 = 6 for

firm 1, and V2 = 0.5, W2 = 1 and K2 = 3 for firm 2. Demand is characterized by A = 10.

Figure 5: Example 1 for Asymmetric Duopoly

Applying Theorem 2, we can show the equilibrium behavior of investment for the first example

in Figure 5. Except for (z1, z2) ∈ Λ5 ∪ Λ9, firm 1 will never invest in additional capacity. According

to the definition of region Λ9, firm 2 also has a chance to invest for (z1, z2) ∈ Λ9. So in this region

there are two possible equilibria. This equilibrium outcome for (z1, z2) ∈ Λ9 is similar to the famous

battle-of-the-sexes outcome. Only if there exists a focal point effect such as preplay communication

may we have an expectation on which asymmetric equilibrium will occur. The example implies that

a firm with significant cost advantage over the other will choose to invest even if the firm has no

existing capacity and its competitor owns high existing capacity, i.e., (z1, z2) ∈ Λ6 ∪Λ8. Thus, in this

instance building excess capacity is not a good strategy for an incumbent with a cost disadvantage.

This is because the production holdback environment does not allow the incumbent to commit to full

production, and so building excess capacity does not provide a credible commitment. This outcome

is similar to the well-known example of the steel industry, where leading integrated steel mills proved

to have no incumbent advantage upon encountering the challenge from entering minimills with a

disruptive technology of production (e.g., Christensen, 1997).

Example 2. The parameters in this example are the same as for example 1, except we take K1 = 0,

that is, the incumbent (firm 1) has an incumbent advantage in that its fixed cost has already been

spent (or sunk). We leave other parameters unchanged. Therefore, firm 1 has an expansion point

function that is the same as its expansion level function. The equilibrium behavior of investment in

this example is shown in Figure 6. If the incumbent’s existing capacity is small in comparison with

expected demand, i.e., (z1, z2) ∈ Λ1, the incumbent and the entrant (firm 2) will invest simultaneously.

In this example, condition (4) does not hold since xc1 > ϑ2 so there is no equilibrium for the existing

capacity pairs in the region we have labeled Λ0. For (z1, z2) ∈ Λ0, z1 is below firm 1’s expansion point

but z2 is above firm 2’s expansion point. Following Theorem 1, firm 1 would like to invest such that

(x1, z2) ∈ Λ8 and firm 2 chooses not to invest. After firm 1’s investment decision, firm 2 will invest its
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Figure 6: Example 2 for Asymmetric Duopoly

capacity level up to yc2. Therefore, there is no equilibrium for any (z1, z2) ∈ Λ0.

Figure 7: Example 3 for bi < ci ∀i

Example 3. Finally, consider an example shown in Figure 7 for which the firms have cost functions:

V1 = 1, W1 = 0.5 and K1 = 1 for firm 1 and V2 = 2, W2 = 0.01 and K2 = 3 for firm 2, and the

demand intercept A is 10. In this instance, condition (3) does not hold and there is no equilibrium

for the existing capacities in the shaded region we label Λ0. To help in understanding why there is no

equilibrium in region Λ0, we look at point O4. At point O4, z1 and z2 are both below their expansion

points so that (NI, NI) is not an equilibrium outcome. If firm 1 invests but firm 2 does not, we move

to point O5. But, at point O5 firm 2 would choose to invest because z2 is below its expansion point.

Hence, point O5 is not an equilibrium outcome. On the other hand, if firm 2 invests but firm 1 does

not, then we move to point O6. At point O6, firm 1 would choose to invest because z1 is below its
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expansion point. Thus, neither (INV , NI) nor (NI, INV ) is an equilibrium outcome for point O4.

In addition, (INV , INV ) is not an equilibrium outcome since z1 > b1 and so firm 1 would decide not

to invest if x2 = xC2 .

5.4 When can strategic deterrence occur?

The examples given above have demonstrated that building excess capacity may not to be an effective

strategy for an incumbent to deter the potential entrant from investing in capacity under the produc-

tion holdback environment. The ineffectiveness of excess capacity by firm i is related to the fact that

for low values of zj no matter how large zi becomes, the investment equilibria falls into Λ8 where firm

j invests. The condition for this to happen is that sBj > 0, i.e.,

3

2
ycj −Wj >

√
2Kj +

(
ycj
2

−Wj

)2

.

This inequality reduces to Kj < ycj

(
ycj −Wj

)
. Thus we have shown that only when the fixed cost

of investment for the other firm is larger than a certain threshold, ycj

(
ycj −Wj

)
, will it be possible for

an incumbent to invest aggressively in order to eliminate a potential rival from entering a market.

This discussion demonstrates that excess capacity will often not be an effective strategy when

symmetric-cost firms employ holdback in production. We therefore would not expect to see an excess-

capacity strategy in a competitive environment in which firms are able to use holdback in their

production. This result seems to be supported by empirical observations made by Lieberman (1987c),

who looked at the chemical industry over a roughly 25 year period and found that excess capacity was

very rarely used as an entry deterrent.

5.5 Equilibrium with Cost Parity

In this section we will simplify our analysis to isolate the strategic issues governing capacity investment

decisions. We wish to eliminate the effects of asymmetric costs and so we will assume that all capacity

and production costs for firms are identical, i.e., cost parity, as does Anand and Girotra (2007). This

will allow us to omit the subscripts of parameters and functions in Theorems 1 and 2 in the following.

The cost parity makes xC < ϑ. Without loss of generality, we can adjust the price A and normalize

the production costs to zero (Vi = Vj = V = 0). In addition, the following assumption is imposed

to avoiding the trivial case where the expansion point functions are negative (i.e., both firms never

invest).

Assumption 4. K < A(A− 3W )/9.

This assumption together with Assumption 2 make xC > xs > 0 and condition (4) holds. However,

condition (3) may or may not hold here, depending on the magnitude of the fixed cost; thus the multiple

equilibrium regions Λ2,Λ3 and Λ4 may exist or not. The capacity equilibrium behavior under cost

parity is shown in Figure 8. We can see that when zj = 0, firm j will enter the market if either

(zi, 0) ∈ Λ1,Λ4,Λ6 or Λ8 in Figure 8(a) or (zi, 0) ∈ Λ1,Λ6 or Λ8 in Figure 8(b). Note that there does

not exist any equilibrium in the capacity game if (zi, 0) ∈ Λ0, shown in Figure 8(b).
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Figure 8: Capacity Equilibrium under Holdback Production and Cost Parity

Finally, the simplest case occurs when we set the fixed cost K to zero and leave other parameters

unchanged. In this setting, Assumption 2 makes 0 < xC < ϑ so that b = c = xC . We find that the

equilibrium regions Λl, l = 1, 5, 6, 7, 8, 10, cover the entire (zi, zj) space, shown in Figure 9.

6 Two alternative models

So far our analysis has relied on two presumptions that we will relax in this section: first that the

holdback strategy is available in production, and second that in the first stage capacity decisions

are made simultaneously due to the long lead time. Section 6.1 studies the competitive environment

when holdback is not possible; and Section 6.2 analyzes alternating capacity decisions – where one

firm invests first and the other invests later. This alternating scheme is simpler than the model of

simultaneous capacity decisions. By investigating it we want to find out whether the holdback (or

clearance) strategy has the same impact on the equilibrium behavior in the sequential-decision scheme

as it does in the simultaneous-decision scheme?

6.1 Clearance in Production

In order to understand the difference between employing holdback and clearance, we now analyze

investment equilibrium behavior in a simultaneous-move game assuming that firms use clearance as

a production strategy (so that firms make decisions on capacity and production at the same time).

This is an assumption that has been made by most model-based literature on competitive capacity

investment.

From Lemma 4 we know that in the event that both firms choose to invest, then the clearance
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Figure 9: Capacity Equilibrium under Holdback Production, Cost Parity and Zero Fixed Costs

and holdback strategies will be the same. However, we will see that there are substantial differences

in behavior when one firm has excess capacity.

The solutions in the clearance case will involve the simpler functions sLi , s
L
j , S

L
i and SL

j rather

than si, sj , Si and Sj . This allows us to be more explicit. We define

bLi = sLi
(
xCj

)
= yai (x

C
j )−

Wi

2
−
√

Ki

= xCi −
√

Ki.

Also we have cLi = sLi

(
SL
j

(
cLi

))
from which we deduce

cLi = xCi − 4

3

√
Ki

(with matching expressions for bLj and cLj ). We can establish the following result for the firms’ capacity

equilibrium in pure strategies:

Theorem 3. Suppose that Assumption 2 holds and both firms use a production clearance strategy.

Then,

(i) the investment pair (INV, INV ) with (xi, xj) =
(
xCi , x

C
j

)
is a SPNE in the capacity game if and

only if the existing capacities satisfy the conditions zi < bLi and zj < bLj ;

(ii) the investment pair (INV,NI) with (xi, xj) =
(
SL
i (zj) , zj

)
is a SPNE in the capacity game if and

only if the existing capacities satisfy the conditions zi < sLi (zj) and zj ≥ cLj (and a matching

result for the investment pair (NI, INV ) with i and j reversed);
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(iii) the investment pair (NI,NI) with (xi, xj) = (zi, zj) is a SPNE in the capacity game if and only

if the existing capacities satisfy the conditions zi ≥ sLi (zj) and zj ≥ sLj (zi).

Proof. Under a production clearance environment, xi = yi and xj = yj . Then, we can write

πL
i (x, xj) = (A− Vi − x− xj)x

for the operational profit of firm i in production. Given the rival’s investment decision xj , the optimal

profit of firm i in the capacity game can be written:

ΠL
i (zi, xj) =

{
πL
i

(
SL
i (xj) , xj

)
−Wi

(
SL
i (xj)− zi

)
−Ki for zi < sLi (xj) ,

πL
i (zi, xj) otherwise.

Here (A− Vi −Wi − xj) /2 is the unique maximizer of function
{
πL
i (x, xj)−Wi (x− zi)

}
for each xj

and is equal to SL
i (xj). In this case, SL

i (xj) exists because π
L
i is strictly concave in its first argument.

The smallest value of υ for which

πi (υ, xj)−Wi (υ − zi) = πi
(
SL
i (xj) , xj

)
−Wi

(
SL
i (xj)− zi

)
−Ki

is (A− Vi −Wi − xj) /2 −
√
Ki which is equal to sLi (xj). Thus we have established that firm i’s

optimal policy of investment for given xj is as follows:

xi (xj) =

{
SL
i (xj) for zi < sLi (xj) ,

zi otherwise.

This is to be compared with Theorem 1 and can be used to prove the result in the same way that

Theorem 2 was established.

Consider case (ii) when zi < sLi (zj) and zj ≥ cLj . Under these conditions the optimal response

for firm i to firm j not investing is to invest up to a capacity level of SL
i (zj). On the other hand if

zj ≥ cLj then zj ≥ sj
(
SL
i (zj)

)
and hence the optimal response for firm j to this investment by firm i

is not to invest. In the other direction if (xi, xj) =
(
SL
i (zj) , zj

)
is a SPNE in the capacity game then

we derive the conditions zi < sLi (zj) and zj ≥ sj
(
SL
i (zj)

)
immediately.

The other two cases follow similarly. �

Since bLi ≥ cLi , with equality when the fixed cost Ki = 0 we can deduce the following corollary:

Corollary 3. In the production clearance environment, there exists at least one SPNE for each pair

of existing capacities, and if there are no fixed costs of investment, then this SPNE is unique.

Figure 10 shows the equilibrium behavior in a case where there is cost parity (Vi = Vj , Wi = Wj , and

Ki = Kj). This figure demonstrates that when zj = 0, firm i can deter firm j’s entry provided that

firm i has sufficient existing capacity such that (zi, 0) ∈ ΛL
10. Specifically we can see that, whether

or not there is cost parity, xj = zj = 0 is the equilibrium outcome for zi >
(
sLi

)−1
(0). We can

summarize:

Remark 3. For an incumbent facing a potential entrant in a production clearance environment,

strategic preemption with a large amount of existing capacity can deter the entrant.
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Figure 10: Capacity Equilibrium under Clearance Production and Cost Parity

In general the production clearance environment is more favorable for the incumbent and less

favorable for the potential entrant in comparison with the holdback environment. In the online sup-

plementary material we analyze in more detail the case that the fixed costs are zero and where firm

i is an entrant with zi = 0 and firm j is an incumbent with zj > ϑi, and we show that in this case

profitability for the incumbent is greater with a clearance environment. Other cases are similar.

By comparing the overall profits arising from holdback and clearance, we obtain:

Remark 4. A production clearance environment gives more profit for the incumbent and less profit

for the potential entrant.

6.2 Alternating Investment Decisions

In this section, we consider an alternative capacity-decision scheme that of two firms making investment

decisions sequentially, as is often assumed in the commitment literature (see Tirole, 1988). We thus

assume that the lead time (or at least time to commit to a certain capacity) is short enough to enable

the leading firm to have completed this stage prior to its rival’s investment decision. This makes

the analysis much easier compared to the simultaneous decision scheme. Assume that firm i is a

leader, firm j is a follower, and both have no capacity ex ante (zi = zj = 0). As in Section 5.2, we

assume identical costs between the firms in order to isolate the industry issues related to the impacts

of holdback and clearance production. Moreover, we take Vi = Vj = 0 without loss of generality.

In addition to analytical simplicity, another useful property of this decision scheme is that we can

ignore the effect of fixed costs without loss of generality. Specifically, the leader can easily evaluate
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whether the entrant enters the market or not by deducting the fixed cost from its revenue. If the

entrant’s net profit allowing for the fixed cost is positive, it enters; otherwise, it does not. Note that

this property does not hold in the simultaneous decision scheme (see Remark 2). As a result, there

are no issues of multiple equilibria and non-equilibrium in the sequential setting. Roughly speaking,

there is less strategic uncertainty for a short lead time.

Through a careful analysis given in the on-line supplementary material, the following results are

obtained.

Remark 5. The first-mover advantage always exists in the sequential setting no matter what produc-

tion policy is employed.

Remark 6. No matter what the decision sequence (simultaneous or sequential move), holdback produc-

tion always reduces the advantage of having more existing capacity, and clearance production reinforces

the advantage.

7 Conclusion

This paper develops a game-theoretical model to analyze competitive responses for strategic capacity

investment. In particular, we consider the joint effect of several operational characteristics including

existing capacity, scale economies, lead time, and production policy on capacity investment in equi-

librium. Each firm makes two decisions: choice of capacity and choice of production quantity. The

capacity decision sequence (simultaneous or alternating) and production policy (holdback or clearance)

are both determined by the competitive environment in which the firms operate. We develop the best

response of the firms in the capacity decision and use it to develop the firms’ equilibrium behavior for

both simultaneous and sequential investment decisions. After introducing plausible assumptions, we

are able to solve the entire game in closed form. One novel element in our model is that competing

firms are able to have some existing capacity prior to the start of the competitive capacity investment

decisions. Furthermore, our work differs from the capacity-related literature by explicitly considering

the ex-ante asymmetries that exist in both existing capacities and investment costs. Our findings

provide systematic answers to questions about how to restrain competitive responses to a capacity

action:

1. The existing literature has shown that making simultaneous moves reduces the commitment

implied by ex ante capacity in comparison with a sequential move, see Dixit (1980) and Tirole

(1988). We confirm that this result holds under our setting as well, and further show that this

effect of move sequence is much stronger for firms in a production clearance environment than

in a holdback environment. In other words, the commitment value of ex ante capacity can be

reduced when there are both a long lead time to build additional capacity and a production

holdback environment. So, operational factors do matter to capacity strategy.

2. We show that in the production holdback environment, excess capacity cannot deter the entry

of the potential competitor no matter how large the existing capacity of the incumbent firm.

This is different to the clearance environment where an incumbent with sufficient capacity can
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deter entry. More generally, in the leader-follower game of capacity investment the first-mover

advantage is greater in a clearance environment.

3. Under holdback production, our analytical result shows that the commitment represented by

existing capacity can be strengthened by moving a cost from the variable cost of production

to the variable cost of investment. This is an example of commitment being increased as

the investment action involves more irreversibility (Chen and MacMillan, 1992; Hayes et al.,

2005; Chronopoulos et al., 2011). In other words, an incumbent firm has a greater preemptive

advantage if its production facilities involve higher investment cost but lower operational cost.

Usually this leads to an improvement in the incumbent’s profit (though this improved profit can

be canceled out by the additional costs in building an initial excess capacity).

4. We find that in a production holdback environment fixed costs make the problem of simultaneous

investment complicated in two different ways: first they introduce the possibility of multiple

equilibria in investment competition, and second fixed costs mean that Nash equilibrium in

pure strategies may not exist for some existing capacities. However, these complications only

arise when the lead time is sufficiently long. In other words, fixed costs and long lead times

increase strategic uncertainty (emerging endogenously from the strategic interactions between

competing firms) as argued by Porter (1980). So strategic uncertainty is much greater than is

suggested by previous studies that do not consider fixed costs and lead time.

These findings provide practical guidelines for competitive moves in capacity races. For firms in

a production clearance environment, an incumbent may consider acting aggressively in investment

in order to deter potential entrants, but should act more cautiously in order to maintain its market

share facing another incumbent. These ‘asymmetric’ responses have been observed in concentrated

industries (Lieberman, 1987a). On the other hand, firms in a production holdback environment, no

matter whether they are incumbents or new entrants, should recognize that investment is likely to

take place by all parties and hence they need to structure their decisions to avoid industry excess

capacity. This type of ‘symmetric’ response has been observed in the brick industry (Wood, 2005).

For a potential entrant, entering an industry with production holdback possibilities and long lead

times gives a greater chance of success, rather than entering an industry with clearance and short lead

times. Overall, an entrant should act with aggressive capacity investment under holdback production,

but act passively under clearance production.

A central message of this paper is the importance of the link between a firm’s operations (produc-

tion policy) and its competitive environment (industry structure, production technology, and its costs

of investment and production). This paper makes contributions to theory of operations strategy, in

particular for capacity strategy. First we characterize the equilibrium solution of the strategic capacity

game in a way that is similar to the well-known (s, S) policy from inventory and supply chain theory

(Scarf, 1960). But in addition, we see this paper as advancing the theoretical foundation of capacity

strategy by analyzing competitive outcome under different operational characteristics.
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Supplementary Material for “Competition through capacity investment
under asymmetric existing capacities and costs”

Before giving the proof of Theorem 1 it is helpful to establish a result that gives the general form of

the solution involving an expansion point and expansion level.

Lemma 5. Suppose that πi is concave in its first argument and let

gi (xi, xj) ≡ πi (xi, xj)−Wixi .

Then there are real valued functions, si (xj) and Si (xj), where, for each xj, Si (xj) is the choice of

xi ∈ (zi,∞) which maximizes gi (xi, xj) over this range, and si (xj) is the smallest value of λ for which

gi (λ, xj) = gi
(
Si (xj) , xj

)
−Ki. Given the existing capacity pair (zi, zj) and conjecturing the rival’s

capacity choice of xj, an optimal capacity level for firm i is

xi =

{
Si (xj) if zi ≤ si (xj) ,

zi otherwise.

Proof. We can rewrite Πi as

Πi (zi, xj) = Wizi +max

(
gi (zi, xj) ,max

xi>zi
[gi (xi, xj)−Ki]

)
.

If the function πi is strictly concave in its first argument, then so is the function gi. We can easily

check that πi (xi, xj) is bounded and so there is a unique maximizer of gi (xi, xj) over the range (zi,∞).

Thus the equation for Πi is equivalent to

Πi (zi, xj) =

{
Wizi + gi

(
Si (xj) , xj

)
−Ki for zi ≤ si (xj) ,

Wizi + gi (zi, xj) otherwise,

with the functions si (·) and Si (·) defined in the lemma statement. If zi ≤ si (xj), then gi (zi, xj) ≤
gi
(
Si (xj) , xj

)
−Ki and, therefore, it is optimal to invest in bringing the capacity level up to Si (xj).

If si (xj) < zi ≤ Si (xj), then, by the strict concavity of gi, gi (zi, xj) > gi
(
Si (xj) , xj

)
−Ki, so it is

optimal not to invest. If zi > Si (xj), it is also optimal not to invest due to the strict concavity of gi.

Note that si (xj) < Si (xj) since Ki > 0, and the derivative of gi at si is positive. �

Now we prove Theorem 1 by considering a number of cases which deal with different regions for

zi and xj . It will be helpful to split the Φ0 region in (xi, xj) space into three:

Φ1 ≡
{
(xi, xj)

∣∣∣ 0 ≤ xi < yci and 0 ≤ xj < ycj

}
,

Φ2 ≡
{
(xi, xj)

∣∣∣ 0 ≤ xi < yci and ycj ≤ xj < yaj (xi)
}
,

Φ3 ≡
{
(xi, xj)

∣∣∣ yci ≤ xi < yai (xj) and 0 ≤ xj < ycj

}
,
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Proof of Theorem 1:

Case 1. (zi, xj) ∈ Φ5 ∪ Φ6

In this case we have zi ≥ min(yci , y
a
i (xj)) so after investment the same inequality holds and

(xi, xj) ∈ Φ5 ∪ Φ6. From Lemma 3(iii) and 3(iv) the equilibrium in the production game is inde-

pendent of the value of xi. Therefore, an investment by firm i would involve cost without benefit and

hence the best response of firm i is not to invest.

Case 2. (zi, xj) ∈ Φ1 ∪ Φ3

In this case we have zi < yai (xj) and xj ≤ ycj . By Lemma 3 the upper bound of required

capacity in the production game is yai (xj) and so investment does not take place beyond that level,

i.e. zi ≤ xi ≤ yai (xj). In this case the best production quantity for each firm equals its capacity, using

Lemma 3. Thus the operating profit function is

πi (xi, xj) = (A− xi − xj − Vi)xi, (A1)

which is strictly concave in xi over the region of interest for each xj . Hence we can apply Lemma 4

where the function gi is

gi (xi, xj) = (A− xi − xj − Vi)xi −Wixi,

which is concave for every xj . The maximum is achieved when xi is at the expansion level function of

firm i, and so taking derivatives we obtain

SL
i (xj) =

A− Vi − xj −Wi

2
= yai (xj)−

Wi

2
.

The expansion point function of firm i is

sLi (xj) = min
{
λ
∣∣ gi (λ, xj) = gi

(
SL
i (xj) , xj

)
−Ki

}
.

So sLi (xj) is the smaller root of the quadratic

(A− λ− xj − Vi)λ−Wiλ =

(
A− Vi − xj −Wi

2

)2

−Ki,

and hence

sLi (xj) =
A− Vi − xj −Wi

2
−
√

Ki.

Hence from Lemma 4, if 0 ≤ zi ≤ sLi (xj) then xi = SL
i (xj) and otherwise, xi = zi.

Case 3. (zi, xj) ∈ Φ4

In this case, zi < yci and xj ≥ yaj (zi). Thus xj > ycj and from Lemmas 3(ii) and 3(iv), we

know that if xi ≥ yci after firm i’s investment decision, then the equilibrium output (yci , y
c
j) occurs in

the production game; otherwise, the equilibrium output (xi, y
a
j (xi)) occurs in the production game.

Therefore, firm i’s capacity choice is in the range [zi, y
c
i ] since firm i never produces more than yci in

the production game.
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The operating profit function for firm i is

πi
(
xi, y

a
j (xi)

)
=

(
A− xi − yaj (xi)− Vi

)
xi (A2)

which is strictly concave in xi. Hence the approach of Lemma 5 can be used, with gi allowing for the

response of firm j. Thus

gi
(
xi, y

a
j (xi)

)
= πi

(
xi, y

a
j (xi)

)
−Wixi

=
(
A− xi − yaj (xi)− Vi

)
xi −Wixi.

Maximizing over xi gives

∂gi

(
xi, y

a
j (xi)

)
∂xi

=
A

2
− xi − Vi +

Vj

2
−Wi = 0

and hence the maximum is at xi = 3yci /2 − Wi. But from Assumption 2, yci /2 > Wi and so this

maximum occurs at a value greater than yci . Hence we can deduce that the expansion level of firm i

is yci . In other words if investment takes place it is best to invest up to a level yci , when both firms

will produce at the unconstrained Cournot equilibrium
(
yci , y

c
j

)
.

The expansion point function is the lowest root of the equation

gi
(
λ, yaj (λ)

)
= πi

(
yci , y

c
j

)
−Wiy

c
i −Ki

= (A−Wi − Vi − yci − ycj)y
c
i −Ki.

This is a quadratic(
A− λ− A− Vj − λ

2

)
λ− (Vi +Wi)λ =

(A− 2Vi + Vj − 3Wi) (A− 2Vi + Vj)

9
−Ki

which has roots (after some algebra):

(A+ Vj − 2Vi)

2
−Wi ±

√
2Ki +

(
A− 2Vi + Vj

6
−Wi

)2

.

The smaller root is sBi . From Lemma 4, we know that: if 0 ≤ zi ≤ sBi then xi = yci ; otherwise, xi = zi.

Case 4. (zi, xj) ∈ Φ2

In this case, zi < yci and ycj < xj < yaj (zi). The analysis of optimal behavior in this region is

complex. If firm i has decided to invest in additional capacity, there are two possible equilibrium

outcomes in the production game: either (1) the production equilibrium is (xi, xj) if (xi, xj) ∈ Φ2, or

(2) the production equilibrium is
(
xi, y

a
j (xi)

)
if (xi, xj) ∈ Φ4. In fact, the function πi is not unimodal

as a result of the equilibrium output in the production game being different between regions Φ2 and

Φ4.

We begin by considering firm i’s best response function under Assumption 2 for (xi, xj) ∈ Φ2.

Given xj , the upper boundary of Φ2 is reached when xi takes the value

xi =
(
yaj
)−1

(xj) = A− Vj − 2xj .
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While (xi, xj) ∈ Φ2, i.e. xi is in the range (zi, A − Vj − 2xj), the operating profit function πi (xi, xj)

follows the quadratic function (A1) given above. However, if (xi, xj) ∈ Φ4 after firm i invests, then yj

is reduced to yaj (xi) in the production phase of the game (see Lemma 3(ii)). This leads the operating

profit function of firm i to be a different quadratic function, (A2).

First observe that if firm i invests enough, so that (xi, xj) ∈ Φ4, then under Assumption 2, the

net profit πi

(
xi, y

a
j (xi)

)
−Wi (xi − zi) −Ki is still increasing at xi = yci (as in Case 3 above). It is

easy to see that investment to a level beyond yci is not worthwhile and so the profit is maximized at

xi = yci . Hence the maximum value of firm i’s profit if it invests to a level xi where (xi, xj) ∈ Φ4 is

πi
(
yci , y

c
j

)
−Wi (y

c
i − zi)−Ki = Wizi + gi

(
yci , y

c
j

)
−Ki. (A3)

We also need to consider the case where firm i’s investment decision leaves (xi, xj) ∈ Φ2. In this

case, we know from Lemma 3(i) that yi = xi for each i and so the best choice of xi is given by SL
i (xj)

and the maximum value of profit for firm i if its investment decision makes (xi, xj) ∈ Φ2 is

Wizi + gi
(
SL
i (xj) , xj

)
−Ki (A4)

which needs to be compared to (A3) above. Later we will establish that in the cases where (A4) is

better than (A3) then xi = SL
i (xj) will satisfy the constraint that (xi, xj) ∈ Φ2.

Let
Ψi (xj) ≡ gi

(
yci , y

c
j

)
− gi

(
SL
i (xj) , xj

)
=

(
2ycj − 2xj −Wi

)
Wi − 2

(
ycj − xj

)
(yci + yai (xj))

4

be the difference between (A3) and (A4). Note that Ψi is a concave quadratic because the coefficient

of x2j is negative. Thus Ψi (xj) is negative below the lower root of the quadratic

(
2ycj − 2xj −Wi

)
Wi −

(
ycj − xj

)
(2yci +A− Vi − xj) = 0,

i.e. for xj values less than

ϑi ≡ A− Vi −Wi − 2
√

yci (y
c
i −Wi).

(From Assumption 2 this is well-defined). For these xj values (A4) is larger than (A3) and the

expansion level for firm i is SL
i (xj). Note that ϑi > ycj since

ϑi − ycj = A− Vi −Wi −
A− 2Vj + Vi

3
− 2

√
yci (y

c
i −Wi)

= 2yci −Wi − 2
√

yci (y
c
i −Wi)

=

(√
yci −

√
(yci −Wi)

)2

> 0.

We want to show that, when xj is less than ϑi, the expansion level suggested, which is SL
i (xj),

is still in Φ2. To do this, we introduce ξi for the intersection of SL
i (xj) and the upper boundary

xj = yaj (xi) of region Φ2, which occurs at an xj value of

ξi ≡ yaj (xi) = ycj +
Wi

3
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by solving yaj (S
L
i (ξ)) = ξ (note that, under Assumption 2, ξi < yaj (0) which is the highest value in

Φ2). Now

ξi − ϑi = 2

[
2Wi

3
− yci +

√
yci (y

c
i −Wi)

]
.

But using Assumption 2, yci > 2Wi and so

yci (y
c
i −Wi)−

(
yci −

2Wi

3

)2

=
Wi

3
(yci −

4Wi

3
) > 0.

Thus √
yci (y

c
i −Wi) > yci −

2Wi

3
,

and ξi > ϑi as we require is obtained.

This completes the analysis of the expansion level function for this case and we now consider the

expansion point function giving the condition for investment for (zi, xj) ∈ Φ2. For ycj ≤ xj < ϑi the

analysis is essentially the same as in Case 2 and we can show that the expansion point function of

firm i is sLi (xj) .

For ϑi ≤ xj < yaj (0), we start by defining a function

Gi (λ, xj) ≡ πi

(
yci , y

c
j

)
−Wi (y

c
i − λ)−Ki − πi (λ, xj)

= λ [λ− 2yai (xj) +Wi] + yci (y
c
i −Wi)−Ki,

which is the net gain from investing up to level yci , given capacity λ (∈ [0, (yaj )
−1 (xj)]) and the other

player’s capacity xj (> ycj). The function Gi is convex and quadratic in its first argument. Investment

is worthwhile if Gi is positive and the expansion point function is simply the lower root of the equation

Gi (λ, xj) = 0, which is:

ϕi (xj) = yai (xj)−
Wi

2
−
√

εi (xj)

where

εi (xj) ≡
(
yai (xj)−

Wi

2

)2

− yci (y
c
i −Wi) +Ki.

We can also check that there is no problem caused by the fact that, in this case, if the firm does not

invest the payoff is not monotonic in capacity - which could suggest that there will be more complex

behavior involving going back to investing for higher values of xi. To show that this does not happen,

we want to show that if

ϕi (xj) <
(
yaj
)−1

(xj) , (A5)

then Gi (λ, xj) is still negative at the boundary λ =
(
yaj

)−1
(xj) = A− Vj − 2xj . The condition (A5)

is
A− Vi −Wi − xj

2
−
√

εi (xj) < A− Vj − 2xj .

Rearranging and squaring this becomes(
A− Vi −Wi − xj

2

)2

− yci (y
c
i −Wi) +Ki >

(
2Vj −A− Vi −Wi + 3xj

2

)2

.

Hence

Ki − yci (y
c
i −Wi)− (Vj −A+ 2xj) (Vj − Vi −Wi + xj) > 0.

33



But the left hand side of this inequality is simply Gi (A− Vj − 2xj , xj) establishing the inequality we

require. This completes the proof of Theorem 1. �

We want to show that the expansion function is continuous. To do this we will modify the argument

above to show that the function ϕi (xj) crosses the boundary of Φ2 at sBi . Since ϕi (xj) =
(
yaj

)−1
(xj)

implies

Ki − yci (y
c
i −Wi)− (Vj −A+ 2xj) (Vj − Vi −Wi + xj) = 0.

This is a quadratic in xj and (after some algebra) we find that the roots are

A− 3Vj + 2Vi

4
+

Wi

2
± 1

2

√
2Ki +

(
Wi −

yci
2

)2

and the upper root is exactly yaj
(
sBi

)
(note that the lower root turns out to be less than ycj , and

so is not relevant). We can also show that ϕi (ϑi) = sLi (ϑi) =
√

yci (y
c
i −Wi) −

√
Ki. Thus we

have demonstrated the continuity of the expansion point function. We could also establish this result

indirectly by observing that the cost of investing is a continuous function of the amount invested (away

from 0) and the profit after investment is a continuous function of the final position. Therefore the

maximum profit if it is decided to invest (optimizing over the amount) is continuous. The intersection

of the two surfaces (profit from investing and profit from not investing) defines the expansion point

function which must therefore be continuous.

Proof of Remark 2. We can also investigate the effect of moving a cost ∆ from Vi to Wi on firm

i’s profit. Assume that zj = 0, i.e. firm j is a new entrant. We will also suppose that a change

which adds cost to the investment component Wi includes an additional cost in respect of the existing

capacity zi. Suppose that zi < bi and 0 < bj (e.g. (zi, 0) in region Λ1) so that both firms invest and

(xi, xj) = (xCi , x
C
j ). The profit to firm i in this case is

Πi =
(
A− xCi − xCj

)
xCi − Vix

C
i −Wix

C
i −Ki

(note that we have included the prior expenditure of Wizi in this expression). Since xCi , xCj and

Vi +Wi are all unchanged by the move of cost, there is no change in profit overall: there is a change

in the timing of expenditure, rather than the amount of expenditure.

Next consider the case where 0 < sj(zi) and ci ≤ zi < ϑj (e.g. (zi, 0) in region Λ6) so that firm i

does not invest and xj = SL
j (zi) which is unchanged by the move of costs. Moreover, in this region

the production quantity for firm i is equal to the capacity zi (see proof of Theorem 1, Case 4). Again

there is no change in firm i’s overall profit.

Now consider the case that 0 < sj(zi) and zi ≥ ϑj (i.e. (zi, 0) in region Λ8). Then firm i does not

invest and xj = ycj . Now

Πi =
(
A− yci − ycj

)
yci − Viy

c
i −Wizi −Ki.
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As yci increases by 2∆/3 and ycj decreases by ∆/3, we obtain

Π
new

i −Πi =

(
A− yci − ycj −

∆

3

)
(yci +

2∆

3
)− (Vi −∆)(yci +

2∆

3
)

−
(
A− yci − ycj

)
yci + Viy

c
i −∆zi

= ∆

(
4

3
yci +

4

9
∆− zi

)
.

Thus, there will be an improvement in profit offset by a term ∆zi which arises from the fact that not

all the capacity built is used (in this region firm i has an excess capacity endowment). Provided this

excess capacity is not too great, then overall profits will improve.

The reduction in size of the region Λ6∪Λ8 is mainly associated with changing particular scenarios

from Λ8 to Λ10. If (zi, 0) is moved to Λ10 as a result of moving a cost ∆ from Vi to Wi, then at

the production stage firm i moves from an environment with a competitor present to one without a

competitor. Moreover production costs are decreased. Without doing the detailed calculations it is

easy to see that there is an improvement in profit for firm i, again offset by a term ∆zi related to the

extra costs of capacity that is not used.

There may also be a change in profit if (zi, 0) is at a point which moves from Λ8 to Λ6 as the

boundary changes. Then

Π
new

i −Πi =
(
A− zi − SL

j (zi)
)
zi − (Vi −∆)zi −

(
A− yci − ycj

)
yci + Viy

c
i −∆zi

=
1

2
zi (3y

c
i +Wj − zi)− (yci )

2

Observe that this expression is positive when zi = yci but becomes negative for zi large enough. This

completes the proof. �

Proof of Remark 4. We want to compare the overall profits arising from holdback and clearance.

The two different environments may produce very similar results. From a comparison of Theorems 2

and 3, we can see that for cases (i) and (ii) of Theorem 2 the results with clearance are qualitatively

similar to those with holdback. Differences arise when one or both firms have an excess capacity

endowment at the start of the capacity game. To make the discussion more concrete suppose that

firm i is an entrant with zi = 0 and firm j is an incumbent with zj > ϑi. Moreover for simplicity

we will assume that there are no fixed costs so Ki = Kj = 0. For holdback production, provided

si(zj) > 0, we are in case (iii) and firm i invests up to yci and the incumbent firm does not invest

(note that when Ki = 0, we have sBi = yci and so the condition si(zj) > 0 will usually hold). In the

production game firm i produces yci and firm j produces ycj . This gives a profit to the entering firm i

of

(A− yci − ycj − Vi −Wi)y
c
i = (yci −Wi)y

c
i

The profit to the incumbent firm j is

(A− yci − ycj − Vj)y
c
j =

(
ycj
)2

. (A6)
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Now consider clearance production. There are two cases. If sLi (zj) > 0 then the entering firm invests

an amount SL
i (zj) otherwise firm i does not enter. The condition for entering can be written as

zj < A− Vi −Wi. In this case the entering firm gets a profit of

(A− SL
i (zj)− zj − Vi −Wi)S

L
i (zj) =

(
A− Vi −Wi − zj

2

)2

Since zj > ϑi the profit made is less than (yci −Wi)y
c
i ; in other words, with clearance the entering firm

makes less profit than with holdback. This is true also when the firm does not enter (making zero

profit under clearance).

Now consider the incumbent firm: since SL
i (zj) < yci in this region, firm i always produces less

than under holdback. Hence the profit to firm j were it to produce ycj is greater than the profit (A6)

under holdback production. Thus its profit from optimizing its production amount is also higher. This

completes the proof. �

Proof of Remarks 5 and 6. First, we assume that the firms employ clearance in production (we

will use the notation |L to indicate clearance). This game obviously degenerates into the standard

Stackelberg duopoly with the equilibrium outcomes, x∗i |L = (A−W ) /2 and x∗j

∣∣∣
L
= (A−W ) /4, both

of which are positive from Assumption 2. The equilibrium profits are

π∗
i |L = (A−W )2 /8 and π∗

j

∣∣
L
= (A−W )2 /16.

And, we can see π∗
i |L = 2 π∗

j

∣∣∣
L
.

For the sake of comparison, the firms are now assumed to employ holdback in production (we will

use the notation |B to indicate holdback). As before, Assumption 2 holds in the following analysis.

Solving this problem backwards, we first consider firm j’s decision given firm i’s investment amount

of xi. Theorem 1 tells us that for K = 0 such that s (·) = S (·), firm j’s best response of capacity

investment over xi is

x∗j (xi)
∣∣
B
=

{
SL (xi) for xi ≤ ϑ

yc otherwise.

Note that SL (xi) > 0 because SL (ϑ) > 0 (i.e. Assumption 2 rules out the trivial case where SL (x) < 0

for x < ϑ). Substituting this into firm i’s decision problem, we obtain firm i’s profit function:

max
xi≥0

Πi (xi)|B =

{
P
(
xi + SL (xi)

)
xi −Wxi = (A−W − xi)xi/2 for xi ≤ ϑ

P (2yc) yc −Wxi = A2/9−Wxi otherwise.

Solving this, we obtain an equilibrium outcome:

x∗i |B = ϑ = A−W − 2
√

A (A− 3W )/3 > yc, and

x∗j

∣∣∣
B

= SL (ϑ) = (A− ϑ−W ) /2 =
√

A (A− 3W )/3 < yc,

where x∗i |B ≥ x∗j

∣∣∣
B
since x∗i |B−x∗j

∣∣∣
B
= A−W−

√
A (A− 3W ) ≥ 0 since (A−W )2−

[√
A (A− 3W )

]2
=

(A+W )W ≥ 0. The equilibrium profits are

π∗
i |B =

(
A−W −

√
4A (A/3−W ) /3

)√
4A (A/3−W ) /3

2
and π∗

j

∣∣
B
=

A (A− 3W )

9
.
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We can see π∗
i |B > π∗

j

∣∣∣
B
> 0 from above.

In this sequential investment game, the leader has a first mover advantage and can predict that

if its own capacity investment is at ϑ or more, the potential entrant will invest up to yc and then

push all capacity into the market to force the leader to hold back some capacity. If this happens, the

competition outcome is the standard Cournot duopoly and the leader would not gain any benefit by

moving earlier. This is why the leader will choose to invest in capacity at a level ϑ.

By the following facts:

x∗i |L > x∗i |B > yc > x∗j
∣∣
B
> x∗j

∣∣
L

and

π∗
i |L > π∗

i |B > π∗
j

∣∣
B
> π∗

j

∣∣
L
> 0,

we see that in the alternating decision scheme, holdback production weakens the commitment capa-

bility of preemptive capacity expansion (because x∗j

∣∣∣
B

> x∗j

∣∣∣
L
and π∗

j

∣∣∣
B

> π∗
j

∣∣∣
L
) but the clearance

strategies strengthens the commitment (because x∗i |L > x∗i |B and π∗
i |L > π∗

i |B), as in the simultane-

ous decision scheme. Note that in the sequential setting with holdback, the leading firm invests more

than the Cournot outcome of yc and the following firm invests less than yc. Therefore, the first-mover

advantage still exists in the sequential investment game with holdback. �
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