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Abstract

The goal of this paper is to provide a cohesive description and a critical comparison
of the main estimators proposed in the literature for spatial binary choice models. The
properties of such estimators are investigated using a theoretical and simulation study. To
the authors’ knowledge, this is the first paper that provides a comprehensive Monte Carlo
study of the estimators’ properties. This simulation study shows that the Gibbs estimator
(LeSage, 2000) performs best for low spatial autocorrelation, while the Recursive Impor-
tance Sampler (Beron and Vijverberg, 2004) performs best for high spatial autocorrelation.
The same results are obtained by increasing the sample size. Finally, the linearized Gen-
eral Method of Moments estimator (Klier and McMillen, 2008) is the fastest algorithm that
provides accurate estimates for low spatial autocorrelation and large sample size.

1 Introduction
In applied work in economics and political science, there is increased attention to the impor-
tance of spatial or network interdependence between observations. Not only does this vio-
late the assumption of independence underlying many econometric methodologies for cross-
sectional data, there is also growing interest in estimating the strength of the interdependence
itself. While the econometric literature on linear regression models with spatial interdepen-
dence is well established, in particular since the publication of Anselin (1988)’s seminal work,
the literature on regression models with binary dependent variables and spatial interdependence
is still relatively limited.

Many applications with such models can be considered – including the contagion of cur-
rency crises (Novo, 2003), firm-level decision-making on locations (Autant-Bernard, 2006),
ecological studies of spatial distributions of plants (Collingham et al., 2000), studies in policy
diffusions of flat taxes (Baturo and Gray, 2009), anti-smoking laws (Shipan and Volden, 2006)
or pension privatization (Weyland, 2007) – across academic disciplines such as economics,
political science, sociology, ecology, planning, or even neurology.
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Proximity in this context can be interpreted in a broad manner. Whether one defines prox-
imity in a physical or in a cultural or interaction sense, or in a manner that encompasses large
distances or the entire space (all units affect all other units), the estimation challenges discussed
in this article still hold.1 The conclusions can thus be directly applied to social network anal-
ysis as well as spatial econometric analysis. Anselin (2002, 255) refers to this perspective as
the object view or this type of data as lattice data. The alternative, a geostatistics perspective,
where we observe only specific monitoring sites and space is seen as a continuous space or a
point pattern (Bivand, 1998), leads to an entirely different econometric framework and will not
be discussed in his article.

Spatial econometric models raise new difficulties that cannot be dealt with by standard
econometric models. Estimation problems arise due to the dependence across observations,
in that we must adjust the estimation procedures for the loss of information associated with
dependent observations. Indeed, in the presence of spatial dependence, standard logit or probit
estimation procedures, which assume independence, result in inconsistent and inefficient esti-
mates (McMillen, 1992). In particular, McMillen (1992) notes that both the spatially dependent
error model and the spatial lag model imply heteroskedastic disturbances, which cause the pa-
rameter estimates to be inconsistent. For these reasons econometricians began to pay more
attention to spatial dependence problems in the last two decades and some important advances
have been made in both theoretical and empirical studies (Anselin, Florax and Rey, 2004).

The aim of this article is to compare the main estimators proposed in the literature for
estimating the spatial autocorrelation parameter in binary choice models. On the one hand, this
goal is achieved by analysing the theoretical characteristics of the main estimators for spatial
models for binary response data. This topic has been in part developed by Fleming (2004) but
we consider also the recent literature. Moreover, our paper is focused only on binary choice
models, instead Fleming (2004) has considered discrete choice models. On the other hand, the
most innovative aspect of this work is the comparison of the above-mentioned estimators by
Monte Carlo simulations. To our knowledge, this is the first work that performs Monte Carlo
simulations on the main estimators of the spatial autocorrelation parameter for binary response
data. The importance and the necessity of this analysis is strongly suggested by Fleming (2004).

Currently, the most used methodologies available to estimating spatial regression models
are five. McMillen (1992) proposes an EM algorithm based estimation procedure. In particu-
lar, McMillen (1992) replaces the latent continuous variable with its expected value and then
applies the maximum likelihood method (Ord, 1975). Similarly to McMillen (1992), LeSage
(2000) also replaces the latent continuous variable with its expected value, solving thereafter a
spatial continuous model using the Gibbs sampling approach. Following the work of Vijverberg
(1997) on the simulation from a multivariate normal distribution, Beron and Vijverberg (2004)
suggests to apply the recursive importance sampling (RIS) to the maximum likelihood method,
since the likelihood function is a multivariate normal distribution. Pinkse and Slade (1998)
develop a model based on the generalised method of moments (GMM). Klier and McMillen
(2008) linearize Pinkse and Slade (1998)’s model around a convenient starting point.

The present paper is organized as follows. The next section reviews the widely used spec-
ifications of the binary choice models with spatial dependence. In section 3 we analyse and
compare the main methodologies proposed in the literature to estimate the spatial autocorre-

1The complications with the interpretations of the observed effects increase, however, since factors that affect
the similarity are also likely to have an effect on the linkages between the units. See Shalizi and Thomas (2010)
for a discussion of the inherent confounding of homophily and contagion mechanisms.
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lation parameter in binary response models. In section 4 we compare the properties of these
estimators by Monte Carlo simulations. The last section concludes.

2 Spatial binary choice models
A widely used representation of a regression model for an observed dichotomous response Yi
is the latent response model (Verbeek, 2008, p.180) with dependent variable the continuous
variable Y ∗i , whereby

Yi =

{
1, Y ∗i > 0
0, otherwise, (1)

with i = 1,2, . . . ,n. A linear model is specified for this latent response, so the model specifica-
tion is

Y∗ = ρWY∗+Xβ+d (2)
d = λSd+ε,

where Y∗ is a continuous random vector, X represents an n×k matrix of explanatory variables,
the error term ε can follow a multivariate normal distribution in a probit model or a multivariate
logistic distribution in a logit model. W and S are spatial lag and spatial error weights matrices,
respectively, ρ and λ the associated scalar parameters. We highlight that only the latent variable
can be used for the spatial lag, since both the models Y∗ = ρWY+Xβ+ ε and Y = ρWY+
Xβ+ε are infeasible (Anselin, 2002; Beron and Vijverberg, 2004; Klier and McMillen, 2008).

Evidence of the absence of a consolidated literature is given by the different denominations
of the models – we follow LeSage (2000)’s notation. From the general model (2) two models
are derived. Setting S = 0 produces a spatial lag model, which we will refer to as the Binary
Spatial AutoRegressive model (BSAR):

Y∗ = (I−ρW)−1(Xβ+ε) = (I−ρW)−1Xβ+ e, (3)

where
e = (I−ρW)−1ε. (4)

Letting W = 0 results in a regression model with spatial autocorrelation in the disturbances, a
spatial error model which we label the Binary Spatial Error Model (BSEM):

Y∗ = Xβ+(I−λS)−1ε= Xβ+u,

where
u = (I−λS)−1ε.

The two models are based on different assumptions about the causes of the spatial depen-
dence.2 The spatial lag relates to an explicit spillover effect where one agent copies behavior
from neighboring agents. It also relates to a theoretical model where the behavior is dependent
on shared resources between different agents. The spatial error model concerns different causal
relationships. For example, a typical issue that leads to spatial correlation in the errors is a
mismatch between the spatial delineation of the measurement and the empirical presence of the

2For a clear interpretation of the spatial lag and spatial error models, see Case (1992).
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variable of interest. For example, when studying the presence of a particular natural resource
in particular countries, the geographical zones in which this resource is present do not usually
match exactly with the country borders. A measurement of the presence of these resources in
countries is thus necessarily spatially correlated, but as a nuisance rather than in a theoretically
interesting sense. Another common cause of spatial autocorrelation in the errors is an omitted
variable that is itself spatially correlated. In terms of estimation, the two types of autocorre-
lation are often difficult to distinguish (Brueckner, 2003, 184-185). The different theoretical
mechanisms are of course not mutually exclusive and a spatial model that incorporates both a
spatial lag and spatial residuals is perfectly reasonable.

In this paper we are primarily interested in estimating diffusion effects, and thus our focus
is on the estimation of the spatial autocorrelation parameter ρ . For this reason, in this work we
only analyse models with spatial lags (BSAR) and leave spatial errors (BSEM) aside.

The contiguity or weight matrix W is defined by

wi j =

{
1 if the i-th and j-th observations are contiguous;
0 if i = j or the i-th and j-th observations are not continguous,

so it is a square matrix of order n and its main diagonal elements equal to zero. Contiguity
can refer to geographical and alternative vicinity. The use of the weight matrix W implies that
the spatial sites form a countable lattice (Lee, 2004), but part of the literature considers a con-
tinuous spatial index (Conley, 1999). Because of the potential of heteroscedasticity due to the
variation in the number of neighbors for different observations, W is commonly normalized as
follows wi j/(∑ j wi j) for i, j = 1,2, . . . ,n. This means that the normalized matrix W is gener-
ally asymmetric, while the original weight matrix W is often symmetric.3 Although this is the
common approach, there are various other ways of defining and normalizing W (Tiefelsdorf,
2000; Anselin, 2002). Since the aim of this paper is the comparison of the main methodologies
to estimate the spatial autocorrelation parameter ρ , we consider for all of them the normalized
matrix W.4

For binary dependent variables, the most used models are the logistic and the probit models
(McCullagh and Nelder, 1989). In the next section we analyse and compare the main estimators
of the autocorrelation parameter in both spatial probit (Beron and Vijverberg, 2004; LeSage,
2000; McMillen, 1992) and logit (Klier and McMillen, 2008) models.5

3Novo (2003) considers an asymmetric non-normalized W.
4When the normalized contiguity matrix W is considered, to ensure the invertibility of the matrix (I−ρW)

in the maximum likelihood method, Anselin (1982) proves that 1/ωmin < ρ < 1 where ωmin is the minimum
eigenvalue of the contiguity matrix W.

5There are a number of related estimators that, for various reasons, will not be included in the discussion
and Monte Carlo analyses. These estimators are related, but make assumptions about the data that are beyond
the scope of this paper. For the spatial random effects probit (Case, 1991, 1992), when W is constrained to be
block-diagonal, in other words, when the focus is on membership of a particular geographic region or cluster
of units rather than some kind of proximity measure, the spatial model can be substantially simplified (Case,
1991, 1992). The logistic auto-logistic (Gumpertz, Graham and Ristaino, 1997; Bee and Espa, 2008) applies to
data on a regular grid, which is not applicable in the type of diffusion studies we have in mind in this paper.
Dubin (1995)’s spatial logit model is a straightforward diffusion model that avoids most complications of spatial
models by using the temporally lagged, realized dependent variable to create the spatial lag. McMillen (1992,
1995b)’s heteroscedastic probit using weighted least squares applies to the spatial error model, but not the spatial
autoregressive model we discuss in this paper.
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3 Estimators for binary spatial autoregressive models

3.1 Expectation-Maximization algorithm
The Expectation-Maximization (EM) algorithm is designed for cases where the data is incom-
plete, for example due to missing values (Dempster, Laird and Rubin, 1977). Since the probit
model can be viewed as a latent response model, and this latent variable is similarly unobserved,
McMillen (1992) proposes to apply the EM algorithm to the probit model with spatially lagged
dependent variables and spatial error autocorrelation. In particular, the latent unobserved obser-
vations y∗i are replaced by estimated values. Given estimates of the values y∗i , the EM algorithm
proceeds to estimate the other parameters in the model using the maximum likelihood method.

In the EM algorithm the assumption of homogeneity for the disturbances ε is introduced.
This means that the error term ε can follow the n-dimensional multivariate normal distribution
ε∼ Nn(0,σ2

ε I) in a probit model. The variance of the error term is indeed

var(e) = var
[
(I−ρW)−1ε

]
= σ

2
ε

[
(I−ρW)′(I−ρW)

]−1
. (5)

Let
D = diag(σe) (6)

be the diagonal matrix with diagonal elements σe that represent the root square of the diagonal
elements in the matrix (5) and

q = D−1(I−ρW)−1Xβ. (7)

Since β and σ2
ε cannot both be estimated in probit models, McMillen (1992) assumes

σ2
ε = 1. In the E-step, the observed dependent variable is replaced by the expectation of the

latent variable Y∗ conditional on the observed dependent variable Y, making use of generalized
residuals (Cox and Snell, 1968; Chesher and Irish, 1987). To compute this expectation in the
first iteration, the starting values of the parameters β and ρ are used, in subsequent iterations,
the estimated parameters. By computing the conditional expectation of equation (3), in the
E-step the following result is used

E[Y∗/Y = y] = (I−ρW)−1Xβ+D
φn(q) [y−Φn(q)]
Φn(q) [1−Φn(q)]

, (8)

where φn(·) and Φn(·) denote respectively the n-dimensional multivariate probability density
and cumulative distribution functions of a standard normal.

Subsequently, setting σ2 = 1 in the M-step, new estimates are obtained by maximizing the
log-likelihood function

k− 1
2
[(I−ρW)y∗−Xβ]′[(I−ρW)y∗−Xβ]+

n

∑
i=1

ln(1−ρωi),

where ωi are the eigenvalues of W. ∏
n
i=1(1−ρωi) is a computationally efficient approximation

of the determinant |I−ρW| (Ord, 1975). This process is repeated until convergence.6

6To obtain a ρ estimate in the interval (-1,1), we apply the one-to-one transformation ρ = −1+ 2Φ1(ρ
∗),

making use of the invariance of maximum likelihood estimators (Davidson and MacKinnon, 1993, p. 253–255).
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The main advantage of this methodology is that it avoids to compute an n-dimensional in-
tegral. The cost is that the E-step requires the calculation of the inverse of the matrix (I−ρW).
Although this can be made slightly more efficient by using the eigenvalues of W to approxi-
mate the inverse, it still slows down the algorithm considerably. In addition to the computa-
tional burden in the implementation of the algorithm, the main drawback of this proposal is the
covariance matrix estimate of dimensions n× n. By considering the spatial probit model as a
non-linear weighted least squares model, McMillen (1992) obtains biased but consistent esti-
mates of the covariance matrix. For this reason McMillen (1995a) explores computationally
simpler alternatives to the methods in McMillen (1992), expressing the belief that the methods
proposed in McMillen (1992) are impractical for large sample sizes. Another problem with
McMillen (1992)’s approach is the need to specify a functional form for the nonconstant vari-
ance over space (LeSage, 2000). In larger models a practitioner would need to devote consid-
erable effort to testing the functional form and variables involved in the model for the variance
of the noise elements εi. Finally, the EM approach cannot provide an estimate of precision for
the spatial autoregressive parameter ρ .

3.2 Gibbs sampling
The Gibbs sampler is a particular Markov Chain Monte Carlo (MCMC) introduced by Geman
and Geman (1984) in the context of image restoration. When a direct specification of a joint
distribution is not feasible, the Gibbs sampling procedure specifies the complete conditional
distributions for all parameters in the model and proceeds to sample from these distributions
to collect a large set of parameter draws. During sampling, a conditional distribution for the
latent observations y∗i conditional on all other parameters in the model is considered.7 This
distribution is used to produce a random draw for all y∗i in the probit model. The conditional
distribution for the latent variables takes the form of a normal distribution centered on the
predicted value truncated at the left at 0 if yi = 1 and at the right at 1 if yi = 0.

The Bayesian Gibbs sampler approach to estimating spatial discrete choice models (both
BSAR and BSEM models) is proposed by LeSage (2000) and is an extension of the Gibbs
sampling method suggested by Geman and Geman (1984).8 This method exhibits a similarity
to the EM algorithm, where the latent unobserved observations on the dependent variable y∗i are
replaced by estimated values. The Bayesian approach is different in the way it formulates the
likelihood function and the estimates of the unobserved latent variable. The Gibbs estimator
remedies the two limitations of McMillen (1992)’s EM estimator, its slow convergence and its
bias in the estimation of standard errors.

It is important to underline that LeSage (2000) relaxes the assumption of homogeneity
for the disturbances ε used in BSAR and BSEM models. This means that the error term ε
can follow a multivariate normal distribution ε ∼ Nn(0,σ2

εV) in a probit model, where V =
diag(v1,v2, . . . ,vn) and vi with i = 1,2, . . . ,n are the variance parameters to be estimated.
Greene (2003) points out that accounting for heteroskedasticity is important for probit mod-
els because the estimates are inconsistent in the presence of nonconstant disturbance variances.

In order to assign the priors of a BSAR model, LeSage (2000) assumes that the priors are

7Gelfand and Smith (1990) demonstrate that Gibbs sampling from the sequence of complete conditional distri-
butions for all parameters in the model produces a set of estimates that converges in the limit to the true posterior
distribution of the parameters.

8Bolduc, Fortin and Gordon (1997) take a similar approach for the closely related spatial ordinal probit model.
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independent
π(ρ,β,σ ,V) = π(ρ)π(β)π(σ)π(V),

where

π(ρ) ∝ constant

π
(
v−1

i /q
)

v
χ2(q)

q
i = 1,2, ..,n

π(σ2) ∝
1
σ
.

The parameter q controls the amount of dispersion in vi, with small values of q producing
leptokurtic distributions and large values imposing homoskedasticity.9 We summarize LeSage
(2000)’s algorithm by the following steps:10

1. Initial values for the parameters ρ0, β0, σ0, V0 are considered. The residuals ε0 are
computed by substituting these values in equation (3). Using a random draw from χ2(n)
the following value is determined:

σ
2
1 =

ε′0V0ε0

χ2(n)
.

2. Given the values ρ0, V0, σ1, the parameter β1 is drawn from the multivariate normal

f (β1/ρ0,V0,σ1)∼ Nn
[
(X′V−1

0 X)−1X′V−1
0 (I−ρW)y∗,σ2

1 (X
′V−1

0 X)−1] .
3. By drawing an n-vector of random χ2(q+1) and by using ρ0, β1, and σ1, the values vi

with i = 1,2, . . . ,n are computed with

vi =
σ
−2
1 ε2

i1 +q
χ2(q+1)

.

4. By knowing the values β1, σ1, V1, the metropolis sampling algorithm (Hastings, 1970)
is applied to determine ρ1. The conditional posterior for ρ given β1, σ1, V1 is

f (ρ0/β1,σ1,V1) ∝ |I−ρW|exp
{
− 1

2σ2ε
′
1V−1

1 ε1

}
. (9)

Let the value ρ∗ = ρ0 + cZ be generated, where Z is a draw from a standard normal
distribution and c is a known constant.11 The acceptance probability p = min{1, f (ρ∗)

f (ρ0)
},

where f (·) is defined in equation (9). A value m is drawn from a continuous uniform
distribution with support [0,1]. If m < p, the next draw from the density function (9) is
given by ρ1 = ρ∗, otherwise the draw is taken to be the current value ρ1 = ρ0.

9q = 7 produces estimates similar to logit and use of a large value, e.g. q=100, produces estimates similar to
those from probit.

10We follow Thomas (2007)’s implementation of LeSage (2000)’s methodology, which follows the suggestion
by Fleming (2004, p. 159) to transform the latent variable into one that is distibuted independently by using the
Cholesky root of the inverted error covariance matrices (cf. matrix A in the RIS estimator below).

11For the Monte Carlo simulations in this article we set c = 0.1.
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5. The values of the latent dependent variable y∗ are sampled from the multivariate truncated
normal distribution

Y∗ ∼ NT
n ((I−ρ1W)−1Xβ1,Λ),

where Λ is the diagonal matrix whose elements are the elements of the main diagonal of
the matrix (I−ρ1W)−1εε′[(I−ρ1W)−1]′. The normal distribution is truncated at the left
at 0 if Y = 1 and truncated at the right at 0 if Y = 0 (Albert and Chib, 1993).

LeSage (2000)’s approach overcomes the problems in estimating the standard error in the
EM algorithm since parameter standard errors are derived from the posterior parameter dis-
tributions. The first advantage of the Bayesian strategy is to be able to derive the condition
distribution of each parameter, and thus compute different moments of the distribution. The
second advantage is its flexibility to account for the heteroskedasticity in the error terms.

3.3 Recursive Importance Sampling
Beron and Vijverberg (2004) propose a recursive importance sampling (RIS) estimator to eval-
uate directly the n-dimensional integral in both the BSAR and the BSEM models. The RIS-
normal simulator is identical to what is sometimes called the Geweke-Hajivassiliou-Keane
(GHK) simulator (Borsch-Supan and Hajivassiliou, 1993).

Define Z as an n×n matrix with

zi j =

{
1−2yi if i = j
0 otherwise,

for i, j = 1,2, . . . ,n. This means that Z is a diagonal matrix that satisfies the equation ZZ′ = In.
By defining t = Ze, we obtain that

Var(t) = ZVar(e)Z′ ≡Σρ ,

where Var(e) is provided by equation (5). By this notation the observed vector y defined in (1)
leads to an upper limit on t:

t <−Z(I−ρW)−1Xβ,

which means that we can write the log-likelihood function as

lnL = lnΦn
[
−Z(I−ρW)−1Xβ;0,Σρ

]
≡ lnΦn

[
T ;0,Σρ

]
, (10)

where Φn [j;µ,Ω] is a n-dimensional normal cumulative distribution function with mean vector
µ and variance-covariance matrix Ω.

In order to evaluate the probability in equation (10), Beron and Vijverberg (2004) propose to
apply the RIS simulator, developed in detail by Vijverberg (1997). Let A be an upper triangular
matrix such that A′A = Σ−1

ρ and let η = At. Whether Σρ is standardized or not, the vector η

is i.i.d. standard normal. By defining the matrix B = A−1, B results an upper triangular matrix
with b j j > 0 ∀ j and Bη = t.

Given the upper bound {Bη = t}< T, we can apply the following iterative procedure:

ηn < b−1
nn Tn ≡ ηn0

η j < b−1
j j

[
Tj−

n

∑
i= j+1

b jiηi

]
≡ η j0(Tj,η j+1, . . . ,ηn)≡ η j0. (11)

8



Let g(η j) be a probability density function with support the whole real axis and let G(·) be the
associated cumulative distribution function. By denoting

gc(η j) =
g(η j)

G(η j0)

for η j ≤ η j0, we can compute the following probability:

p = P{t < T}=
∫ T

−∞

φ(t;0,Ω)dt =
∫

ηn0

−∞

. . .
∫

η1,0

−∞

n

∏
j=1

φ(η j)dη1 . . .dηn

=
∫

ηn0

−∞

φ(ηn)

gc(ηn)

[∫
ηn−1,0

−∞

φ(ηn−1)

gc(ηn−1)
. . .

(∫
η2,0

−∞

φ(η2)

gc(η2)
Φ(η10)gc(η2)dη2

)
. . .

]
gc(ηn)dηn.

(12)

The RIS simulator is implemented by drawing a large number R of random vector η sat-
isfying the condition η j ≤ η j0 for j = 1,2, . . . ,n from the density function g(·).12 There are
different suitable density functions used to define g(·) (Vijverberg, 1997). Vijverberg (1999)
shows that the RIS-normal simulator is often preferred. For this reason we choose the normal
density function in the following Monte Carlo simulations and, in particular, we apply the an-
tithetical sampling strategy suggested by Vijverberg (1997) for simulating from a multivariate
normal distribution.

The recursive nature of the RIS simulator is due to the fact that the bounds in equation
(11) are backwards determined. For every drawing r of the random vector η, given ηn0, the
values η̃n,r and η̃n−1,0,r are calculated using equation (11) by using η̃n,r in the place of ηn. This
process is repeating until η̃1,0,r is computed. Then for the RIS-normal simulator the simulated
value for p, defined in equation (12), is

p̂ =
1
R

R

∑
r=1

(
n

∏
j=1

Φ[η̃ j,0,r]

)
,

where Φ(·) is the cumulative distribution function of the one dimensional standard normal
random variable.

Based on the Monte Carlo study that Beron and Vijverberg (2004) performed the RIS simu-
lator can provide accurate estimates for spatial binary choice models. Moreover, this approach
is attractive since it is the only one that directly evaluates the n-dimensional probit likelihood
function. This means that only this methodology allows for the use of the Likelihood Ratio test.
Because of these advantages Beron, Murdoch and Vijverberg (2003) and Novo (2003) apply
the RIS simulator.

3.4 Generalized Method of Moments
This section describes a spatially dependent binary choice methodology that considers the prob-
lem as a weighted non-linear version of the linear probability (Amemiya, 1985; Greene, 2002;
Maddala, 1983) with a variance-covariance matrix that can be estimated with a Generalized
Method of Moments (GMM) estimator (Hansen, 1982). Pinkse and Slade (1998) derive the
GMM moment equations from the likelihood function. Klier and McMillen (2008) propose a
linearized version of the GMM suggested by Pinkse and Slade (1998).

12For the Monte Carlo simulations we use R = 1000.

9



3.4.1 Pinkse and Slade’s estimator

While Pinkse and Slade (1998) suggest to apply the GMM to a BSEM model, for achieving the
aim of this article we present their estimator for a BSAR model. Similar to McMillen (1992),
Pinkse and Slade (1998) consider the generalized residuals13

ẽ(θ) = D−1E[e/y,θ] =
φn [q(θ)]{y−Φn[q(θ)]}
Φn [q(θ)]{1−Φn[q(θ)]}

, (13)

where θ = (β′,ρ)′ is the parameter vector and D and q are defined in equations (6) and (7),
respectively.

By applying the GMM the parameter vector θ is estimated by

θ̂ = arg min
θ∈Θ

ẽ′(θ)ZMZ′ẽ(θ), (14)

where ẽ is defined in equation (13), Z is a matrix of instruments,14 M is a positive definite
matrix15 and Θ is the parametric space.

Pinkse and Slade (1998) provide the asymptotic variance of their estimator for a BSEM
model and develop also the hypothesis test for spatial error correlation. Their approach over-
comes the problems of evaluating a high order integral and the n by n determinants in the
Maximum Likelihood method. The main disadvantage of this approach is that it requires the
n×n matrix (I−ρW)−1 to be inverted in each iteration. Furthermore, since Pinkse and Slade
(1998) apply the GMM method, their estimator is less efficient than the ML estimators.

3.4.2 Klier and McMillen’s estimator

Klier and McMillen (2008) linearize Pinkse and Slade (1998)’s model around a convenient
starting point for a BSAR logit model. In particular, in equation (14), Klier and McMillen
(2008) let M = (Z′Z)−1, so the objective function for the GMM estimator is

θ̂ = arg min
θ∈Θ

ẽ′(θ)Z(Z′Z)−1Z′ẽ(θ),

hence Klier and McMillen (2008) apply a nonlinear two-stage least squares method. In order
to analyse Klier and McMillen (2008)’s methodology we define

P = P{Y = 1/θ}= exp[q(θ)]
1+ exp[q(θ)]

. (15)

where q(θ) is defined in equation (7).
Klier and McMillen (2008)’s iterative procedure has the following steps:

1. assume initial values for the parameter vector θ0 = (β′0,ρ0)
′;

2. compute e0 defined in equation (4);

13Unlike Chesher and Irish (1987) and Cox and Snell (1968) (see also eq. (8)), Pinkse and Slade (1998) define
the generalized residuals as D−1E[e/y,e,ρ] and not E[e/y,e,ρ].

14In the Monte Carlo simulations we consider Z = 1+X+WX+W2X+W3X.
15Pinkse and Slade (1998) consider M equal to the identity matrix M = In in their empirical application and we

follow this suggestion in the Monte Carlo simulations.
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3. compute the gradient terms

Gβi =
∂Pi

∂β
= P̂i(1− P̂i)ti

Gρi =
∂Pi

∂ρ
= P̂i(1− P̂i)

[
hi−

qi

σ2
ei
Υii

]
, (16)

where ti is the i-th row vector of the matrix T=D−1(I−ρW)−1X, hi is the i-th element of
the vector h = (I−ρW)−1Wq, qi is the i-th element of the vector q defined in equation
(7) and ϒii is the i-th element of the diagonal of the matrix Υ = (I− ρW)−1W(I−
ρW)−1(I−ρW)−1.16

4. regress the gradient terms Gβ and Gρ on Z and compute the predicted values Ĝβ and
Ĝρ ;

5. regress e0 +Gββ̂0 on Ĝβ and Ĝρ . The coefficients obtained from this regression are the
estimated values of β and ρ .

The main advantage of this approach is that it is not iterative and does not require the
n× n matrix (I− ρW)−1 to be inverted in each iteration, unlike Pinkse and Slade (1998)’s
estimator. This characteristic leads to a computationally significantly faster estimator. The
main disadvantage of this estimator is that it provides accurate estimates of ρ only as long
as ρ is small. Furthermore, linearized approach cannot provide an estimate of precision for
the spatial autoregressive parameter ρ . Finally, since Klier and McMillen (2008) propose a
linearization around the starting point, a restriction for the parameter ρ to the interval [-1,1]
cannot be introduced by using their method.

4 Monte Carlo simulations
In order to make up for the lack of simulation studies for BSAR models (Fleming, 2004), in
this section we compare the properties of these five estimators by Monte Carlo simulations.
The set up of the simulations is primarily based on the literature on policy and regime diffusion
(e.g. Gleditsch and Ward, 2006; Baturo and Gray, 2009) and on broad similarity with simu-
lations as published in accompaniment of the proposals of estimators discussed in this paper
(e.g. McMillen, 1995b; Beron and Vijverberg, 2004; Klier and McMillen, 2008). In order to
understand how the properties of these estimators vary according to the number of observa-
tions, we consider two different sample sizes: n = 50 and n = 500. The first sample size is
set because it resembles the number of states in the US, which is a typical application area for
studies in policy diffusion (e.g., Mooney, 2001; Volden, 2006; LeSage and Parent, 2007). The
larger sample size is added to be able to see the results when the sample size increases.

16The derivative in equation (16) assumes that (I−ρW) is a symmetric matrix, which is not guaranteed. For
example, when W is standardized, this is not the case. See the appendix for this derivative without assuming a
symmetric matrix. The revised derivative in the appendix does not affect the estimator or the Monte Carlo results
when the convenient starting point at ρ = 0 is used, as in Klier and McMillen (2008).
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In our Monte Carlo analysis we generate 1,000 replications.17 For generating the data sets18

we consider one covariate X drawn from a normal distribution N(2,4) with expected value 2
and standard deviation 4.19 Based on equation (3), the residuals vector ε is generated from
a multivariate normal distribution Nn(~0,I) and the parameter vector is β = [4,−2]′. In order
to generate W, we apply the method suggested by Beron and Vijverberg (2004, p. 179) by
using d = 0.21 for n = 50 and d = 0.06 for n = 500. To analyse how the characteristics of the
estimators change according to the level of autocorrelation, we consider four different values
(0;0.1;0.45;0.8) of the parameter ρ , such that the last three values are equidistant.20 For the
maximization procedure in the EM, RIS, and Pinkse and Slade (1998) estimators, we use the
optim() function in R with a maximum number of iterations of 1,000. Finally, analogously
to LeSage (2000) and Beron and Vijverberg (2004) we consider a maximum number of loops
equal to 1,000 for the RIS and EM algorithms, and 3,000 for the Gibbs estimator.

In the following tables we report the mean of the bias and the standard deviation of the
estimators (in round brackets) computed on 1,000 sets. The data is generated based on a probit
model. Since Klier and McMillen (2008) have proposed their estimator for the logit model, we
rescale their parameter estimates to allow for comparison. Because the variance of the logistic
distribution is π2/3, we report the estimates β̂0

√
3/π and β̂1

√
3/π for the linearized GMM

estimator.21

The primary focus of this paper is on the estimation of the level of spatial autocorrelation
in a binary spatial autoregressive model specification. Since we have the study of the diffusion
of policies and regimes in mind, the level of diffusion is typically of key interest. The auto-
correlation in the residuals is thus not treated as a mere nuisance, but as a structural factor of
substantive interest. Figure 1 provides the distribution of the bias ofthe estimators of the spatial
autocorrelation parameter ρ in the BSAR model described in equation (3).22 Table 1 provides
the mean and standard deviation of the bias of the above-mentioned estimators..

It is clear from Figure 1 that the performance of the estimators varies depending on the level
of autocorrelation in the data, with particularly large differences between estimators under high
levels of autocorrelation. As can be seen in Table 1, in the absence of spatial autocorrelation
(ρ = 0), the Gibbs and the EM estimators are the best estimators of ρ in terms of both the
distortion and the dispersion. The linearized GMM estimator also does particularly well, which
is unsurprising, since ρ = 0 is the value used as the starting point for the linearization. When
looking at the distribution as a whole, however, it is clear that while this estimator performs
generally well, there are clear outliers among the estimates. The RIS estimator shows the
worst performance and it tends to underestimate ρ for both small (n = 50) and large (n = 500)
samples, with in particular some negative outliers. The Pinkse and Slade (1998) estimator, on
the other hand, tends to overestimate ρ in this scenario.

When the level of spatial autocorrelation is positive but still limited (ρ = 0.1), the EM and
Gibbs estimators still show good performance, even if the differences with the other estimators

17The same number of replications is considered by Flores-Lagunes and Schnier (2005); Franzese and Hays
(2007); Klier and McMillen (2008).

18We use the R package rlecuyer for the parallel generation of random numbers.
19Following McMillen (1995b), we prefer to consider a standard deviation of X substantially higher than σε.
20Anselin (1982), Beron and Vijverberg (2004) and Klier and McMillen (2008) consider similar values.
21The spatial coefficient ρ is not affected by the scaling.
22These plots are generated using the violin function in the lattice package in R, which in turn makes

use of the built-in density function for the computation of smoothed kernel density estimates. Default settings
are used.
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Figure 1: The distribution of the bias of the estimators of the autocorrelation parameter ρ obtained from
Monte Carlo simulations on 1,000 samples. Numbers represent minimum and maximum values of the
bias.

are less considerable in comparison with the scenario without spatial autocorrelation. Both
the EM and the Gibbs estimators tend to underestimate the spatial autocorrelation parameter.
As can be expected, the linearized GMM estimator is still performing well this close to the
linearization point of ρ = 0. The main disadvantage of this estimator is that it is not possible to
put a reasonable constraint on ρ̂ , such that occasional estimates are obtained outside the [−1,1]
interval, visible in Figure 1. The RIS estimator is also prone to the occasional outlier in its
estimate of the level of autocorrelation. It is striking that all estimators, with the exception of
GMM with n = 50, tend to underestimate ρ , often by over 50% of the true parameter value,
when the sample size is low.

The next scenario contains significant levels of autocorrelation, with ρ = 0.45. Under this
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ρ = 0 ρ = 0.1 ρ = 0.45 ρ = 0.8
HH

HHHHρ̂

n 50 500 50 500 50 500 50 500

EM -0.002 -0.002 -0.038 -0.016 -0.148 -0.104 -0.311 -0.272
(0.108) (0.034) (0.108) (0.030) (0.107) (0.022) (0.098) (0.023)

Gibbs -0.017 -0.003 -0.050 -0.023 -0.114 -0.058 -0.140 -0.104
(0.108) (0.032) (0.109) (0.030) (0.120) (0.028) (0.117) (0.030)

RIS -0.051 -0.002 -0.044 -0.003 -0.027 0.003 -0.015 -0.005
(0.235) (0.056) (0.219) (0.053) (0.158) (0.034) (0.093) (0.039)

GMM 0.019 -0.001 -0.049 -0.001 -0.243 -0.097 -0.547 -0.775
(0.165) (0.055) (0.173) (0.060) (0.228) (0.245) (0.336) (0.458)

GMM (lin)
0.011 -0.001 -0.037 -0.001 -0.075 0.080 0.028 0.468

(0.149) (0.043) (0.166) (0.044) (0.232) (0.072) (0.528) (0.205)

Table 1: The mean bias and the standard deviation (between parentheses) of the estimators of the
autocorrelation parameter ρ obtained from Monte Carlo simulations on 1,000 samples.

level of autocorrelation, the RIS estimator starts to perform relatively well compared to the
other estimators. While the absolute mean bias is the lowest, the variation is still relatively
high, however, and the plot clearly shows the presence of some outliers. For the EM and the
Gibbs estimators, the bias is significantly larger than for ρ = 0.1 and for the linearized GMM,
a clear increase in the dispersion is visible in Figure 1, although this is compensated by a
reduction in extreme outliers. The distribution of the bias of the GMM estimator now shows a
clear tendency to underestimate the amount of autocorrelation, with a tight distribution under
n = 500, but with some outliers.

For high spatial autocorrelation (ρ = 0.8), the RIS estimator shows the best performance.
The linearized GMM now clearly suffers from the large distance from the starting point of the
linearization – the extrapolation from ρ = 0 to ρ = 0.8 leads to significant overestimation of
the level of autocorrelation. The plot also shows that the estimator clearly suffers from the
lack of a constraint on ρ . The GMM estimator shows rather significant underestimation of ρ ,
as well as a high level of variance. Furthermore, under this scenario, the simulations suggest
asymptotically biased in mean results for the GMM and the linearized GMM estimators, with
the mean bias increasing for the larger sample size.23 Following the trend already visible when
moderately increasing ρ , the EM estimator clearly shows greater mean bias under this scenario,
while for Gibbs, the results are similar to ρ = 0.45.

Even with primary focus on the level of autocorrelation, the estimates of the effects of
other independent variables can of course not be ignored. Table 2 provides the mean and
the standard deviation of the estimates of β1, the parameter for independent variable X . The
differences in estimate accuracy between the estimators vary more dramatically than for ρ ,
with the Gibbs estimator clearly outperforming all other estimators under all conditions and the
estimator proposed by Pinkse and Slade (1998) clearly providing the worst results for both the

23When the observations are “strongly spatially dependent” (Pinkse and Slade, 1998, p. 134, fn. 12), even the
consistency is not guaranteed.

14



ρ
=

0
ρ
=

0.
1

ρ
=

0.
45

ρ
=

0.
8

H
H
H

H
H
H H

β̂
1

n
50

50
0

50
50

0
50

50
0

50
50

0

E
M

-5
9.

23
-0

.1
2

-4
3.

12
-0

.0
2

-5
.5

2
1.

03
1.

42
1.

69
(5

07
.2

4)
(0

.3
4)

(3
56

.6
9)

(0
.3

3)
(5

6.
98

)
(0

.1
1)

(3
.6

4)
(0

.0
3)

G
ib

bs
-0

.9
5

-0
.0

7
-0

.8
6

-0
.0

5
-0

.6
3

0.
09

0.
30

0.
79

(1
.1

2)
(0

.2
8)

(1
.0

9)
(0

.2
9)

(1
.0

2)
(0

.2
4)

(0
.7

0)
(0

.1
9)

R
IS

-8
.0

5
0.

01
-5

.8
6

0.
02

-6
.8

6
0.

13
-4

.1
3

1.
12

(1
9.

89
)

(0
.3

8)
(1

3.
06

)
(0

.4
0)

(1
8.

59
)

(0
.4

3)
(1

2.
62

)
(0

.4
9)

G
M

M
-5

03
5.

95
-6

95
.9

9
-4

19
4.

69
-5

76
.7

0
-4

77
7.

75
-1

78
64

.0
7

-2
81

8.
31

-8
06

63
.4

5
(2

82
79

.9
4)

(6
34

4.
00

)
(2

30
60

.6
3)

(5
84

1.
52

)
(1

50
11

.2
8)

(2
50

69
3.

49
)

(1
16

46
.2

6)
(3

36
72

1.
33

)

G
M

M
(li

n)
-6

4.
15

-0
.0

4
-4

1.
08

0.
07

-8
.3

2
1.

13
1.

25
1.

70
(4

24
.8

0)
(1

.6
5)

(1
75

.6
2)

(1
.9

3)
(9

5.
09

)
(0

.4
9)

(6
.8

2)
(0

.0
5)

Ta
bl

e
2:

T
he

m
ea

n
bi

as
an

d
th

e
st

an
da

rd
de

vi
at

io
n

(b
et

w
ee

n
pa

re
nt

he
se

s)
of

th
e

es
tim

at
or

s
of

th
e

pa
ra

m
et

er
β

1
ob

ta
in

ed
fr

om
M

on
te

C
ar

lo
si

m
ul

at
io

ns
on

1,
00

0
sa

m
pl

es
.

15



bias and the dispersion.
Under absence of spatial autocorrelation (ρ = 0) and for n = 50, the Gibbs estimator gener-

ates the least average bias on β̂1, with RIS, linearized GMM, and EM also performing well as
long as the sample size is sufficiently large. Under n = 50, the Gibbs estimator underestimates
β1 by about 50% on average of the value of β1 and the other estimators well beyond that. The
difference between the smaller and the larger sample sizes is more pronounced than for the
estimates of ρ . The GMM estimator is the only estimator that is still significantly biased when
the sample size is reasonably large. All estimators tend to underestimate β1.

Under limited autocorrelation (ρ = 0.1), the order of accuracy of the estimators remains
more or less the same, with still only Gibbs performing the best under the small sample size and
performing the well under the large sample size. The RIS performs similar to EM, Gibbs and
GMMlin for large sample size. The GMM estimator shows the worst performance. Increasing
the autocorrelation to ρ = 0.45, the results for the Gibbs, the RIS and the GMM estimators
are very similar to ρ = 0.1, but the EM and the linearized GMM estimators show lower mean
biases under small sample size.

For the estimation of ρ , we saw significant difference between the moderate and the high
levels of autocorrelation – to what extent is this the case for the slope coefficients? Similar
to the estimates of ρ , the GMM estimator of Pinkse and Slade (1998) starts to show very
significant distortion and dispersion when the autocorrelation is high and, furthermore, shows a
significant increase in the mean bias when the sample size increases. The linearized version of
this estimator also reflects this increasing mean bias with sample size for high autocorrelation,
but nevertheless performs remarkably well, with an average bias of approximately 50 to 75% of
β1, underestimating the magnitude of the negative effect of X . The Gibbs estimator outperforms
all other estimators both with small and large sample sizes, followed by the RIS, the EM and
the linearized GMM estimators as long as sample size is large. It should be noted that for all
estimators, the bias is relatively large, which is an overestimate of the magnitude by slightly
over 10%.

Usually of least concern to applied researchers, but relevant for accurate prediction, is the
estimate of the intercept of the model, in this case β0. Table 3 provides the simulation results
for this parameter of the model. Not unsurprisingly, the results are closely in line with those for
β1. Indeed, the mean of the bias of β0 is roughly the bias in Table 2 multiplied by a factor −2.
Relative to the size of β , the bias is thus the same on average. Similarly, the standard deviation
of the bias is multiplied by a factor 2, with the exception of the GMM estimator under higher
levels of autocorrelation, where the dispersion under larger sample size is similar to that for β1.
The same relative results for the different estimators are therefore obtained.

5 Conclusion
In this paper we provide a comprehensive overview of estimators for spatial autoregressive
models with binary dependent variables. These models are of particular interest to various ap-
plications in economics, political science, and related disciplines, where the outcome might be
a policy, a decision, a transition, or otherwise binary outcome. Applications can also be imag-
ined in the field of bioinformatics or neuroscience, although sample sizes tend to be magnitudes
larger than those studied here. Many of these outcomes are interdependent through either spa-
tial contiguity or any other form of proximity, including social networks or economic linkages,
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and ignoring the inherent spatial structure of the data generates inconsistent and inefficient
estimates (McMillen, 1992). Furthermore, in many applications the researcher is explicitly
concerned with estimating the level of interdependence – it is indeed this concern that is of
primary interest in our discussion and simulation study.

This paper compares five estimators introduced to date for this specific type of model. An
extensive simulation study compares the performance of these five estimators under conditions
of relatively small sample sizes and varying levels of spatial autocorrelation. When taking both
the estimation of the extend of spatial autocorrelation and the coefficients on the other explana-
tory variables into account, the Gibbs estimator (LeSage, 2000) clearly outperforms the other
estimators. When the sample size increases, the difference between the different estimators
becomes smaller. When focusing specifically on the spatial autoregressive component alone,
the Gibbs estimator (LeSage, 2000) performs best for low spatial autocorrelation, while the
Recursive Importance Sampler (Beron and Vijverberg, 2004) performs best for high spatial
autocorrelation. The linearized GMM estimator (Klier and McMillen, 2008) is an interesting
option when the sample size is large and the autocorrelation relatively low, in particular due to
its high computational speed.

References
Albert, J.H. and S. Chib. 1993. “Bayesian analysis of binary and polychotomous response

data.” Journal of the American Statistical Association .

Amemiya, Takeshi. 1985. Advanced econometrics. Cambridge: Harvard University Press.

Anselin, Luc. 1982. “A note on small sample properties of estimators in a first-order spatial
autoregressive model.” Environment and Planning 14(1):1023–1030.

Anselin, Luc. 1988. Spatial econometrics: methods and models. Dordrecht: Kluwer Academic
Publishers.

Anselin, Luc. 2002. “Under the hood. Issues in the specification and interpretation of spatial
regression models.” Agricultural Economics 27:247–267.

Anselin, Luc, Raymond J.G.M. Florax and Sergio J. Rey. 2004. Econometrics for Spatial
Models: Recent Advances. In Advances in Spatial econometrics, ed. Luc Anselin, Ray-
mond J.G.M. Florax and Sergio J. Rey. Berlin: Springer pp. 1–28.

Autant-Bernard, Corinne. 2006. “Where do firms choose to locate their R&D? A spatial con-
ditional logit analysis on French data.” European Planning Studies 14(9):1187–1208.

Baturo, Alexander and Julia Gray. 2009. “Flatliners: Ideology and rational learning in the
adoption of the flat tax.” European Journal of Political Research 48:130–159.

Bee, Marco and Giuseppe Espa. 2008. “A Monte Carlo EM algorithm for the estimation of
a logistic auto-logistic model with missing data.” Letters in Spatial and Resource Sciences
1:45–54.

18



Beron, Kurt J., James C. Murdoch and Wim P.M. Vijverberg. 2003. “Why cooperate? Public
goods, economic power, and the Montreal protocol.” Review of Economics and Statistics
85(2):286–297.

Beron, Kurt J. and Wim P.M. Vijverberg. 2004. Probit in a spatial context: a Monte Carlo
analysis. In Advances in spatial econometrics. Methodology, tools and applications, ed. Luc
Anselin, Raymond J.G.M. Florax and Sergio J. Rey. Berlin: Springer pp. 169–195.

Bivand, Roger. 1998. “A review of spatial statistical techniques for location studies.” Paper
presented at the CEPR symposium on New Issues in Trade and Location (2277), Lund,
Sweden, 28-30 August, 1998.

Bolduc, Denis, B. Fortin and S. Gordon. 1997. “Multinomial probit estimation of spatially
interdependent choices: an empirical comparison of two new techniques.” International Re-
gional Science Review 20(1/2):77–101.

Borsch-Supan, Alex and Vassili A. Hajivassiliou. 1993. “Smooth Unbiased Multivariate Proba-
bility Simulators for Maximum Likelihood Estimation of Limited Dependent Variable Mod-
els.” Journal of Econometrics 58:347–368.

Brueckner, Jan K. 2003. “Strategic interaction among governments: an overview of empirical
studies.” International Regional Science Review 26(2):175–188.

Case, Anne C. 1991. “Spatial patterns in household demand.” Econometrica 59(4):953–965.

Case, Anne C. 1992. “Neighborhood influence and technological change.” Regional Science
and Urban Economics 22:491–508.

Chesher, Andrew and Margaret Irish. 1987. “Residual analysis in the grouped and censored
normal linear model.” Journal of Econometrics 34:33–61.

Collingham, Yvonne C., Richard A. Wadsworth, Brian Huntley and Philip E. Hulme. 2000.
“Predicting the spatial distribution of non-indigenous riparian weeds: Issues of spatial scale
and extent.” Journal of Applied Ecology 37:13–27.

Conley, Timothy Gy. 1999. “GMM Estimation with Cross Sectional Dependence.” Journal of
econometrics 92:1–45.

Cox, D.R. and E.J. Snell. 1968. “A general definition of residuals.” Journal of the Royal Statis-
tical Society B 30(2):248–275.

Davidson, Russell and James G. MacKinnon. 1993. Estimation and inference in econometrics.
Oxford: Oxford University Press.

Dempster, A.P., N.M. Laird and D.B. Rubin. 1977. “Maximum likelihood from incomplete data
via the EM algorithm.” Journal of the Royal Statistical Society. Series B (Methodological)
39(1):1–38.

Dubin, Robin. 1995. Estimating logit models with spatial dependence. In New directions in
spatial econometrics, ed. Luc Anselin and Raymond J.G.M. Florax. Berlin: Springer Verlag
pp. 229–242.

19



Fleming, Mark M. 2004. Techniques for estimating spatially dependent discrete choice models.
In Advances in spatial econometrics. Methodology, tools and applications, ed. Luc Anselin,
Raymond J.G.M. Florax and Sergio J. Rey. Berlin: Springer pp. 145–167.

Flores-Lagunes, A. and K.E. Schnier. 2005. “Estimation of sample selection models with
spatial dependence.” Working paper, University of Arizona.

Franzese, Robert J. and Jude C. Hays. 2007. “Spatial econometric models of cross-sectional
interdependence in political science panel and time-series-cross-section data.” Political Anal-
ysis 15(2):140–164.

Gelfand, Allan E. and Adrian F. M. Smith. 1990. “Sampling-based Approaches to Calculating
Marginal Densities.” Journal of American Statitical Association 85:398–409.

Geman, S. and D. Geman. 1984. “Stochastic relaxation, Gibbs distributions and the Bayesian
restoration of images.” IEEE Transactions on Pattern Analysis and Machine Intelligence
12:609–628.

Gleditsch, Kristian S. and Michael D. Ward. 2006. “Diffusion and the international context of
democratization.” International Organization 60(4):911–933.

Greene, William H. 2002. Econometric Analysis. London: Prentice Hall.

Greene, William H. 2003. Econometric Analysis. 5th ed. Upper Saddle River: Prentice Hall.

Gumpertz, Marcia L., Jonathan M. Graham and Jean B. Ristaino. 1997. “Autologistic model of
spatial pattern of phytophthora epidemic in bell pepper: effects of soil variables on disease
presence.” Journal of Agricultural, Biological, and Environmental Statistics 2(2):131–156.

Hansen, L.P. 1982. “Large sample properties of generalized method of moments estimators.”
Econometrica 50:1029–1054.

Hastings, W. K. 1970. “Monte Carlo sampling methods using Markov chains and their appli-
cations.” Biometrika 57:97–109.

Klier, Thomas and Daniel P. McMillen. 2008. “Clustering of auto supplier plants in the United
States: generalized method of moments spatial logit for large samples.” Journal of Business
& Economic Statistics 26(4):460–471.

Lee, Lung Fei. 2004. “Asymtotic Distribution of Quasi-maximum Likelihood Estimators for
Spatial Autoregressive Models.” Econometrica 72(6):1899–1925.

LeSage, James P. 2000. “Bayesian estimation of limited dependent variable spatial autoregres-
sive models.” Geographical Analysis 32(1):19–35.

LeSage, James P. and Olivier Parent. 2007. “Bayesian Model Averaging for Spatial Economet-
ric Models.” Geographical Analysis 39(3):241–267.

Maddala, G.S. 1983. Limited-dependent and qualitative variables in econometrics. New York:
Cambridge University Press.

20



McCullagh, P. and J.A. Nelder. 1989. Generalized Linear Models. 2nd ed. New York: Chapman
and Hall.

McMillen, Daniel P. 1992. “Probit with spatial autocorrelation.” Journal of Regional Science
32(3):335–348.

McMillen, Daniel P. 1995a. “Selection bias in spatial econometric models.” Journal of Re-
gional Science 35(3):417–436.

McMillen, Daniel P. 1995b. Spatial effects in probit models: a Monte Carlo investigation.
In New directions in spatial econometrics, ed. Luc Anselin and Raymond J.G.M. Florax.
Berlin: Springer Verlag pp. 189–228.

Mooney, Christopher Z. 2001. “Modeling regional effects on state policy diffusion.” Political
Research Quarterly (54):103–124.

Novo, lvaro A. 2003. Contagious Currency Crisis: A Spatial Probit Approach. Working papers
Banco de Portugal, Economics and Research Department.
URL: http://EconPapers.repec.org/RePEc:ptu:wpaper:w200305

Ord, John. 1975. “Estimation Methods for Models of Spatial Interaction.” Journal of the Amer-
ican Statistical Association 70:1200–26.

Pinkse, Joris and Margaret E. Slade. 1998. “Contracting in space: an application of spatial
statistics to discrete-choice models.” Journal of Econometrics 85:125–154.

Shalizi, Cosma Rohilla and Andrew C. Thomas. 2010. “Homophily and contagion are generi-
cally confounded in observational social network studies.” arXiv:1004.4704v3.

Shipan, Charles R. and Craig Volden. 2006. “Bottom-up federalism: The diffusion of anti-
smoking policies from U.S. cities to states.” American Journal of Political Science 50(4).

Thomas, Timothy S. 2007. “A primer for Bayesian spatial probits, with an application to
deforestation in Madagascar.” Companion Paper for the World Bank Policy Research Report
on Forests, Environment, and Livelihoods.
URL: http://www.timthomas.net

Tiefelsdorf, Michael. 2000. Modeling Spatial Processes: The Identification and Analysis of
Spatial Relationships in Regression Residuals by Means of Moran’s I. Vol. 87 of Lecture
notes in earth sciences Berlin: Springer Verlag Berlin Heidelber.

Verbeek, Marno. 2008. A guide to modern econometrics. Chichester: John Wiley & Sons.

Vijverberg, Wim P.M. 1997. “Monte Carlo evaluations of multivariate normal probabilities.”
Journal of Econometrics 76:281–307.

Vijverberg, Wim P.M. 1999. “Rectangular and Wedse-Shape Multivariate Normal Probabili-
ties.” Working Paper, School of Social Sceinces, University of Texas at Dallas.

Volden, Craig. 2006. “States as policy laboratories: Emulating success in the children’s health
insurance program.” American Journal of Political Science 50(2):294–312.

21



Weyland, Kurt. 2007. Bounded rationality and policy diffusion: Social sector reform in Latin
America. Princeton: Princeton University Press.

Appendix: Derivative for the linearization of the GMM BSAR
model
The gradient (16) of interest to the linearization proposed in Klier and McMillen (2008) is the
derivative of the logistic link function to the spatial autoregressive parameter ρ:

Gρi =
∂Pi

∂ρ
=

∂

∂ρ
[1+ exp(qi)]

−1 =
∂

∂ρ

[
1+ exp

(
−Ψ−1x′iβ

σei

)]−1

,

where Ψ= (I−ρW) and q as in equation (7). We derive the following gradient

Gρi = Pi(1−Pi)

(
hi +

qi

σei

∂σei

∂ρ

)
,

where h is defined in equation (16) and

∂σei

∂ρ
=

∂

∂ρ

[
(Ψ′Ψ)−1] 1

2

=− 1
2σei

(Ψ′Ψ)−1(Ψ+Ψ′)W(Ψ′Ψ)−1. (17)

If Ψ is symmetric, equation (17) simplifies to:

∂σei

∂ρ
=− 1

σei
Ψ−1WΨ−1Ψ−1,

which leads to equation (16).
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