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Abstract: The purpose of this study was to develop an algorithm to classify muscle fatigue
content in sports related scenarios. Mechanomyography (MMG) signals of the biceps muscle
were recorded from thirteen subjects performing dynamic contractions until fatigue. For
training and testing purposes, the signals were labeled in two classes (Non-Fatigue and
Fatigue). A genetic algorithm was used to evolve a pseudo-wavelet function for optimizing
the detection of muscle fatigue. Tuning of the generalized evolved pseudo-wavelet function
was based on the decomposition of 70% of the conducted MMG trials. After completing 25
independent pseudo-wavelet evolution runs, the best run was selected and then tested on the
remaining 30% of the data to measure the classification performance. Results show that the
evolved pseudo-wavelet improved the classification rate of muscle fatigue by 4.70 percentage
points to 16.61 percentage points when compared to other standard wavelet functions, giving
an average correct classification of 80.63%, with statistical significance (p < 0.05).
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1. Introduction

Studies on localized muscle fatigue have focused mainly on the decline in the force of a muscle
contraction during a sustained activity [1], which results in a definition of fatigue as the inability of
a muscle to continue exerting force or power. There are various techniques to detect muscle fatigue,
although the most researched ones are mechanomyography (MMG) and surface electromyography
(sEMG) [2]. In MMG it is the mechanical signal from the surface of a contracting muscle that is
measured, i.e., when the muscle fibers move they cause vibrations which can be recorded [3]. A selection
of sensors can be utilized to record MMG signals, e.g., hydrophones, condenser microphones,
piezoelectric contact sensors, accelerometers, and laser distance sensors [3,4]. An accelerometer is
utilized to record both dynamic and static forces. In studies on muscle fatigue accelerometers have
been utilized to detect changes during exercise. Barry et al. [5] used an accelerometer to detect changes
in vibration amplitude during voluntary and evoked muscle vibrations in fatiguing muscle contractions.
Evoked muscle vibrations were triggered by supramaximal percutaneous ulnar nerve stimulation. Their
findings suggested a relationship in the fatiguing muscles between the vibration amplitude from evoked
muscle twitches and the evoked twitch force. A correlation was found between the vibration from evoked
muscle twitches and vibration measurements during voluntarily contractions.

MMG signal detection can be applied to muscle activity in both dynamic (i.e., non-isometric) and
isometric contractions. Research on localized muscle fatigue in dynamic contractions has investigated
MMG amplitude in both concentric [6,7] and eccentric muscle contractions [8]. Several studies on
rectus femoris and vastus lateralis muscles (working at maximal concentric isokinetic leg extension at
different velocities) have identified a linear relationship between the MMG amplitude and the work load.
Researchers also found that in the vastus medialis muscle, there was a quadratic decrease in MMG
amplitude in relation to the work load [6]. The decrease in MMG amplitude can been explained by the
so-called “muscle wisdom”, i.e., where the fatiguing muscle is activated more economically as the central
nervous system reduces the motor unit firing rate to compensate for muscle fatigue, which in turn reduces
the number of pressure waves recorded by MMG [9]. An alternative explanation is that muscle elasticity
is reduced due to intramuscular pressure, muscle thickness and fluid content increasing over time in
both static and dynamic contractions, which influences the muscle oscillations and pressures waves
recorded by the MMG [10–12]. However, in another study, Sorgaard [13] argued that intramuscular
pressure does not have an affect on the MMG amplitude. After studying muscle actions from the biceps
brachii at various maximum voluntary contraction (MVC) levels during isometric ramp contractions,
they found that even when the intramuscular pressure was increased, the MMG amplitude showed a
linear relationship with force. Nevertheless, more research is needed for various muscle groups and
different torque levels to provide sufficient evidence to support this suggestion.

By using a wavelet function (WF), the wavelet transform (WT) decomposes a signal into numerous
multi-resolution components [14,15]. It is used to detect and characterize the short time components
within a non-stationary signal, providing information regarding the signal’s time-frequency. The MMG
signal is high-dimensionally chaotic, and should therefor by analyzed using non-linear dynamics, such
as wavelet functions [16]. Several studies have used wavelet functions for analyzing the MMG signal
in localized muscle fatigue. Beck et al. [17] have used wavelet analysis on the MMG signal utilizing
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the frequency space by multiplying each of the wavelets with the Fourier transform of the signal, where
they converted both the real and imaginary wavelet transformed signals into the time domain with the
inverse Fourier transform. Findings of this research demonstrated muscle-specific differences for each
of the wavelet bands with various percentages of MVC in isometric contractions for the total MMG
intensity values.

To process MMG signals emanating from dynamic muscle contractions, various research has looked
at wavelet-based methods to deal with the stochastic nature of the MMG signal. Beck et al. [18] have
proposed a new wavelet based technique for MMG signal processing where the wavelet analysis utilities
a filter bank containing 11 non-linearly scaled wavelets, in which the optimal relationship between time
and frequency resolutions is maintained. These wavelets were scaled in a nonl-inear fashion, allowing
them to give equal weight to low and high frequencies of the MMG signals. The new method provides
information about the MMG intensity patterns, which can be used for statistical pattern recognition of
MMG signals [19]. According to Beck et al., the most suitable method for signal processing of MMG
signals from dynamic muscle contractions is their developed wavelet-based methods since they do not
expect signal stationary [17]. Ryan et al. [20] conducted a study comparing patterns of responses from
the MMG center frequency analyzed with short-time Fourier transform (STFT) and continuous wavelet
transform (CWT). Their findings showed similarities in pattern responses between CWT and STFT. This
falls in line with previous research by Beck et al. [17], as mentioned above. Armstrong [21] utilized the
intensity analysis developed by von Tscharner [22] to investigate the effects of fatigue and to evaluate
postural control during single-legged stance. The intensity analysis describes the power of a stochastic
signal as a function of both time and frequency, however, Armstrong amended this analysis method by
applying a filter bank of 11 Morlet wavelets. His results indicate that this intensity analysis is a useful
method in studying fatigue and postural control using MMG signals.

In another study, Tarata [23] investigated the most suitable wavelet transform to provides all the
information within the MMG signal from static (i.e., isometric) contractions. Signals from dynamic
contractions can only be characterised with parameters that are computed on very short time scales,
which would display the transient parts of the contracting muscle. In their research CWT was selected
instead of DWT as it preserves all the information in the signal. The “Mexican Hat” wavelet was the
most suited out of a set of wavelets, based on its higher sensitivity, which was computed on the ratio of
variation of IMS and IMedS, over their maximal value.

There has been little research on classification of the fatigue content in MMG signals. Most research
on classification of MMG signals in muscle activity are used for prosthetic control. Xie et al. [24]
proposed a method using the classification results of Short-Time Fourier Transform (STFT), Stationary
Wavelet Transform (SWT), and S-Transform (ST) combined with Singular value decomposition (SVD),
to find the highest classification accuracy of hand movements based on MMG signals, which gave a
classification performance of 89.7% between the two classes (wrist flexion and wrist extension). Another
research has also classified the MMG signal emanating from muscle activity for prosthetic control,
getting classification accuracy of 70% between the two classes (flexion and extension). However, that
research [25] did not use wavelet transform for classification purposes, but rather used RMS-based (Root
Mean Square) as a feature for classification.
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Various research has used different classification techniques for sEMG signals in localized muscle
fatigue, which may also be applicable to research on MMG signals. These include genetic programming
and genetic algorithms [26–29], statistical analysis [30–32], as well as classification methods to predict
fatigue by using neural networks [33] or linear discriminant analysis (LDA) [34]. A variation of these
techniques have been adapted in this research to evolve a pseudo-wavelet for classifying fatigue content
in the MMG signal. MMG was selected as the signal acquisition method in this study as MMG has less
hindrances and errors in the signal acquisition and signal processing than sEMG [35]. In addition, MMG
requires fewer hardware with more reliable measuring devices which increase accuracy in the signal
detection system.

2. Methods

This research utilized wavelet analysis to take into account the stochastic and transitory nature of the
MMG signal. In addition, a genetic algorithm was chosen as the method to provide an optimal solution
by tuning a pseudo-wavelet function for its optimal decomposition of MMG targeted in extracting muscle
fatigue content. In the end, the evolved pseudo-wavelet was validated and compared with other common
wavelet transforms. The term “pseudo-wavelet” is used here to indicate that the evolved wavelet-like
function is not required to meet the necessary conditions (e.g., admissibility and regularity) to be
formally described as a wavelet. Pseudo-wavelets are thus a convenient joint time-frequency tool aimed
specifically at pattern recognition.

2.1. Data Recording and Pre-Processing

Thirteen athletic, healthy male subjects (mean age 27.5 ± 3.6 years) volunteered for this research. The
study was approved by the University of Essex’s Ethical Committee and all subjects signed an informed
consent form prior to taking part in the study.

The participants, all non-smokers, were seated on a “preacher” biceps curl machine to ensure stability
and biceps isolation while performing biceps curl tasks. The participants reached physiological fatigue
and was encouraged during the trial to reach the complete fatigue stage (unable to continue the exercise).

To evaluate the Maximum Dynamic Strength (MDS) percentage for each participant we used the
average of three 100% MDS measurements on three different days to ensure correct estimation. The
100% MDS measurements for each subject were determined by the one-repetition maximum (1 RM),
where the subjects managed to keep the correct technique while executing the repetition with the heaviest
possible load on a preacher biceps curl machine. In other words 100% MDS is equal to 1 RM.
Determining each subject’s 100% MDS allowed estimating the correct loading MDS (40% MDS and
70% MDS) across subjects when conducting the trials.

After establishing the MDS for each subject the trials where carried out. After the warm-up period,
all the thirteen participants carried out 3 trials of non-isometric exercises with 40% Maximum Dynamic
Strength (MDS) and 3 trials of 70% MDS with a one week resting period between trials to ensure full
recovery from the biceps fatigue, giving a total of 104 trials. Only one trial was performed per day for
each subject in order to avoid injury.
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The MMG signal was recorded using a 3-axis accelerometer (Biometrics, ACL300 (range ± 10 G)).
The accelerometer was placed on the muscle belly of the biceps Brachii, without covering the end plate
zone or getting too close to the musculotendinous region [36]. A flexible electrogoniometer (Biometrics
Ltd., Newport, UK) was placed on the lateral side of the arm to measure the elbow angle and arm
oscillations.

The test bed set up for one of the conducted trials is shown in Figure 1.

Figure 1. Experimental set-up showing one of the trials.

2.2. Labelling the Signals

The recorded MMG signals were grouped into Fatigue and Non-Fatigue epochs. Initial recordings
in the first few repetitions when the subjects felt “fresh” were considered “Non-Fatigue”, and when the
subject was unable to perform the sustained task the epochs were labeled as Fatigue, as per [37]. In the
signal analysis, the first repetition was therefore labeled as Non-Fatigue, while the last repetition was
labeled as Fatigue. This information was then used to train and test the classifier.

2.3. Wavelet Decomposition

Wavelet transform has a variation of standard mother wavelet functions that are used to decompose
the signal. Some of these mother wavelet are Morlet, Symmlet, Mexican Hat, Daubechies etc. [37].
Although there are no specific rule for which wavelet is most suited for a signal, there are certain
guidelines for the selection of a wavelet, e.g., Db4 is said to be suited for signals using feature extractions
and linear approximation with more than four samples, while Db6 is used for a signal approximated by
a quadratic function over the support of six; coiflet6 is better suited for data compression results [38].
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In general, however, in order to determine the most suited wavelet, the properties of the wavelet function
and the characteristic of the signal need to be analyzed and matched for specific data sets.

Evolved pseudo-wavelets are simply a function-fit approach to wavelet lifting that is based on
genetic algorithms. The idea is to obtain an joint time-frequency transformation that is optimized for
class separation rather than the usual optimization aimed at perfect reconstruction. However, in the
evolutionary process the original wavelet may no longer meet the mathematical requirements to be
called a “wavelet” proper (in particular, the zero integral and vanishing moments requirements cannot be
guaranteed), hence the “pseudo-wavelet” term. From a signals and systems point of view, this also means
that the evolving the transfer function (i.e., the wavelet) applied to an input signal no longer guarantees
conservation of energy, but this is not an issue for pure pattern recognition purposes (it would be an
issue in signal modeling and transformation reversibility scenarios). Nonetheless, the pseudo-wavelet
approach still preserves the multi-resolution properties of standard wavelets, which is the main reason
for trying this approach.

The pseudo-wavelet developed in this research uses scaling function (phi) coefficients that are best
suited to find the optimal shape for our application. The aim was to develop a custom-made wavelet-like
shape suitable for join-time frequency decomposition for muscle fatigue detection in the MMG signal.
Random values for the scaling function coefficients were first used that were evolved by the GA.
Ten coefficients for phi was then selected.

2.4. Genetic Algorithms

Genetic Algorithms (GA) are useful tools to solve linear and nonlinear problems, using operators such
as mutation, crossover and selection operations applied to each individual in the population to explore the
optimal solution is the state space [39]. Selecting GA to evolve a pseudo-wavelet or to modify a standard
wavelet will presumably produce an optimal solution that discovers the shape of a (pseudo)wavelet for
better, data-specific joint-time frequency decomposition that detects muscle fatigue within the MMG
signal. Out of the 104 trials, 70% were used for the testing phase, while the remaining 30% were utilized
in the testing phase.

Figure 2 shows a flow chart with the steps taken for the initialization and running of the GA. Table 1
displays the parameter setting for the GA runs.

2.4.1. Solution Representation

The solution representation was used to find the optimal wavelet by utilising standard wavelet
functions, such as Mexican hat, Daubechies, Symlet, etc. The evolved pseudo-wavelet uses scaling
function (phi) coefficients from 1 to 19. Normally a scaling function of 1–10 is chosen, although previous
studies by Kumar et al. argue that muscle fatigue content lays between scale 9 and 10 [37]. The GA in
this research was given a wide range (1–19) to determine the most optimal scale for class discrimination.



Sensors 2014, 14 9495

Figure 2. Flowchart of the pseudo-wavelet evolution.

Table 1. Parameter settings for the GA runs.

Parameter Value

Independent runs 25
Population size 5000

Maximum number of generations 20
Mutation probability 10%
Crossover probability 90%

Selection type Tournament, size 5
Termination criterion Maximum number of generations

2.4.2. Fitness Function

A fitness function in the GA is utilized to discover the optimal solution in the search space. In this
research the modified Davies Bouldin Index (DBI) was chosen in the fitness function, due to the DBIs
simplicity and effectiveness. Data cluster linear overlap was calculated using the modified DBI [40] by
determining the ratio of intracluster spread to intercluster centroid distance. Smaller DBI values indicate
better class separation.

The joint-time frequency decomposition by the pseudo-wavelet was obtained for every scale (1–19)
and extracted in one second intervals to determine the DBI between the two classes (i.e., Fatigue and
Non-Fatigue). This again helped the evolutionary processes by intending to minimize the DBI, which
then allows the fitness function to increase the separation between the two classes. Usually the fitness
function operates by maximization, utilizing a hill climbing technique. This was enabled by the DBI
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being transformed into negative numbers, allowing the fitness function to use the hill climbing method
by attempting to bring the (now) negative DBI closer to zero.

3. Validation/Classification

For a comparison between the evolved pseudo-wavelet and other commonly used wavelet functions,
LDA (linear discriminant analysis) was chosen due to its simplicity, being well established and light on
computational resources. The decomposed MMG signal from the pseudo-wavelet was the input for the
training and testing phase of the LDA classifier. As was the case in the evolutionary process, the classifier
was trained using 70% the trials, followed by testing with the remaining 30% of the trials.

It must be noted that the decomposition scale value of the eight compared standard wavelet
functions (see Wavelet Decomposition above) matched the decomposition scale value of the evolved
pseudo-wavelet function, enabling a meaningful comparison.

4. Results

This research has several interesting results. Firstly, the GA selected the optimal wavelet for MMG
classification, as well as the optimal scale for decomposing the MMG signal. Also, the classification
performance of the evolved pseudo-wavelet proved to be better than traditional wavelet functions for
MMG classification.

The optimal wavelet was selected by the GA based on the solution representation, where it finds
the improvements according to the fitness function of the final evolved population with the best DBI
scoring, which can be seen in Figure 3. Figure 3 shows superimposed shapes of original randomly
generated pseudo-wavelets with the final pseudo-wavelet at the end of a typical evolutionary process.

Figure 3. Pseudo-wavelet before and after evolution.
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Another observation in this research was the correlation between the shape of the wavelet and the
optimal scale. The shape of the wavelet has an effect on the selection of the optimal scale to best
discriminate between Fatigue and Non-fatigue content of the MMG signal. This finding falls in line with
Kumar et al. [37] result that certain wavelet functions at certain scales can best contrast between Fatigue
and Non-Fatigue, although in their case this was based on sEMG signals.

In the present study, it was the GA that selected the optimal scale based on the wavelet function
rather than a human selecting the most recommended wavelet functions for fatigue content analysis.
By utilizing the DBI, the GA selected the most suitable scale for decomposing the MMG signals.
The optimal scale finds the best separability between the fatigue classes (Fatigue and Non-Fatigue).
Figure 4 shows the improvements in the pseudo-wavelet population fitness (values closer to zero indicate
improved fitness) accomplished by one of the GA runs in optimizing the pseudo-wavelet function and
the most optimal scale.

Figure 4. Generation fitness during the GA.

The GA was initialized with 5000 individuals with randomly generated coefficients. During the first
generation the GA run was seeded with relatively good solutions averaging a transformed DBI of −2.99.
After proceeding with the evolutionary process the fitness improved for this particular case and reached
its optimal range of −0.775 DBI, around the 16th generation.

The GA initialization and GA run were repeated 25 times using different epochs every time to ensure
optimal coverage of the GA search space. Table 2 shows the 25 independent GA runs. From this table,
consistency in the results from each GA run can be initially observed.

It can be seen that the optimal scale is 9, which gives a separability of −0.775. This gives an
indication that the GA is able to separate the MMG signals from the two different classes (Fatigue
and Non-Fatigue).



Sensors 2014, 14 9498

Table 2. Twenty five independent runs, showing the best individual. Coef = Coefficient.

Best Indiv. Coef 1 Coef 2 Coef 3 Coef 4 Coef 5 Coef 6 Coef 7 Coef 8 Coef 9 Coef 10 Scale DBI

1 0.723961 −0.648377 0.506117 −0.997074 0.957322 −0.663827 0.474965 0.145197 −0.866139 −0.704656 11 −0.845966
2 0.171349 −0.630587 0.191098 −0.796508 −0.223069 −0.231696 −0.201590 −0.784462 −0.094844 0.754290 12 −0.849446
3 −0.621409 0.863039 0.092617 0.511425 0.834059 0.492856 0.892356 −0.328452 −0.866739 0.386239 19 −0.843199
4 −0.968087 0.513111 −0.698193 −0.638030 −0.415072 −0.120873 −0.006556 −0.076733 0.126581 −0.865160 13 −0.855289
5 −0.072398 0.085546 −0.067654 0.133409 0.705926 0.733416 0.960984 −0.893476 0.425220 0.350938 18 −0.887643
6 0.295927 −0.040205 −0.082915 −0.729146 0.486375 0.961391 0.954147 0.949864 0.911659 −0.985766 17 −0.883891
7 0.854157 0.218216 −0.256734 −0.862797 −0.274309 −0.934391 −0.976033 −0.121563 0.891731 −0.203497 18 −0.853443
8 0.470668 −0.698475 −0.075017 −0.021013 −0.153569 −0.976294 −0.759343 −0.776215 0.834345 0.323383 16 −0.860869
9 −0.166401 0.103557 0.328560 −0.377781 0.066326 0.728509 0.903813 −0.315157 0.304919 0.218099 19 −0.860301
10 −0.950290 0.075625 0.761739 0.947685 −0.515141 0.946812 −0.286644 0.268228 0.718876 0.578017 17 −0.807826
11 0.182845 0.800795 0.023454 0.876363 −0.950901 −0.524622 0.765737 0.122379 0.864829 −0.551023 18 −0.822942
12 −0.041094 0.578249 −0.574139 −0.740829 0.251840 −0.868452 −0.306431 −0.957537 0.951027 0.219532 19 −0.803427
13 0.358269 −0.425574 0.665891 0.034365 0.420418 0.991693 −0.038982 −0.224130 0.419404 −0.400792 9 −0.775413
14 0.788058 −0.110733 0.770510 0.875107 −0.441378 0.558319 0.959235 −0.842636 0.652069 0.946038 18 −0.800586
15 −0.063364 −0.694161 −0.851712 −0.013747 0.104839 −0.113733 −0.305231 0.089397 0.828311 −0.122823 17 −0.789409
16 0.986021 −0.084163 −0.231627 −0.302683 −0.643388 −0.749955 −0.641338 −0.804129 0.766124 −0.627568 19 −0.869848
17 −0.782537 0.058527 0.328714 −0.377569 0.967579 0.569102 0.967395 0.387475 0.872844 −0.537900 19 −0.839118
18 −0.192894 0.379860 −0.800941 0.059314 0.964982 0.482363 0.994087 0.950543 0.369976 0.281219 19 −0.860854
19 −0.259580 0.192873 −0.140098 0.349956 −0.431673 0.889820 0.243234 0.525703 0.737410 −0.777512 19 −0.850126
20 −0.617202 0.316896 0.159165 0.476439 0.279625 0.731769 0.764929 −0.596646 −0.967892 0.907438 18 −0.783482
21 −0.720375 −0.976723 0.297287 −0.930802 0.938883 −0.940783 −0.570633 −0.404012 −0.238041 −0.428351 10 −0.808680
22 0.227532 −0.636046 −0.282654 0.892203 −0.176587 0.929766 0.566680 0.825936 −0.345618 0.334357 17 −0.885709
23 −0.429893 −0.342897 0.979843 −0.335449 0.6333817 0.738707 0.2581927 0.512073 0.114374 0.751500 16 −0.886985
24 0.399314 0.133859 −0.845725 0.557674 −0.251278 −0.899172 −0.682572 0.078188 0.518772 0.120541 18 −0.875824
25 −0.572762 −0.484504 0.128970 0.964342 0.861597 0.987382 0.480856 −0.301787 0.306427 0.342617 19 −0.866100

Average −0.040007 −0.058092 0.013062 −0.017806 0.159872 0.148724 0.205679 −0.102878 0.329425 0.012366 17 −0.842655

Std. 0.574208 0.498946 0.514651 0.655474 0.588575 0.757654 0.664933 0.584961 0.591062 0.584045 3 0.034297

In the classification of the MMG signals, both the optimal wavelet and the optimal scale were utilised.
The classification performance with the developed pseudo-wavelet was 80.63%. Compared to traditional
wavelet functions, the pseudo-wavelet was able to better classify the MMG signal, getting an average
of 80.63% (p < 0.05, Wilcoxon’s rank sum test) vs. 75.94% for DB2, which was the second best
wavelet function.

Table 3 shows a classification comparison of the evolved wavelet with 8 different wavelet functions in
decomposing the MMG signal, hence enabling the benchmarking of the classification capabilities of the
evolved pseudo-wavelet. Classification performance of all thirteen subjects with the unseen test data sets
shows that the evolved pseudo-wavelet function has outperformed all of the other wavelets by a range
between 4.70 percentage points and 16.61 percentage points, giving an average of 80.63%. Moreover
the average for all the other wavelets combined gives 70.92% with significance of (p < 0.05) . When
looking at the standard deviation across the classification averages, the evolved wavelet also showed the
lowest values, which could be explained by its consistency in classification across subjects. All wavelet
and pseudo-wavelet functions were used with scale 9 to ensure consistency in the comparisons. Figure 5
illustrates graphically the classification performance (in %) seen in Table 3.
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Table 3. Classification Results (P-W = Pseudo-wavelet).

Subjects Db5 % Db4 % Db3 % Db2 % Sym5 % Sym4 % Sym3 % Mexican Hat % P-W %

Subject 1 18.391 15.517 14.943 14.943 17.241 19.540 14.943 59.195 87.356
Subject 2 20.979 80.420 81.119 82.517 18.881 80.420 81.119 81.119 83.916
Subject 3 83.908 78.161 82.759 83.908 83.908 80.460 82.759 58.621 79.885
Subject 4 78.358 82.463 82.836 82.090 82.090 84.701 82.836 78.731 81.343
Subject 5 68.313 71.193 70.370 75.720 72.016 72.840 70.370 76.132 77.778
Subject 6 64.773 65.909 67.045 69.318 64.773 64.773 67.045 70.455 70.455
Subject 7 86.235 85.425 87.045 88.664 80.567 80.567 87.045 82.591 92.308
Subject 8 71.574 71.574 71.574 71.574 71.574 71.574 71.574 52.284 70.558
Subject 9 57.333 61.333 80.000 90.667 50.667 58.667 80.000 86.667 88.000
Subject 10 76.984 84.127 86.508 91.270 71.429 83.333 86.508 87.302 84.921
Subject 11 83.721 84.884 86.047 81.395 83.721 86.047 86.047 75.581 74.419
Subject 12 64.479 64.093 67.181 68.340 61.776 59.073 67.181 60.232 67.181
Subject 13 78.022 79.121 80.220 86.813 73.626 76.923 80.220 75.824 90.110

Average 65.621 71.094 73.665 75.940 64.021 70.686 73.665 72.672 80.633

Std. 22.115 18.610 19.044 19.891 22.476 17.923 19.044 11.551 8.107

Figure 5. Graphical representation of the Classification performance (in %)
(P-W = Pseudo-wavelet).
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5. Discussion

Developing new methods to classify the MMG signal is an interesting approach which is mainly
used in the field of prosthetic control and muscle activity research. Using wavelet functions for MMG
signal processing has been used by several researchers, in particular Beck et al. [41] who created a
wavelet-based technique for pattern recognition of the MMG signal in muscle activity. Some researchers
have found [7,42,43] that both Discrete and Continuous Wavelet transforms are most appropriate for
analyzing signals of stochastic nature. The pseudo-wavelet developed in our research to classify the
MMG signal were based on continuous wavelet transforms.

Various researchers have looked at using wavelet based analysis for MMG signal
processing [7,18,41–44]. Beck et al. [17] developed a technique containing 11 nonlinear scaled
wavelets to determine the optimal relationship between time and frequency resolutions, which can be
used in statistical pattern recognition. In the present paper, another approach was developed where
the GA selects the most appropriate pseudo-wavelet as well as the optimal scale for classifying the
MMG signal. The method proved useful and demonstrated the pseudo-wavelet’s ability to differentiate
between Fatigue and Non-Fatigue content of the MMG signal.

The optimal scale for the evolved wavelet function in this research was 9, which was determined by
the GA. This finding falls in line with research on sEMG where the optimal scale was 8 and 9 (out of
10 levels) to determine fatigue content using Sym4 or Sym5 [37].

From the comparison of the classification performance with other traditional wavelets, it shows that
the evolved pseudo-wavelet significantly outperforms the other wavelets. According to Tarata [23],
Mexican Hat is the most suited wavelet for MMG analysis. However, results shown here indicate that
the evolved pseudo-wavelet gives even better results. This finding is worth noting for future research and
the selection of which wavelet based method to use in MMG signal analysis.

Compared to previous research using a pseudo-wavelet to classify sEMG signal [29], the
pseudo-wavelet utilised in this research produced similar results. This show that the methodology
for developing the pseudo-wavelet is consistent and will produce similarly improved results in future
research. The evolved pseudo-wavelet approach has proved to be an efficient method of classifying
fatigue content in MMG signal, as had been the case in our previous study with sEMG.
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