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Abstract— Hyper-heuristics have successfully been applied to a 

vast number of search and optimization problems. One of the 

novelties of hyper-heuristics is the fact that they manage and 

automate the meta-heuristic’s selection process. In this paper, we 

implemented and analyzed a hyper-heuristic framework on three 

meta-heuristics namely Simulated Annealing, Tabu Search, and 

Guided Local Search, which had successfully been applied in the 

past to a Financial Forecasting algorithm called EDDIE. EDDIE 

uses Genetic Programming to extract and learn from historical 

data in order to predict future financial market movements. Results 

show that the algorithm’s effectiveness has improved, thus making 

the combination of meta-heuristics under a hyper-heuristic 

framework an effective Financial Forecasting approach. 

Keywords—Genetic Programming; Financial Forecasting; 

Hyper-heuristics 

I. INTRODUCTION 

Financial forecasting is the process of predicting the future 
movements of financial markets (E.g. risk, volatility, and 
financial assets). It is an important aspect of finance and has 
led investors to develop several methods in order to accurately 
forecast the financial market movements. Over the years, 
several computational intelligent methods such as Genetic 
Algorithm [1], Fuzzy Logic [2], Genetic Network 
Programming [3], Learning Classifier Systems [4], Artificial 
Neural Network [5,6] have been used for financial forecasting.  

In recent times, EDDIE [7,8,9], which is a financial 
forecasting algorithm that makes predictions by employing 
Genetic Programing [10,11] has been presented. The newest 
version is called EDDIE8, which when compared with its 
predecessor EDDIE7, it allows investors to specify a period 
range for its technical analysis indicators

1
 instead of using pre-

specified periods [12].  To be more specific, EDDIE7 allows 
the user to specify two pre-fixed period lengths for its 
indicators which is the norm observed in both the academic 
and industry literature. For instance, with EDDIE7 an indicator 
could have a pre-fixed period of 12 & 50 days. On the other 
hand, EDDIE8 uses a period from a parameterized range 
between 2 and 65. Hence, the algorithm can create new 
indicators, which have never been used in the past. This step 
was very significant, because as mentioned other works in the 
literature and also people in the industry have been using pre-
specified indicators (e.g. 20 days Moving Average and 50 days 

                                                         
1 A technical indicator is a tool used to measure and interpret market behavior. 

The list of technical indicators used by EDDIE includes the Moving Average 

(MA), Trade Break Out (TBR), Filter (FLR), Volatility (Vol), Momentum 

(Mom), and Momentum Moving Average (MomMA). 

Moving Average), without being able to justify why a 20 days 
Moving Average should always be preferrable to 25 days 
Moving Average. Results have shown that EDDIE8 could find 
new and better solutions compared to EDDIE7’s non-dynamic 
framework [12,13]. However, EDDIE8 could not consistently 
outperform EDDIE7 as the search space was larger, and 
searching was ineffective which often led to local optima 
problem [13]. In order to address this stated problem, Smonou 
et al. [14] successfully applied three meta-heuristics named 
Simulated Annealing (SA), Tabu Search (TS), and Guided 
Local Search (GLS) to the period nodes of EDDIE’s trees. As a 
result, both EDDIE’s search effectiveness significantly 
improved, as well its predictive performance in terms of best 
results [14]. However, the meta-heuristics were only tested 
individually leaving room for further improvement and 
experiments. 

To this end, in this work we will be combining the above 

meta-heuristics under a hyper-heuristics framework and 

evaluate the results. The merit of the hyper-heuristics lies on 

the fact that the advantages of the meta-heuristics are 

combined together into one algorithm and the meta-heuristic 

selection process is automated. Hence, an investor would not 

need to worry about which meta-heuristic is more appropriate 

on a given dataset. This is very important, because of the 

significance of the financial forecasting itself, which requires 

the continuous development of new and improved algorithms. 

The goal of our research is to show that as a result of the 

combination of the above meta-heuristics under a hyper-

heuristic framework, EDDIE8’s search effectiveness can be 

further improved, providing an even more reliable tool for the 

financial industry. 

The rest of this paper is organized as follows: Section II 

presents EDDIE, Section III presents and discusses the hyper-

heuristic method used in this research, Section IV covers the 

analysis of the experimental design, Section V presents and 

discusses the results, and finally, Section VI concludes this 

paper, and offers a recommendation for further development.  

II. EDDIE 

This section presents in detail the EDDIE process, the 
performance metrics used by the algorithm, and investigates 
the latest version of EDDIE called EDDIE8. 



A. EDDIE Process 

As mentioned in the introduction, EDDIE is a financial 
forecasting algorithm that uses Genetic Programming to extract 
data in order to predict the future price of a stock. EDDIE’s 
goal is to answer the following question “Will the price 
increase by r% within the next n days?” [15]. The program 
receives a dataset which comprises of three inputs: historical 
data (daily closing prices of stocks or indices), a group of 
technical indicators, and binary target signals which are 
recommendations of buy (1) or not-to-buy (0). The user 
specifies the technical indicators which are relevant to the 
prediction along with the period range. EDDIE uses the 
inputted information through a GP process to construct Genetic 
Decision Trees (GDTs) needed to create the binary target 
signals of buy (1) and not-to-buy (0). Each individual GDT is 
then evaluated and evolved on a training dataset for a number 
of pre-defined generations. At the end of the process, the GDT 
with the highest fitness is applied to the testing data. 

Additionally, the performance of the best GDT applied on 
the data is evaluated by comparing the level of prediction

2 

against the reality
3
. The performance of the best GDT is 

measured through the 3 metrics presented in  (1), (2) and (3). 
The TP, TN, FP and FN represent the True Positive, True 
Negative, False Positive and False Negative comparison results 
respectively. 

Rate of Correctness (RC): 

  

      
     

                 
 (1) 

 

Rate of Missing Chances (RMC): 

  

 
      

  

       
 (2) 

Rate of Failure (RF): 

  

 
    

  

        
 (3) 

 

These three metrics were further combined by Li & Tsang 
to produce the fitness function presented in (4)  

 

 ff = w1 ∗ RC − w2 ∗ RMC − w3 ∗ RF             (4) 

where w1, w2 and w3 are the weights assigned to RC, RMC 
and RF respectively. These values were carefully selected in 
order to capture the different investor’s preferences. 

Further to this, Li & Tsang introduced a constraint function 
as described in (5), (6) and (7), in order to further improve the 
effectiveness of the fitness function.  

 
R = [Cmin, CMax]                                (5) 

 

                                                         
2 These are the predictions made by EDDIE. 
3 These are the actual the events that have already happened. The signals are 

calculated by looking ahead of the closing price for a time horizon of n days 

at the specified r% [27]. 

 

Cmin = 
 min

 ot  o  d
    %                              (6) 

 

CMax = 
 max

 ot  o  d
    %                                             (7) 

 
In the above formulas, R denotes the effective constraint 

function, Cmin and Cmax represent the percentage of the 
minimum and maximum positive predictions required, Pmin 
and Pmax represents the total number of minimum and 
maximum positive predictions, and Tot_No_Td represents the 
total number of training data. It is important to state that the 
value of the weight of RC (w1) remained the same if the 
percentage of positive signal that the GDT produced falls 
within the [Cmin, Cmax] range, otherwise a value of zero is 
assigned to w1. More specifically, a constraint of R = [55,60] 
means the percentage of positive signals that a GDT predicts 
should fall within that pre-specified range. If this occurs, the 
w1 remains the same; else, a value of zero is assigned to w1. 
This is useful because this contraint guide the search thus, 
makes it focus on important solutions. Research has shown that 
this method significantly reduces RF, while keeping RC at the 
same level. More information regarding the selection of these 
values can be found in [17,16]. 

B. Presentation of EDDIE8 

EDDIE8, which is the current implementation of EDDIE, 
uses the GP to search the search space of technical indicators 
for solutions, which are represented in the form of GDTs. This 
as such was possible because of its extended grammar. Hence, 
an investor can specify indicators’ periods in a parameterized 
range between 2 and 65. This merit gives EDDIE the ability to 
make the best combination of indicators and periods each time. 
Furthermore, this functionality provides EDDIE with a lot of 
flexibility as currently both academic and industrial 
applications use only pre-specified indicators.  Fig. 1 illustrates 
the Backus Normal Form (BFN) grammar used by EDDIE8.  
 

 
As it can be observed from Fig. 1, the tree starts with an if-

then-else as the root, continues with a Boolean or a logic 
operator as its first branch and finally a VarConstructor which 
takes as children the “technical indicator” and the “period” 
(denoted as [Pmin, Pmax]), which can be used to carry out 
genetic operations such as mutation and crossover [13]. The 
VarConstructor gives the program the ability to construct 
variables by combining various technical indicators

 
with 

Fig. 1. The Backus Normal Form of ED8 [12]. 

 

<Tree> ::= If-then-else <Condition> <Tree> <Tree> | Decision  
< ondition> ::  < ondition> “And” < ondition> |  
< ondition> “Or” < ondition> |  
“ ot” < ondition> |  
VarConstructor <RelationOperation> Threshold  
<VarConstructor> ::= MA period | TBR period | FLR period | Vol period |  
Mom period | MomMA period  
< elationOperation> ::  “>” | “<” | “ ”  
Terminals:  

MA, TBR, FLR, Vol, Mom, MomMA are function 

symbols  
Period is an integer within a parameterized range, 

[Pmin, Pmax]  
Decision is an integer, Positive or Negative implemented  
Threshold is a real number  
  
  

Figure 1 

Fig. 1 

 



periods
4
 such as 23 days Momentum, 19 days Trade Break 

Out, and so on. The advantage of this was that EDDIE was 
able to create new technical indicators, which had never been 
used before for financial forecasting. 

However, the aforementioned advantage also gave birth to 

a drawback, which has to do with the significantly larger 

search space. For instance, if a given GDT has a maximum of 

k indicators and a period range between 2 and 65, then the 

permutations of exhausting the search space of 384 indicators 

(i.e. 6 indicators * 64 periods) would be 384
k
. Whereas, in the 

previous version of EDDIE which was limited to 6 indicators 

and 2 periods, the permutation of exhausting the search space 

of 12 indicators (i.e. 6 indicator * 2 periods) would be 12
k
. 

This extremely large search space made it much more difficult 

for EDDIE8 to consistently find better solutions than its 

predecessor. For this reason, we were interested in improving 

the local search of the algorithm at the level of the period 

nodes, since this was the main reason of the enlarged search 

space. This will be achieved by implementing a hyper-

heuristic on three successful meta-heuristics to better explore 

the search space. The next section presents Smonou et al.'s 

previous work on meta-heuristics, which had the goal of 

improving the search effectiveness. 

C. Meta-heuristics and Hyper-heuristic Framework 

In order to solve this presented challenge, three meta-
heuristics were successfully applied by Smonou et al. [14]  
with the view to better explore the huge search space and find 
better solutions. These meta-heuristics were applied to the 
period of VarConstructor of the tree (therefore on the period 
leaf nodes of the tree) and each meta-heuristic followed a 
general process of selecting a tree based on a pre-specified 
probability, and subsequently randomly selecting any 
VarConstructor of the tree. In each case, we make marginal 
changes to the periods of each VarConstructor of the given 
tree, until the termination criteria is met. The periods that result 
to an improved tree fitness are then saved and they replace the 
old periods. Since in this paper we are presenting an extension 
of [14] by combining these 3 metaheuristics under a hyper-
heuristics framework, it is essential to present a summary of 
the mechanism of each meta-heuristic. As the SA and the TS 
have been extensively presented in the literature [18,19], we 
will not go into much detail regarding their process. However, 
the GLS will be explained more thoroughly as it is considered 
a rather new meta-heuristic approach.  

The Simulated Annealing [14] meta-heuristic improves the 
GD ’s fitness by probabilistically selecting a tree and then 
indentifying and selecting all neighbors

5
 surrounding the 

selected VarConstructor’s period. The process is then 
iteratively exploring the search space of the neighbors of the 

                                                         
4 The period represents an integer value in parameterized range between 2 and 

65 that an indicator can take. 
5 A neighbor is the surrounding interval, which can be obtained by making a 

marginal change (k) to the selected period value, e.g. 5≤ k ≤ 5.  or example, if 

the selected period is 15 days of MA, then neighborhood will be any periods 

from 10 to 20 days. 

 

tree until the terminal criteria are met. Additionally, worst 
solutions are probabilistically accepted and kept. 

The Tabu Search [14] meta-heuristic follows a similar 
process like the Simulated Anealing with the addition of two 
parameters, which are the aspiration criteria and tabu list. The 
former keeps track of the memory size of neighbors that the 
solutions have currently visited without improvement, and the 
latter controls the memory size of the neighbors that contain 
promising solutions.  

Last but not least, the Guided Local Search [14] meta-
heuristic was added on a Hill Climbing local search in order to 
escape the local optima by guiding the search through the use 
of penalties and an augmented fitness function. GLS is 
activated when the search gets stuck in local optima, which 
occurs when the fitness has failed to improve (as a result of 
the local search in the tree’s periods) a pre-specified number 
of times. As explained in [14], GLS uses an augmented fitness 
function as can be seen in Equation (8) to guide the Local 
Search out of the local optima:  

 

                        h(s)   g(s) -    ∑ pi   Ii(s)
 
                           (8) 

 

where,  ( ) is the fitness function,   the number of features, 
pi  is the penalty parameter for feature fi  and   is a 
regularization parameter.  

The advantage of using Equation (8)  when GLS is used, is 
that the local optima which are confronted are with respect to 
the augmented function. Therefore, these may be different than 
the local optima with respect to the original fitness function 
(4). Before any penalties are applied (pi), the original fitness 
function and the augmented function are the same, however as 
search progresses, the augmented function is being constantly 
updated. This allows the local search to escape from the local 
optima of the original fitness since GLS is altering the local 
optima status under the augmented fitness function using a 
penalty modification mechanism. For more information about 
the process of GLS the reader can refer to [20,14] 

Results from this experiment in [14] were successful as it 
showed promising solutions as each meta-heuristic 
significantly improved the performance of EDDIE8 in terms 
of best results. However, the meta-heuristics applied had a few 
limitations. The first limitation was that the experimental 
parameters of each meta-heuristic were not fully investigated. 
Results could thus be affected by changing the values of the 
experimental parameters of the above meta-heuristics. Such 
parameters are for the SA, the Temperature and kmax (which 
is the maximum number of iterations), for TS the aspiration 
criteria (the memory size of neighbors the solutions has 
currently visited without improvement) and the tabu list 
(which is the memory size of the neighbors that contains 
promising solution) and finally for the GLS the kmax (which 
is maximum numbers of iterations). Furthermore, the second 
limitation was the fact that the meta-heuristics were only 
applied and tested independently. Hence, one algorithm (e.g. 
SA) might be good for some datasets, while another algorithm 
(e.g. TS) might be better for other datasets. 

In order to tackle the above issues, we decided to improve 

each of the meta-heuristics presented above by tuning the 

experimental parameters and more importantly, to combine 

the best versions of these meta-heuristics under a hyper-

heuristic framework. Our purpose thus in this paper is to 



automate the meta-heuristics selection process, while at the 

same time investigate the effect of the application of the hyper-

heuristics framework on EDDIE8's performance. 

III. METHODOLOGY 

This section describes in detail the implementation of a 
hyper-heuristics framework called Choice Function on EDDIE. 
The reasons behind the adoption of the  Choice Function, were 
firstly, its proven efficiency across various research fields [20, 
21], as well as the fact that it fits well on our problem as it is a 
score based technique where different heuristics are selected 
based on the aggregation of three score measures.  

A. Choice Function Hyper-heuristic 

Choice Function hyper-heuristic was first introduced and 
presented in [21]. Detailed information about the Choice 
Function adopted for this research can be found in [22]. 

The Choice Function selects a heuristic from a set by 
assessing their performance based on three measures namely, 
the performance of each individual heuristic, how well a given 
heuristic has performed in relation to the previous heuristic 
used, and the heuristic that was last selected by the Choice 
Function. The meta-heuristics are scored based on the mixture 
of the measures described in (9), (10), (11) and (12). 

The first measure   (  ) evaluates the performance of each 

individual heuristic h1, h2, h3...hj as described in (9): 

 
f (h )   ∑   n  

In(h )

 n(h )

i

n

 

 

(9) 

 

where In(hj) is the change in the fitness function with 
regards to the nth time that hj was used, Tn(hj) is the time taken 
in milliseconds from the time the heuristic was used in the nth 
last time until when it returned a solution to the Choice 
Function and   is  a random value between (0,1), interval with 
a decreasing geometric behavior  assigned to the past 
performance values of hj. 

The second measure evaluates how well a given heuristic 
has performed in relation to the previous heuristic used. 
Suppose a heuristic hj is called, which is based on the previous 
heuristic hk, then the value of the function f2, is calculated 
using the formula in (10): 

 
f (h ,hk)   ∑   n  

In(h ,hk)

 n(h ,hk)

i

n

 

 

(10) 

 

where In(hj,hk) is the change in the fitness function with 
regards to the nth time that the pair (hj,hk) was used, Tn(hj,hk) 
is the time taken in milliseconds from the time the pairs (hj,hk) 
were used in the nth last time until it returned a solution to the 
Choice Function and   is a random value between ( , ) 
interval with a decreasing geometric behavior assigned to the 
past performance values of the pairs (hj,hk). 

The third measure evaluates the elapsed time since a given 
meta-heuristic was last used by the Choice Function and  (  ) 
is set to zero each time hj is used. The function (f3) is 
presented in (11): 

 f (h )    (h )    (11) 

 

At any stage of the search, the meta-heuristics are 
accessible to the Choice Function and the score of each 
measure is computed using (12): 

       f(h
 
)    f (h )   f (h ,hk)   f (h ) (12) 

 
where   and   are weights that are used to intensify the search 
and   is a weight used to diversify the search.  hese factors 
increase the efficiency by which the Choice Function explores 
the search space. 

B. Choice Function on EDDIE8 

Based on the general description of the Choice Function as 
presented in the previous sub-section, the Choice Function 
was implemented on EDDIE as presented in Fig 2. 

 
Fig. 2 Choice Function Pseudocode 

As it can be seen from Fig 2, the process begins by 
randomly selecting a tree from the population based on a 
specified probability. When this probability condition is met, 
the Choice Function value  (  ) is evaluated and calculated 

for each heuristic as described in Section III-A. In addition, 
the heuristic with the highest   (  )  is selected. The meta-

heuristic selected is then applied to the selected tree. As a rule, 
these meta-heuristics explore the search space of the periods 
of VarConstructor of the selected tree to search for better 
fitness value until the termination criteria are met. Every time 
the meta-heuristic is applied, the values of the Choice 
Function measure score f (h ), f (h ,hk), f (h )  are updated 

accordingly. This process continues until the population size is 
exhausted. The merit of this approach lies on the fact that it 
enables the different meta-heuristics to be applied on the 
period of the tree. These above factors, which effectively 
control the intensification and diversification of the search, 
increase EDDIE’s exploration and exploitation abilities of the 
huge search space. Hence, enhances the chance of improving 
the performance of EDDIE8 algorithm. 

IV. EXPERIMENTAL DESIGN 

This section presents the data and experimental parameter 
values that have been used for the adjusted meta-heuristics 
and the Choice Function hyper-heuristic. The data used for 
this experiment can be collected from “DataStream” or 
www.finance.yahoo.com. 

While k < = PopulationSize 
 Select a candidate from the population with a 

 probability of P. 
 ForEach (Meta-heuristics) 

Evaluate the performance measure 

  (  ) ,   (     ) ,   (  )  and calculate 

the choice function score F. 
Select the meta-heuristics with the highest F 

score 
Apply the meta-heuristic to the period of the tree. 

End While. 
 

 

http://www.finance.yahoo.com/


In this research, 9 datasets were used. They consist of 7 
FTSE 100 stocks (Aggreko, Easyjet, Hammerson, HSI, 
Imperial  obacco “denoted as Imp”,  arks Spencer,  ext) 
along with 2 indices (MDAX, NASDAQ). The reason behind 
using these stocks is because of their previously observed 
good performance [12,13,23]. 

Furthermore, the data fed into EDDIE for our experiment 
had a time horizon of 1300 days, where 1000 days were used 
as the training days and 300 days as the testing days. In 
addition, the experiment parameter values presented in Table I, 
and Table II were used for the experimental design. The 
parameters used for the experiment remained the same as used 
by Smonou et al. [14]. The reason behind using these values is 
to maintain consistency with the previous research for the 
result analysis. In Table I, the GP parameters used by EDDIE8 
are illustrated. Specifically, the program generates 500 GDTs 
with a maximum initial depth of 6, maximum tree depth of 8 
having 0.1, 0.01, 0.9 probabilities of reproduction, mutation 
and crossover respectively. Those are then evolved for 50 
generations over a 1000 days training period. At end of each 
generation, the best GDT (which is the one with the highest 
fitness (4)) is applied on a testing period.   

Table I   

GP PARAMETERS 

GP Parameters Values 

Max initial Depth 6 

Max Depth 8 

Generation 50 

Population Size 500 

Tournament Size 2 

Reproduction probability 0.1 

Mutation probability 0.01 

Crossover probability 0.9 

 
Table II   

EDDIE PARAMETERS 

EDDIE Parameters Values 

n 20 

EDDIE8 Period [2, 65] 

Weight w1 0.6 

Weight w2 0.1 

Weight w3 0.3 

 

Furthermore, Table II presents the EDDIE’s parameters 
used in the experiments. More specifically, the n represents 
the time horizon, EDDIE8 period is the technical indicator’s 
parameterized period range, and the w1, w2 and w3, are 
weights assigned to RC, RMC and RF respectively. 

Additionally, the experiment design is separated into two 
parts. In the first part, we examined the experimental 
parameter values of the previous meta-heuristics [14] (which 
will be denoted as ED8_SA, ED8_TS, ED8_GLS 

respectively) and tested if calibrating these meta-heuristic 
parameters would produce further improvement.  

Firstly, two parameters of the SA called temperature and 
kmax were examined. The former affects the probability of 
acceptance of SA, which has a significant role to determine if 
a solution has been accepted. The latter controls the maximum 
number of iteration allowed to explore the search space of the 
periods of the VarConstructor per time. We chose different 
values of temperature and the kmax using Smonou et al.’s 
values (temperature: 0.9, kmax: 8) as benchmarks. The values 
used are 0.5, 0.7, 1, 1.2 for the temperature, and 7, 8, 10, 12, 
15, 20 for kmax.  

Furthermore, the tabu list and aspiration criteria of TS 
were examined. The former keeps track of the memory size of 
neighbors that the solutions have currently visited without 
improving and the latter controls the memory size of the 
neighbors that contain promising solution. We chose higher 
and lower values of tabu list and the aspiration criteria using 
Smonou et al.’s value (tabu list: [-2, +2], aspiration criteria: [-
1, +1]) as a benchmark. We examined the tabu list parameter 
values with neighborhood size of (-3, +3), (-4, +4), (-5, +5) 
and aspiration criteria parameter values with neighborhood 
size of (-1, +1), (-2, +2), (-3, +3), (-4, +4).  

Moreover, the kmax of GLS, which controls the maximum 
number of iteration, was examined. Higher and lower values 
of kmax were chosen using Smonou et al. value (kmax: 10) as 
a benchmark. The values varied from 4, 8, and 15. These were 
selected in order to investigate their influence on the 
algorithm’s performance, taking into consideration the 
computational time. 

Finally, the experiment parameter tuning showed that for 
the SA the combination of temperature value of 1 and kmax of 
15 gave the best results. Regarding the TS algorithm, the 
combination of tabu list of (-4, +4) and aspiration criteria of 
(-1, +1) gave the best results. Lastly, the GLS with kmax of 8 
gave the best results in terms of the average ranking of all 
metrics. Thus the above values were selected to be used in our 
experiments. 

For the second and the main part of the experiments, we 
examined if the introduction of the Choice Function would 
bring further improvement to the best-performing version of 
the meta-heuristics. We experimented with higher and lower 
values of  ,  , and  , which are the weights assigned to the 
measure score of the Choice Function (f1, f2, f3 respectively) 
where   and   intensify the search and   diversifies the search 
as mentioned in Section IIIA. We used values ranging 
between 0.03 to 1 for  ,  ,       respectively. The reason we 
chose these values for  ,    and   was because of our 
preference to balance exploitation with exploration. For 
instance, even if a particular meta-heuristic is performing well, 
we still want the program to occasionally explore other meta-
heuristics. From our experiments we have concluded that 
parameters of   = 0.5,   = 0.3 and   = 1.0 produced the best 
results in our preliminary experiments; thus, we have decided 
to give more emphasis on diversification (since   diversifies 
the search). The merit of having this Choice function 
parameter setup prevents the search from getting stuck to only 
well-performing meta-heuristics. 



V. RESULTS 

This chapter presents and discusses the results from our 
experiments on 9 datasets over 50 runs. For the purpose of this 
paper, we considered the best 

6
 and average for each of the 

performance measures (Fitness, RC, RMC, and RF). 
Tables III and IV illustrate the average and best results of 

the application of the hyper-heuristic to EDDIE8, in 
comparison to the versions of EDDIE8 with each parameter-
amended meta-heuristic. We have chosen to compare the 
selected hyper-heuristic with the individual meta-heuristics 
that were picked during our experiments with different 
parameters as mentioned in Section IV.  

 

Table III 

AVERAGE RESULTS HYPER-HEURISTIC 

 

Dataset Heuristics Fitness RC RMC RF 

Easyjet 

ED8_SA 0.1220 0.4600 0.6550 0.2960 

ED8_TS 0.1300 0.4680 0.6380 0.2890 

ED8_GLS 0.1510 0.4890 0.5910 0.2790 

Hyper-heuristic 0.1416 0.4820 0.5930 0.2940 

First 

ED8_SA 0.1480 0.4900 0.5400 0.3060 

ED8_TS 0.1560 0.4980 0.5310 0.3000 

ED8_GLS 0.1510 0.4940 0.5180 0.3110 

Hyper-heuristic 0.1482 0.4860 0.5570 0.2920 

Hammerson 

ED8_SA 0.1190 0.5010 0.4940 0.4400 

ED8_TS 0.1270 0.5070 0.4590 0.4370 

ED8_GLS 0.1520 0.5310 0.4240 0.4160 

Hyper-heuristic 0.1480 0.5290 0.4380 0.4180 

HSI 

ED8_SA 0.2650 0.6260 0.1990 0.3030 

ED8_TS 0.2510 0.6100 0.2290 0.3060 

ED8_GLS 0.2600 0.6190 0.2220 0.2990 

Hyper-heuristic 0.2674 0.6290 0.1990 0.3010 

Imp 

ED8_SA 0.2090 0.5690 0.4820 0.2820 

ED8_TS 0.2100 0.5720 0.4610 0.2900 

ED8_GLS 0.1970 0.5610 0.4520 0.3140 

Hyper-heuristic 0.2029 0.5650 0.4700 0.2960 

Marks_Spencer 

ED8_SA 0.1390 0.5020 0.4840 0.3790 

ED8_TS 0.1300 0.4950 0.4780 0.3950 

ED8_GLS 0.1280 0.4920 0.4910 0.3920 

Hyper-heuristic 0.1223 0.4860 0.4950 0.4000 

MDAX 

ED8_SA 0.1260 0.4970 0.1940 0.5080 

ED8_TS 0.1340 0.5050 0.1820 0.5030 

ED8_GLS 0.1210 0.4960 0.2330 0.5100 

Hyper-heuristic 0.1266 0.4990 0.2010 0.5080 

NASDAQ 

ED8_SA 0.1780 0.5300 0.4390 0.3210 

ED8_TS 0.1690 0.5200 0.4590 0.3250 

ED8_GLS 0.1730 0.5250 0.4400 0.3260 

Hyper-heuristic 0.1874 0.5410 0.4120 0.3200 

Next 

ED8_SA 0.1140 0.4650 0.5110 0.3820 

ED8_TS 0.1240 0.4760 0.4930 0.3750 

ED8_GLS 0.1420 0.4950 0.4810 0.3580 

Hyper-heuristic 0.1238 0.4760 0.4990 0.3730 

For the results presented in both Tables III and IV, an 
improvement between the Hyper-heuristic and the rest of the 
algorithms’ results is denoted in bold. For example, if the 

                                                         
6 The best GDT means selecting the best tree in terms of training data (out of 
all 50 individual runs), and reporting its performance (fitness, RC, RMC, RF) 
in the testing data. This has practical value, because in real-life a trader would 
not have access to the test data (unseen data); thus we pick the best tree from 
training and use it. We use that tree and check how well it performs in the 
unseen data. 

Hyper-heuristic has provided better solution than the ED8_SA 
algorithm, then the ED8_SA solution will be denoted in bold. 
This can be seen in Table III for instance, in the Easyjet 
dataset, the Hyper-heuristic has improved the Fitness 
comparing to both ED8_SA and ED8_TS algorithms. 

Furthermore, as we can see from Table III, the average 
results of the hyper-heuristics have done quite well, improving 
the meta-heuristics average results in a total of 55 instances 
(denoted in bold). In addition, some improvements are quite 
important, for instance the RMC figures of Easyjet’s ED8_SA, 
and ED8_TS, Hammerson’s ED8_SA, MDAX’s ED8_GLS 
and NASDAQ’s ED8_TS, where the improvements are in the 
scale of 3 - 6%.  

 

Table IV 

BEST RESULTS HYPER-HEURISTIC 

 
Dataset Heuristics Fitness RC RMC RF 

Easyjet 

ED8_SA 0.1530 0.4830 0.6550 0.2530 

ED8_TS 0.2210 0.5700 0.4480 0.2390 

ED8_GLS 0.0695 0.4070 0.7590 0.3290 

Hyper-heuristic 0.1890 0.5400 0.4090 0.3140 

First 

ED8_SA 0.2520 0.6100 0.2510 0.3780 

ED8_TS 0.0663 0.4070 0.6430 0.2950 

ED8_GLS 0.1490 0.4930 0.4730 0.3310 

Hyper-heuristic 0.1090 0.4500 0.5650 0.3480 

Hammerson 

ED8_SA 0.0898 0.4700 0.5210 0.4180 

ED8_TS 0.1100 0.4970 0.6210 0.4670 

ED8_GLS 0.2130 0.5930 0.3020 0.3760 

Hyper-heuristic 0.1320 0.5030 0.3550 0.4490 

HSI 

ED8_SA 0.2750 0.6370 0.1070 0.3080 

ED8_TS 0.1850 0.5330 0.4290 0.3220 

ED8_GLS 0.3140 0.6830 0.0537 0.3020 

Hyper-heuristic 0.3150 0.6830 0.0049 0.3150 

Imp 

ED8_SA 0.2250 0.5930 0.4000 0.3020 

ED8_TS 0.2280 0.5970 0.3890 0.3020 

ED8_GLS 0.1610 0.5270 0.4650 0.3610 

Hyper-heuristic 0.2430 0.6130 0.2050 0.3470 

Marks_Spencer 

ED8_SA 0.1760 0.5400 0.3440 0.3710 

ED8_TS 0.1590 0.5230 0.4350 0.3780 

ED8_GLS 0.1240 0.4870 0.4680 0.4040 

Hyper-heuristic 0.1430 0.5030 0.3820 0.4040 

MDAX 

ED8_SA 0.1960 0.5800 0.1630 0.4690 

ED8_TS 0.1990 0.5670 0.0068 0.4530 

ED8_GLS -0.0005 0.3930 0.5510 0.6050 

Hyper-heuristic 0.1610 0.5470 0.2450 0.4740 

NASDAQ 

ED8_SA 0.1570 0.5070 0.4680 0.3140 

ED8_TS 0.1930 0.5470 0.4030 0.3350 

ED8_GLS 0.2200 0.5770 0.3530 0.3010 

Hyper-heuristic 0.2180 0.5730 0.3830 0.2910 

Next 

ED8_SA 0.1940 0.5500 0.4040 0.3350 

ED8_TS 0.1570 0.5100 0.4800 0.3180 

ED8_GLS 0.2180 0.5730 0.4290 0.2760 

Hyper-heuristic 0.1710 0.5230 0.4800 0.3180 

 
Furthermore, the best results in Table IV show further 

significant improvements. More specifically, we can observe 
that, with the exception of the Next dataset, hyper-heuristics 
have managed to improve at least three metrics for at least 
one meta-heuristic, for each dataset. This is very important, 
because it implies that the hyper-heuristics framework can 
take advantage of the benefits of the different meta-heuristics 



and be applicable to a wide range of datasets. Furthermore, 
the best results were impressively improved for certain 
datasets; for instance, in NASDAQ the hyper-heuristic 
managed to improve all metrics of the SA and TS. In addition, 
hyper-heuristics have introduced several significant 
improvements in terms of the RMC best results. The most 
notable improvements are in the HSI dataset by 42% for 
ED8_TS, 10% for ED8_SA, and 5% for the ED8_GLS, in the 
Imp by 20% for ED8_SA, 18% for ED8_TS, and 26% for 
ED8_GLS and in the Easyjet by 25% for ED8_SA, 4% for 
ED8_TS and by 35% for ED8_GLS. Therefore, we can argue 
that the addition of the hyper-heuristic was proven quite 
beneficial for EDDIE8’s best results especially in terms of the 
RMC. The immediate implication of having low RMC is that 
the algorithm will be able to discover a greater amount of buy 
opportunities, thus increase an investor's profit chances. 

Moreover, the Friedman non-parametric test presents the 
ranking results of all metrics, for Best and Average results, in 
Tables V, VI, VII, and VIII. As we can observe, hyper-
heuristics rank first

7
 in the majority of the Best results 

(Fitness, RC, RMC), and also rank first in terms of Average 
RF. This is very important, because it confirms the beneficial 
performance of the framework, which we reported earlier in 
this section. 

Subsequent analysis on the Holm post-doc test [24] [25] 
did not show a statistical significance in terms of the above 
results. However, this should not alarm us, because the fact 
remains that the hyper-heuristic framework was ranked first 
across the majority of the Best Results tests. As we mentioned 
earlier, it is very important for an algorithm to be performing 
well in terms of Best Results, because of its real-life value: a 
trader in real-life would run the forecasting algorithm multiple 
times and then use the best-performing tree (trading strategy). 
Thus, having better best trees can lead to an increase to the 
trader’s profit margin. 

The above discussion allows us to argue that the 
introduction of the hyper-heuristics has made EDDIE8 a 
robust algorithm. In addition, EDDIE8 would be expected to 
produce even better results if more meta-heuristics were 
included in the framework, and this is something we intend to 
further investigate. Lastly, as we have seen from the results 
(especially in terms of Best), the automated selection process 
of the meta-heuristics led to a broader applicability of the 
EDDIE algorithm, as it was able to introduce multiple 
improvements in the performance metrics, without being 
affected by the dataset that was used. 

 

Table V 

Friedman Ranking – Best and Average Results Fitness 

 

Algorithm 
Ranking  

Best Results  

 Ranking  

Average Results 

ED8_SA  2.556   2.778  

ED8_TS  2.667   2.333  

ED8_GLS   2.556   2.444  

Hyper-heuristic  2.222   2.444  

                                                         
7 Results with lower ranking denote a better overall performance. 

Table VI 

Friedman Ranking – Best and Average Results RC 

 

Algorithm 
Ranking  

Best Results  

 Ranking  

Average Results  

ED8_SA  2.444   2.778  

ED8_TS  2.778   2.333  

ED8_GLS   2.500   2.444  

Hyper-heuristic  2.278   2.444  

 

Table VII 

Friedman Ranking – Best and Average Results RMC 

 

Algorithm 
Ranking  

Best Results 

 Ranking  

Average Results  

ED8_SA  2.333  3.000 

ED8_TS   2.944  2.444 

ED8_GLS   2.667  2.000 

Hyper-heuristic  2.056  2.556 

 

Table VIII 

Friedman Ranking – Best and Average Results RF 

 

Algorithm 
Ranking  

Best Results  

 Ranking  

Average Results  

ED8_SA  2.333  2.778 

ED8_TS  2.444  2.556 

ED8_GLS   2.444  2.444 

Hyper-heuristic  2.778   2.222 

 
 

 

VI. CONCLUSION 

This paper presented work on the application of a hyper-

heuristic framework to 3 meta-heuristics previously applied on 

a Genetic Programming Financial Forecasting algorithm 

called EDDIE8. EDDIE8 allows the GP to search in the space 

of technical indicators for solutions, instead of using pre-

specified ones, as happens in other works in the literature and 

also in the industry. However, a consequence of this is that 

EDDIE8’s search area is quite large, leading to occasionally 

missed solutions due to ineffective search. 

In order to address this issue, we applied a Choice 

Function hyper-heuristic to Simulated Annealing, Tabu Search 

and Guided Local Search, which were meta-heuristics that in 

the past had individually been applied to the period nodes of 

EDDIE8’s trees [14]. Results showed that the algorithm’s 

performance was improved in terms of best results with the 

most impressive being the RMC, thus proving that the 

combination of Genetic Programming and hyper-heuristics is 

valuable for Financial Forecasting. In terms of the best 

results, the improvement was very important, due to the fact 

that an investor, who would use the best tree of those 



experiments, could experience an outstanding boost of his 

profit. Additionally, the enhancement of the RMC results is 

proof that our algorithm is more competitive in terms of 

identifying more trading opportunities; therefore it would be 

preferred by an investor who would like to ensure that most 

buy opportunities are captured.  

Furthermore, this approach has automated the meta-

heuristic selection process, as the investor has no concerns 

about which meta-heuristics to use every time. As we saw, this 

led to a broader applicability of the EDDIE algorithm, as the 

improvements that were introduced were not dependent on the 

given dataset. 

The fact that the hyper-heuristic tested in this paper has 

improved EDDIE’s performance is very promising. Our future 

research objectives are to investigate the possibility of 

dynamically updating the values of the Choice Function 

parameters, to introduce a re-enforcement learning scheme to 

the Choice Function parameters, to apply the same framework 

in more datasets, and last but not least to experiment with 

other hyper-heuristics framework implementation. 
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