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by learning from past behavior of others and then best respond to these beliefs looking k
periods ahead. We establish almost sure convergence of our stochastic process and char-
acterize absorbing sets. These can be very different from the predictions in both the fully
rational model and the adaptive, but myopic case. In particular we find that also Non-Nash

f;gdassmcamn: outcomes can be sustained whenever they satisfy a “local” efficiency condition. We then
€90 characterize stochastically stable states in a class of 2 x 2 games and show that under cer-
D03 tain conditions the efficient action in Prisoner’s Dilemma games and coordination games

can be singled out as uniquely stochastically stable. We show that our results are consis-
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games and in particular can explain what is commonly called the “endgame effect” and
the “restart effect”. Finally, if populations are composed of some myopic and some forward
looking agents, parameter constellations exist such that either might obtain higher average
payoffs.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

When trying to understand how economic agents involved in strategic interactions form beliefs and make choices,
traditional game theory has ascribed a large degree of rationality to players. Agents in repeated games are, for example,
assumed to be able (and willing) to analyze all possible future contingencies of play, and find equilibria via a process
of backward induction, or to at least act as if they were doing so. In recent decades this model has been criticized by
experimental work demonstrating that agents often do not seem to engage in backward induction when making choices
in finitely repeated games.! In a different line of research some efforts have been made to develop models of learning, in
which agents are assumed to adapt their beliefs (and thus choices) to experience rather than reasoning strategically. In these
models agents usually display a substantial degree of myopia, learning e.g. through reinforcement or imitation or choosing
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myopic best responses.? Typically, though, one would expect that economic agents rely on both: adaptation and some degree
of forward looking.?

In this paper, we present a learning model aiming to bring these two features together. While we recognize that agents are
adaptive, we also allow them to be forward looking to some degree. Agents in our model are randomly matched to interact in
finitely repeated two-player games. Such interactions are characteristic of many real-life situations. Work relationships often
are finitely repeated games, where after completing one project, people start working with someone else.* Friends often
interact repeatedly, but few stay friends for a life-time. And companies will bargain a deal with one client and afterwards
start bargaining with another client.

Agents in our model form beliefs by relying on past experience in the same situation (after the same recent history) and
then best respond to these beliefs looking k periods ahead. A researcher, for example, wondering how a co-author might
react to a certain choice of action is likely to base her beliefs on this and previous co-authors’ reactions to the same or a similar
history of play. Standard models of adaptive play (see e.g. Young, 1993) implicitly or explicitly make two assumptions that
rule out such reasoning. They assume (i) that agents are myopic and (ii) that agents believe that the distribution of opponent’s
choices is independent of the history of play. Both assumptions go well together since, if adaptive agents believe that the
opponent’s behavior is independent of the history, then it does not matter whether they are forward looking or not. In our
model we relax both assumptions. We allow agents to be forward looking and we allow them to condition their beliefs about
the opponent’s choices on the recent history of play. Our model nests the model of adaptive play by Young (1993).

The stochastic process implied by our learning model can be described by a finite Markov chain of which we characterize
absorbing and stochastically stable states. We find that absorbing sets are such that either a Nash equilibrium of the one
shot game satisfying very mild conditions or an outcome that is “locally efficient”, but not necessarily Nash, will be induced
almost all the time as the length of the interaction grows larger. Outcomes can thus be very different from the predictions
in both the fully rational and the myopic cases. We also establish almost sure convergence to such absorbing sets. We then
characterize stochastically stable states in a class of 2 x 2 games and show that under certain conditions the efficient action in
Prisoner’s Dilemma games and coordination games can be singled out as uniquely stochastically stable. Again this contrasts
with the results obtained for adaptive, but myopic agents analyzed by Young (1993).

We show that our results are consistent with typical patterns observed in experiments on repeated Prisoner’s Dilemma
games, such as e.g. by Andreoni and Miller (1993). In particular our model can explain why people cooperate in finitely
repeated Prisoner’s Dilemma games. It can explain what experimental economists often refer to as “endgame effect”, namely
the fact that after many periods of cooperation participants start to defect in the last periods in experiments with finitely
repeated prisoner dilemma games. It can also explain the so-called “restart effect”, i.e. the fact that if — after the endgame
effect has been observed - participants are rematched and the finitely repeated game is “restarted”, participants start to
cooperate again.’

Finally, we also show that if populations are composed of some myopic and some forward looking agents there are some
parameter constellations under which myopic agents obtain higher average payoff and others where forward-looking agents
obtain higher average payoffs in absorbing states. Hence it is not clear ex ante whether myopic or forward-looking agents
will have higher evolutionary fitness and there may be conditions where both coexist.

Some other authors have studied models with (limited) forward-looking agents. Jehiel (1995) has proposed an equilibrium
concept for agents making limited horizon forecasts in two-player infinite horizon games, in which players move alternately.
Under his concept agents form forecasts about their own and their opponent’s behavior and act to maximize the average
payoff over the length of their forecast. In equilibrium forecasts have to be correct. Jehiel (2001) shows that this equilibrium
concept can sometimes single out cooperation in the infinitely repeated Prisoner’s Dilemma as a unique prediction if players’
payoff assessments are non-deterministic according to a specific rule. Apart from being strategic another difference between
his and our work is that his concept is only defined for infinite horizon alternate move games whereas our model deals
with finitely repeated (simultaneous move) games. In Jehiel (1998) he proposes a learning justification for limited horizon
equilibrium.

Blume (2004) has studied an evolutionary model of unlimited forward looking behavior. In his model agents are randomly
matched to play a one shot game. They revise their strategies sporadically taking into account how their action choice will
affect the dynamics of play of the population in the future. He shows that myopic play arises whenever the future is discounted
heavily or whenever revision opportunities arise sufficiently rarely. He also shows that the risk-dominant action evolves
in the unique equilibrium in Coordination games. Unlike our agents, his agents anticipate how their behavior affects other
players’ beliefs in the future. In a recent paper Heller (2014) studies a repeated prisoner’s dilemma where agents can choose
their foresight ability ex ante and shows that agents will look at most three periods ahead. In his model foresight refers
to anticipating the end of the interaction correctly. Hence a player with less foresight can consider more future periods if

2 See e.g. Young (1993), Kandori et al. (1993) or the textbook by Fudenberg and Levine (1998).

3 There is also some empirical evidence supporting this view. See e.g. Ehrblatt et al. (2010).

4 Researchers’ co-authorship relations or the work relations of flight crew on commercial airlines might be described in this manner. In some large
organizations there are, in fact, explicit policies for staff rotation (see e.g. Bac, 1996).

5 See e.g. Andreoni (1988), Burlando and Hey (1997) or Selten and Stoecker (1986). Selten and Stoecker (1986) also provide a (different) explanation of
the endgame effects they observe based on learning.

Please cite this article in press as: Mengel, F., Learning by (limited) forward looking players. ]. Econ. Behav. Organ. (2014),
http://dx.doi.org/10.1016/j.jebo.2014.08.001



dx.doi.org/10.1016/j.jebo.2014.08.001

G Model
JEBO-3406; No.of Pages19

F. Mengel / Journal of Economic Behavior & Organization xxx (2014) xxx—-xxx 3

the game is “unusually” short in his model. As a consequence his notion of foresight is quite different from our notion of
forward-looking behavior, where forward looking agents are defined by considering more future periods. A second major
difference is that foresight is an endogenous choice in his model.5 Fudenberg and Kreps (1995) have studied learning of
individuals who repeatedly play a fixed extensive-form game. As in our model their players learn from past experience
with the population to forecast future actions and as in our model they may not learn full behavioral strategies. Two key
differences are (i) that their agents are not forward looking, i.e. they maximize only their immediate expected payoff (k=1)
and (ii) their players always learn correct beliefs on the path of play. These two key differences lead to very different results.
Their players will learn self-confirming equilibria (see Fudenberg and Levine, 1993). As a consequence outcomes can be
quite different from our model. Cooperation in the finitely repeated prisoner’s dilemma, which can be an outcome of our
learning process, is e.g. not a self-confirming equilibrium.”

The paper is organized as follows. In Section 2 we present the model. In Section 3 we collect our main results. Section 4
discusses extensions and Section 5 concludes. The proofs are relegated to an Appendix.

2. The model
2.1. Basic definitions

There is a finite number of individuals partitioned into two non-empty classes i=1, 2. Every T periods 2 players are
randomly drawn from the population, one from each class, to interact repeatedly in a symmetric normal form two-player
game. We will index the player drawn from class i with the same index i as the class and will be explicit whether we are
referring to the player or the class whenever doing otherwise could give rise to confusion. Each interaction consists of T
repetitions of the stage game. In the stage game, each player in class i has a finite set of actions A; to choose from. The payoff
that player i obtains in a given period if she chooses action a; and her opponent action a_; is given by ;(a;, a_;). We denote
by @* = (aj, ) an action profile showing the action choices of both players at time t.

2.2. Histories

A history of play H! lists the last (at most) h action profiles realized in the current T-period interaction. Hence

(a-h, ... a1 if Vr=t—h,...,t—1:7+#0 modT
ut (gmax(z<t:r=0 modT}+1 = gGt-1) if 3dret-h,..,t—2:7=0 modT )
| HO if t—1=0 modT ’

where H? is defined as the O-tuple or empty sequence. Denote by H(h) = (A; x A,iright)h the set of all possible histories of
length h and by H = HO UH(1) U. . .H(h) the set of all possible histories of length smaller or equal than h.

2.3. Learning, memory, beliefs

Agents in our model are adaptive. They form beliefs about their opponent’s action choices based on past play of the
population and they condition these beliefs on the history of play. They also have limited foresight of k periods, meaning
that - given their beliefs - they choose actions in order to maximize their expected utility across the following (at most) k
periods. We now explain how beliefs are formed and show how choices are made in Section 2.4.

Memory: Agents have limited memory. For each history H € H all agents i remember only the last m instances where
the history was H and memorize the action choice of players in class (—i) immediately following such a history. Denote by
M{(H) the m-tuple of action choices of players in class (—i) in the last m interactions (as seen from t) in which the history
was H. Let Mj = (M;(H)),,_,, be the collection of M;(H) for all possible histories and denote by M* = (M{),_, , the collection
of memories across the two classes of players. Note that m is not history-dependent. This implies that agents can remember
reactions to “rare” events even if they lie far back in time whereas they might not remember more “common” or “frequent”
events even if they are closer in time. For example a consultant may remember clearly her superior’s reaction to an event
(“history”) 10 years back in time where she badly mishandled a project and was almost fired as a consequence. But she may
not remember the reaction to an event 5 years back where everything went “normal”. Note also that we assumed that all
agents in the same class share the same memory, though this assumption can be relaxed.

6 Other studies include Fujiwara-Greve and Krabbe-Nielsen (1999) who study coordination problems, Selten (1991) or Ule (2005) who models forward
looking players in a network.

7 There is also some conceptual relation to the literature on long-run and short-run players. See also Fudenberg and Levine (1989) or Watson (1993)
among others.
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Fig. 1. Example time-line: At time t=2T+4 player i wants to decide on an action plan. Assume that h=1 and m=5. The history at time t is H* =(B, A). The
memory agent i has conditional on history (B, A) is denoted by MX.‘(B, A) = (A, B,A, A, A). These are the last five action choices of agents in class —i following
the history (B, A). Assume now that both agents choose B. Then the new history is H*! = (B, B) and the memory Mi“'l(B, A) is updated to (B, A, A, A, B).

Beliefs: After observing a given history H, agents then randomly sample (independently from others and without replace-
ment) p <m out of the last m periods where the history was H.® Given the realization of this random draw, the probability
uf(a_,-|H ) that agent i attaches to her opponent choosing action a_; conditional on the current history being H then corre-
sponds to the frequency with which a_; was chosen after history H in the sample drawn. If a history occurred less than p
times in the past, agents sample all periods in which the history occurred. If a history never occurred in the past, agents use
a default belief,LL,?‘DF(at:i1 ) = 1,i.e. they assume that the opponent keeps playing the same action as in the previous period.?
Denote by Mf(H) the (realized) belief of agent i given history H at time t. Fig. 1 illustrates an example of how memories are
formed.'?

2.4. Choices

Forward looking agents have beliefs not only about the opponent’s choice in the current period, but also over the paths of
play in the following k periods (conditional on their own choices). However, as we noted above, if there are less than k periods
left to play, agents realize this and correspondingly form beliefs about the path of play only in the remaining periods. In the
notation we reflect this by defining t+k*=t+k—1ifVr=t+1,...,t+k—1:7 # OmodT and t+k*=min {7t >t: tT+1=0modT}
otherwise. For each action plan (ai’)T:thk* an agent entertains at t, conditional beliefs about the opponent’s choice induce
beliefs over “terminal nodes”, where “terminal” is determined by the degree of forward looking k. Beliefs over terminal

nodes are denoted by bold letters ;LF((a at. )”k* |(af)”k )- The term (af, a®; )“:’; reflects the fact that beliefs over terminal

—i’r=t
nodes are beliefs over paths of play of length k (or less than that if less periods are left to play) and the term (a} )tt’i reflects

the fact that those beliefs are formed conditional on an agent’s own action plans (see also Fig. 2). Beliefs over termmal nodes
are constructed as follows:
~ t+k* |~ t+k* * *
mEQ@F, a) moIEn), s ) = plat IHY) « wi(a™! |H(lear e )% M HCa le:,"a, vk )
i —ilr=t —i’r=t

t+k*

is the history at time t+1 under the path of play (@}, a* .)T e

where H(f“

Fig. 2 111ustrates how beliefs over terminal nodes are formed. At t=1 we assume that agents choose an action randomly
from A;. In all subsequent periods t>1 - given beliefs over terminal nodes - agents choose an action plan that maximizes
their expected payoff over the next k periods.

t4+k*

max  V(ui(H), @)=Y plar, a0 e )Zn af,a’)). )

t,...t+k*

(af)
i’T=i (ar at. )r+k*

—i'r=t

Hence, when making a choice agents think about future paths of play and how their current choices might affect those.

This idea seems inherent in the notion of forward looking behavior. Define by BRf( -) the instantaneous best response of
player i for the repeated game, in the sense that for any plan of choices (a,?; (ai’)i;:l) € argmax V(/Ll?(H), (af)) we have
af € BRIF( -). We are interested in BRI?( -), since only af is realized with certainty. The rest of the action plan is simply used to

compute continuation payoffs. Since players revise their choice at each ¢, this can potentially lead to time inconsistencies. In
other words, it is possible that an agent plans to choose some action at a future date t > t, but ends up choosing something
else when that time arrives. Such time inconsistencies are characteristic of many real life decisions and seem inherent to the
notion of limited foresight. Finally, note that for (h, k)=(0, 1) this model nests the model of adaptive play by Young (1993).

8 Note that if h=0 then players just sample p out of the last m periods. We introduce imperfect sampling in order to nest the model of Young (1993) for
the myopic case and to be able to establish almost sure convergence.
9 This will imply that only Nash equilibria can be sustained by default beliefs, all other profiles have to be sustained via learned beliefs in an absorbing
state.
10 One may wonder why the 5th coordinate in MX,‘(B, A)in Fig. 1 is not B, since after all at 2T the action profile was (B, A) followed by the opponent’s choice
of B at 2T+ 1. The reason is that players were rematched at 2T and hence see the choice of B at 2T+ 1 as a “reaction” to the empty sequence HO rather than
to history (B, A).

Please cite this article in press as: Mengel, F., Learning by (limited) forward looking players. ]. Econ. Behav. Organ. (2014),
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ui(c|(c, D))ui(CI(D, ©)

ui(€|(C, D))t (D|(D, €))
0

D #(D|(C,D))ui(CI(D, D))

ui(D|(C, D))pi(D|(D, D))

Fig. 2. Beliefs over “terminal nodes”. The figure illustrates how beliefs over “terminal nodes” are formed, where “terminal” is determined by k. In the
example agents play a 2 x 2 Prisoner’s Dilemma game (with actions C and D - see also Sections 3.2 and 3.3), k=2 and h=1. At the beginning of the tree (at
t) we have H' = (C, D). The figure shows beliefs over “terminal nodes” conditional on action plan (af )Hl (Dt; D). Consequently all “terminal nodes” that

-t~

involve player i choosing C have probability zero under this plan. All other nodes may receive positive probability depending on player i's beliefs at t.

2.5. Discussion

As in many other learning models, our agents form beliefs by sampling from past interactions in the population and
then best respond to these beliefs. A novelty in our model is that (i) agents are not myopic, i.e. they form beliefs also about
future paths of play (nodes at distance k) and (ii) they condition their beliefs about their opponent’s choice on the history of
play (h>0). In this subsection we discuss these two new assumptions. Standard models of myopic agents (e.g. Young, 1993)
implicitly or explicitly assume that h=0, i.e. that while agents learn from the history of play, they do not condition their
beliefs on the (recent) history of play. It is important to note, though, that there is no conceptual discontinuity between the
cases h=0 and h>0. In particular agents are not strategic under either model since they do not reason about the beliefs of
their opponent but instead learn about the opponent’s choices. One could think of the difference between the two models
as a difference in the theory about the opponent. For example agents could view their opponent as a one-state automaton
in the myopic case (h=0) and as a multi-state automaton in the h >0 case. An alternative interpretation could be that agents
have the same “theory” about the opponent in both cases, but that h simply reflects their own reasoning constraints. Note
that in the most sophisticated case h=T, agents would learn the “full strategies” of their opponents, i.e. they would learn a
different belief for each decision node in the game. If h <T, this is not the case. Instead, in these cases, agents implicitly (and
endogenously) categorize nodes according to the recent history of play, i.e. they form the same beliefs for every node that
is preceded by the same history (of length h). In either case they treat all nodes equal - irrespective of whether they are at
the beginning or end of the game - as long as they are preceded by the same history of play. (If h=T then no two nodes will
ever be preceded by the same history and hence all nodes will be distinguished.)

2.6. Techniques

State: The state at time t is given by the tuple
st:= (Mt HY),

where H! is the history at t and M! the collective memory for both player classes. (See the definitions in Sections 2.2 and 2.3).
Since memory m is finite and all decision rules are time-independent the process can be described by a stationary Markov
chain on the state space S=5; x S, where S; = (ATi)H x ‘H with transition matrix P. P has entries P(s, s’), that describe the
probability to move from state s € S to state s’ € S. In Appendix A we provide more details about P.

Definition 1 (Absorbing set). A subset XCS is called absorbing if P(s, s')=0,VseX, s’ ¢ X.

In Section 3.1 we will characterize absorbing sets. Naturally, the question arises whether some absorbing sets are more
likely to arise if the process is subjected to small perturbations. Let Pé(s, s’) denote the transition matrix associated with
the perturbed process in which players choose according to decision rule (2) with probability 1 — ¢ and with probability
choose an action randomly (with uniform probability) from A;.

Please cite this article in press as: Mengel, F., Learning by (limited) forward looking players. ]. Econ. Behav. Organ. (2014),
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The perturbed Markov process P¢(s, s’) is ergodic, i.e., it has a unique stationary distribution denoted by f*. This distribution
summarizes both the long-run behavior of the process and the time-average of the sample path independently of the initial
conditions.!! The limit invariant distribution f* = lirr(l]fE exists and its support {s € S| lin?)fg(s) > 0} is a union of some absorbing

£~ £—

sets of the unperturbed process. The limit invariant distribution singles out a stable prediction of the unperturbed dynamics
(e=0) in the sense that for any &€ >0 small enough the play approximates that described by f* in the long run. The states in
the support of f* are called stochastically stable states.

Definition 2. State s is stochastically stable «f*(s)>0.

We will characterize stochastically stable states in Section 3.2.

3. Results
3.1. Young’s theorem (1993)

Before we move on to our results we would like to remind the reader of the result by Young (1993) corresponding to
the case where (h, k)=(0, 1), i.e. to the case where all agents are myopic (have foresight k=1) and form beliefs without
conditioning on the history (h=0). Young considers a situation where T=1, i.e. a case where actions and strategies coincide.
Define the best reply graph of a game I” as follows: each vertex is a tuple of action choices, and for every two vertices @ and
@ there is a directed edge d — @ if and only if @ ++ ds and there exists exactly one agent i such that a’; is a best reply to a_;
anda_;j=a’_;.

Definition 3. A game [ is acyclic if its best reply graph contains no directed cycles. It is weakly acyclic if, from any initial
vertex d, there exists a directed path to some vertex @* from which there is no exiting edge.

For each action-tuple, let L(@) be the length of a shortest directed path in the best reply graph from a to a strict Nash
equilibrium, and let L = max L(a).

Theorem 1. (Young (1993))
If I is weakly acyclic, (h, k)=(0, 1), and p <m/(Lj +2) then the process converges almost surely to a point where a strict Nash
equilibrium is played at all t.

The theorem by Young (1993) shows that in this special case of our model only strict Nash equilibria of the one shot game
will be observed in the long run (in games with an acyclic best reply graph).

3.2. Absorbing sets

Now let us move to the case where k> 1. We will make the following assumption throughout.

Assumption A1 h, k <(T/2).

This assumption will simplify the proofs considerably and some upper bound on h (or k) is crucial for some results as we
will see. The bound assumed here is not tight. We will start by analyzing absorbing states. Recall that we defined a state to be
a collection st : =(M¢, H'). We are interested in characterizing behavior (action choices) that can be sustained in an absorbing
state. In our discussion we will hence focus largely on what we call “pure absorbing states”, which are states in which one
particular action profile is induced “most of the time”. More precisely we define a pure absorbing profile a* = (a7, ay) as
follows:

Definition 4. We say a profile a* is (pure) absorbing if there exists an absorbing set X c S and an integer A {0, ..., k—1}
such that, in each state s € X and in each T-period interaction, a* is played in T — A consecutive periods.

If a set X c S induces a pure absorbing profile we will also refer to this set as pure absorbing. The intuitive reason why we
want to allow pure absorbing states to be such that a different profile can be played in some periods is that forward-looking
learning may be able to sustain some additional profiles (compared to myopic learning) as long as the time horizon is large
enough, but not when the end of the interaction is near. We now proceed to characterizing such pure absorbing profiles.

It is intuitive (and non-surprising given what we know about the myopic case) that most Nash equilibria of the one-
shot game can be absorbing.!? To characterize absorbing profiles which involve outcomes that are not Nash, the following
definition will be useful.

Definition 5. We call an action profile a* = (a;, a*;) locally efficient if

11 See for example the classic textbook by Karlin and Taylor (1975).
12 Whenever we talk of (Non-)Nash actions, pareto efficient outcomes or curb sets (below), we always refer to the one shot game.

Please cite this article in press as: Mengel, F., Learning by (limited) forward looking players. ]. Econ. Behav. Organ. (2014),
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Table 1
Two games. Local efficiency of (A, a) is satisfied in Game 1, but not in Game 2.
Game 1 a b c
A 33 0.5 5.0
B 5.0 1.1 0.0
C 0.5 0.0 44
Game 2 a b c
A 33 0.5 5.6
B 5.0 1.1 0.2
C 6.5 2.0 4.4

(1) all unilateral deviations from a* strictly hurt at least one player

(2) there exists a set A’ C (A x Ay) s.t. a* is pareto efficient within A’ and A’ is closed under best replies to all beliefs ;1 € AA_;
placing at least probability 1— p~! [m/T] on a*;,Vi=1,2and

(3) Vi:3a_jeA_y such that mi(ay, a_;) < (@), Vay # a.

Part (1) of the definition of a “locally efficient profile” ensures locally efficiency is a “strict” criterion, in the sense that there
exists a player i for which (a;, a*;) < m;(a*), Ya; + a;, i.e. for which a unilateral deviation leads to strictly lower payoffs
or “strictly hurts the player”. Part (2) is very close to the notion of a curb set (short for “closed under rational behavior”)
introduced by Basu and Weibull (1991). Essentially a subset of strategies in a normal form game is curb whenever the best
replies to all the probability mixtures over this set are contained in the set itself. In more technical language a curb set
is a non-empty product set A’ = x ;-1 A; CA s.t. for each i=1, 2 and each belief € AA_;’ of player i the set A; contains all
best responses of player i against this belief, i.e. Vi=1,2,V u e AA_{ : BRi(i) C A/. Obviously any game (A1 x Ay) is a curb-set
itself, strict Nash equilibria are (minimal) curb-sets but also the set A’=(A, B) x (a, b) in Game 1 above is curb. Note that,
since all A; x A, are curb sets by definition, any profile that is pareto efficient in some game automatically satisfies Condition
(2). The condition is weaker than pareto efficiency in a curb-set, since it requires closure only to beliefs placing at least
probability 1— o~ [m/T7 on a*;. (Remember that [m/T] denotes the smallest integer bigger than (m/T)). The reason that
Condition (2) does not require A’ to be closed to all beliefs is as follows. Given the structure of pure absorbing profiles, a
history of a* is followed by a choice a_; # a*; at most once in each T-period interaction and at most [m/T] such instances
will be remembered. As a consequence, given sample size p, agents will at an absorbing state always hold beliefs that -
conditional on a history of @* - place probability of at least 1— o~ [m/T] on a*; and it is under those beliefs that A" has to
be closed.!? Part (3) requires that for any deviation there should exist an action of the opponent that yields always worse
payoffs to a player than ;(a*). Note that Conditions (1) and (3) together imply Condition (2) in a 2 x 2 game.

Table 1 shows two examples illustrating local efficiency. In Game 1 the action profile (A, a) can be sustained in a pure
absorbing state despite the fact that it is not pareto efficient in the whole game. Such an absorbing state could be sustained
by beliefs where i, (c|(C, .), .) is “small” and w,(b|(B, .), .) is “high enough”. Condition (2) is satisfied in Game 1. In Game 2
(A, a) cannot be sustained, since (A, B) x (a, b) is not curb. In fact, the myopic best response to any belief with support on (A,
B) x (a, b) is C(c). But this means that “small” beliefs x,(c|(C, .), .) cannot be sustained. Condition (2) fails in this game. Local
efficiency will matter for profiles which are not Nash. All Nash equilibrium profiles (af, a*;) can be induced as long as the
following Condition is satisfied:

Condition C1. Viand a; # aF : Ja_; € A_; such that m;(ay/, a_;) < mi(ar, a*.)
1 1 -1

Obviously strict Nash equilibria satisfy C1, but even Nash equilibria in weakly dominated strategies will typically satisfy
this requirement. With this observation we can state the following proposition.

Proposition 1. Assume (h, k) > (0, 1). There exists a real number n(h, k) >0 such that a profile that can be reached with positive
probability is pure absorbing if and only if it is either (i) a Nash equilibrium satisfying C1 or (ii) if it is locally efficient and
p~ 1 rm/T1<n(h, k).

Proof. Appendix B.O

Proposition 1 shows that both Nash equilibria as well as profiles which are not Nash equilibria can be induced in pure
absorbing states provided that they are efficient in a sense defined above. An example is cooperation in the Prisoner’s
Dilemma. If agents learn that their opponent takes actions with worse payoff consequences for them with higher probability
after a history of Nash play than after a history of efficient (but possibly non Nash) play, then they will have incentives to
refrain from choosing myopic best responses at least in early stages of a repeated game. More loosely speaking agents will

13 Note that not all beliefs placing a higher probability than 1— o' [m/T] on a*, can be drawn from the finite sample. However, if A’ was not closed under
some of these, it would also not be closed under some of those that can be drawn by continuity.
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anticipate that taking “aggressive” actions (like e.g. defection in the Prisoner’s Dilemma) can deteriorate future relations,
which is why they refrain from doing so in early stages of the repeated interaction. The forward looking part is crucial here.
If myopic agents simply learned which strategies have yielded good payoffs in the past (e.g. via reinforcement learning),
then efficient (but Non-Nash) profiles could not be absorbing. The only reason why players refrain from taking unilateral
deviation that are profitable in the short run is that they take future payoffs into account and anticipate that the opponent’s
behavior is not stationary.

Some conditions are needed to obtain this result. The condition on p~![m/T] ensures that samples remain informative
enough. [m/T] is a measure of the maximal number of “rare” or “untypical” events (read action choices other than a*;)
contained in an agent’s memory at any time conditional on a history of @*. If p is too small compared to this expression, then
it is possible that such “rare” events are over-represented in the sample on the basis of which agents form beliefs. This can
destabilize the efficient absorbing profile. Note also that in Proposition 1 we have focused on pure absorbing profiles that
can be reached with positive probability. The latter condition rules out states that are supported by off-path beliefs which
are inconsistent with the learning process described in Section 2.

The threshold n(h, k) > 0 is strictly increasing in k and not always monotone in h. The intuition for k is straightforward. The
more forward looking agents are, the more do future payoffs matter for today’s decisions. If future payoffs matter enough,
then agents may refrain from choosing myopic best responses. The role of h is more subtle. If h=0, then agents do not
condition their beliefs on the history of play and hence will hold the same belief at all decision nodes in the game. On the
other hand if h were very large (in particular h>T— 1), then histories would be of different length and hence necessarily
different at all decision nodes. In this case agents will condition their beliefs on the decision node. But then only Nash
equilibria (of the one shot game) are absorbing. The interesting cases are those with intermediate h, where agents implicitly
(and endogenously) categorize nodes according to the recent history of play. In Section 3.4 we will see how these conditions
play out in a numerical application to a Prisoner’s Dilemma. This example will also illustrate that the conditions on p, m and
T are “reasonable” in a typical game. Note that the exact value of n(h, k)>0 will also depend on payoff parameters of the
game. We have omitted this dependency from the argument of n for notational clarity.

Note also that the result in Proposition 1 does not depend on there being a discrepancy between Nash and minmax
outcomes in the game, nor per se on the time horizon being sufficiently long, nor on there being a multiplicity of Nash
equilibria in the stage game. The result and the underlying intuition are thus fundamentally different from the standard
repeated games literature. Proposition 1 implies for example that paths involving cooperation in the Prisoner’s Dilemma
can be absorbing under certain conditions. Such paths cannot be sustained, though, by standard folk theorems for finitely
repeated games.

The following result shows that starting from a state which is not absorbing the process converges with probability one
to one of the pure absorbing sets in acyclic games.

Proposition 2. Assume the game is acyclic. Then, starting from any state which is not absorbing, the process converges almost
surely to a pure absorbing set.

Proof. AppendixB.O

The intuition is as follows. Since beliefs are formed by drawing imperfect samples from the past there is always positive
probability to draw “favorable” beliefs which enable convergence after finitely many periods. This is only true for acyclic
games. In games with best response cycles, such as e.g. the matching pennies game convergence to a pure absorbing state
cannot be ensured and in fact pure absorbing states may even fail to exist in such games. In such cyclic games the process need
not converge. Note also that the corresponding theorem in Young (1993) requires p to be “small enough” relative to m. This is
needed in Young (1993) because agents sometimes need to be able to look back far enough to obtain a homogeneous sample.
Because of the assumption in our model that memories are history dependent, i.e. that agents remember m instances for
each history, the possibility of drawing homogeneous samples is guaranteed as long as m > p which is satisfied by definition.

Proposition 2 establishes that the stochastic process converges with probability one to a pure absorbing set starting from
a state which is not absorbing. Note that Propositions 1 and 2 do not imply that there may not be other absorbing sets which
are not pure absorbing. In fact in many games of interest such states will exist.!* However Proposition 2 shows that as soon
as agents deviate slightly from such a state (to a non absorbing state) they will almost surely converge to a pure absorbing
set. A natural question that arises is whether some absorbing sets are more likely to be observed in the long run than others.
In the next subsection we will analyze which of the absorbing states are also stochastically stable.

14 For example in a 2 x 2 pure coordination game states in which players alternate between the two equilibria are also absorbing. From any state “close”
to those (where memory conditional on either of the pure histories contains both actions) the process will always surely converge to a pure absorbing state.
The reverse is not true. From states “close” to a pure absorbing state, the process may not converge to such an alternating state, which is the case e.g. if the
memory conditional on each pure action profile (history) contains that action only.
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3.3. Stochastically stable states

For our analysis of stochastically stable states we will focus on specific 2 x 2 games. Consider the following payoff matrix

C D
Claal0,p
D 570 777 (3)

If 8>« >y >0 this matrix represents a Prisoner’s Dilemma and if « > 8 and y > O it represents a Coordination game. We will
focus on the different cases in turn. Let us also assume that 8<2ca.!> We adopt the notational convention that C = (C, C)(D =
(D, D)) is the profile where action C(D) is chosen by both agents.

3.3.1. Prisoner’s Dilemma

Before we start our analysis of stochastically stable states, let us first describe the set of absorbing states for this game.
States involving defection (D) in all periods can be absorbing by Proposition 1. (Since (D, D) is a strict NE of the one-shot
game, it satisfies condition C1). The more interesting question is under which conditions states involving cooperation in
some periods can be absorbing. Since cooperation is pareto efficient we know from Proposition 1 that such conditions will
exist. Our first observation is the following.

Proposition 3. The paths of play induced by absorbing sets involving cooperation satisfy non-increasing cooperation (NIC), i.e.
they are such that Vt with t — 1 #+ OmodT, VI=1, ..., h the following is true: ifaf = C then also af*1 =C.

Proof. Appendix B.O

Proposition 3 states that the probability to observe cooperation within a given T-period game is non-increasing in t (with
the possible exception of early periods where histories are of length <h). This is intuitive, since cooperation (being efficient
but dominated in the one shot game) can only be sustained if agents believe that defecting will lead to a higher probability
of defection by their opponent in the future than cooperating. For any given degree of forward-looking k the perceived
payoff loss from defection will be smaller the closer agents are to the end of their interaction T. Hence if agents find it in
their interest to cooperate at t, they must also do so at t — 1 (within the same T-period interaction).'® Absorbing states in
the Prisoner’s Dilemma (PD) are denoted as follows. Let Xp be the absorbing set which induces defection in each period and
denote by X the absorbing set which induces cooperation in some periods of every T-period interaction. All states s € X¢
must satisfy the property NIC.

Proposition 4. If (h, k)>(0, 1), p~1 [m/T7<((a — y)/a) and ((p—1)/0) = (¢ +2B—3y)/(a+2B8 —2y), then all stochastically
stable states are contained in Xc.

Proof. AppendixB.O

Two conditions are needed for this result. The condition o~ [m/T < ((a — y)l@) ensures that samples are “informative”
enough such that agents’ beliefs conditional on histories containing only C place high enough probability on the opponent
choosing cooperation again. This is a necessary condition, which is needed for states in X to be absorbing at all. The condition
((p—=1)/p)>((x+2B—-3y)/(ax+2B—2y))is sufficient to both prevent too “easy” transitions from any state in X¢ to a state in
Xp by ensuring that few trembles to defection are never enough to infect a pair of agents. On the other hand it is sufficient
to enable “easy” transitions from any state characterized by defection to a state characterized by cooperation.

More loosely speaking the intuition is as follows. Transitions away from cooperative states are hard, since as long as it is in
people’s mind that the opponent responds to a history of joint cooperation by cooperating they will always have incentives
to start new relations by cooperating. But this belief is very hard to destabilize since once a tremble to defection has occurred
the history is not one of joint cooperation anymore. Transitions to cooperative states are easier, because once agents have
experienced successful cooperation in one particular T-period interaction they will be willing to start new relationships by
cooperating.

15 This condition makes sure that cooperation is more efficient than players alternating between (C, D) and (D, C). For k=2 such alternating states are not
absorbing even without this condition. If an agent anticipates that - after a history ending with (D, C) - her opponent will defect, then she will not have
an incentive to cooperate no matter what her beliefs about the opponent’s choice after different histories are. For larger k one would need a progressively
tighter condition to ensure that such states are not absorbing. If cooperation is efficient, though, i.e. if 8 < 2«, then such alternating states are never absorbing.

16 Ghosh and Ray (1996) have studied a setting where matching is not random but where agents can choose their interaction partners. Furthermore in
their setting agents are (i) strategic and (ii) heterogeneous in the sense that some players have discount factor zero and some a strictly positive discount
factor for payoffs obtained in the repeated game. Interestingly their characterization of equilibria comes closer to a property of non-decreasing cooperation
rather than non-increasing cooperation as in our setting. In our setting non-increasing cooperation obtains because limited forward looking agents act
as if they were “more myopic” towards the end of an interaction. In their setting non-decreasing cooperation obtains because agents test the willingness
to cooperate of their match and continue to cooperate if their match has a high discount factor. Endogenous choice of who to play with guarantees that
incentives are aligned in their setting.
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Table 2
Average frequency of cooperation in last two 10-period interactions.
1 2 3 4 5 6 7 8 9 10
Partner 0.86 0.72 0.68 0.66 0.59 0.61 0.34 0.29 0.07 0.04
Computer50 0.64 0.72 0.68 0.71 0.71 0.65 0.61 0.65 0.29 0.11

Periods are highlighted in bold, where cooperation would be expected according to the theoretical predictions outlined in this section.

Some remarks are at order. First notice that if the conditions are not satisfied then (depending on the parameters)
stochastically stable states can be contained in either X or Xp. Note also that the conditions are not tight bounds, since we
require in the proof that the maximal number of trembles needed for transitions from any state in X to a state in Xp requires
less transition than the minimal number of transitions needed from any state in Xp to X¢. Since this kind of computation
includes all the states, even those through which no minimal mutation passes, the bound is generally not tight, which is also
the reason that it does not depend on h or k.

3.3.2. Coordination games

Since in the coordination game all locally efficient profiles are Nash equilibria which satisfy C1, pure absorbing sets induce
either Cor D at all periods. Denote these two absorbing sets by Xc and Xp, respectively. To make the problem more interesting,
let us assume that additionally S +y >« > y, implying that (C, C) is efficient and D is risk-dominant in the one-shot game. The
question we then want to answer is: how does our adaptive learning process select among risk-dominance and efficiency
if agents are forward-looking ? Young (1993) has analyzed this question for 2 x 2 games in the case where (h, k)=(0, 1) and
has found that risk-dominant equilibria are the only ones that are stochastically stable in this setting. In the presence of
forward looking agents this is in general not the case as the following result shows.

Proposition 5. There exists p(B, «, ) such that whenever p>p(B, «, y) and (h, k)> (0, 1) all stochastically stable states are
contained in Xc.

Proof. AppendixB.O

The intuition is as follows. A unilateral tremble starting from a state in Xp is not as detrimental (yielding a payoff of 8> 0)
as a tremble starting from the efficient equilibrium (yielding a payoff of zero) in the short run. If it is the case, though, that
the opponent is likely to react to such a tremble by changing his action, then trembles starting from the efficient action
can be less detrimental than those starting from the risk dominant action in the medium run. Forward looking agents will
take this into account. There is also a second effect which favors the efficient convention, which is that agents will always
be willing to start out new relationships by playing C even if in their previous relationship they converged to D as long as
they are sufficiently convinced that a history of C, .. ., C will be followed by cooperation. Eliminating this belief requires
many trembles. Hence, unlike in the myopic case, efficient outcomes can be part of an absorbing state in these two classes
of games.

3.4. Application to experimental results

In this subsection we illustrate how the results from the previous subsection (in particular Section 3.3.1) can explain
typical experimental results. An experiment that is relatively well suited to test our theory was conducted by Andreoni and
Miller (1993). In their “Partner treatment” subjects were randomly paired to play a 10-period repeated prisoner’s dilemma
with their partner (T=10). They were then randomly rematched with another partner for another 10-period game. This
continued for a total of 20 such 10-period games, i.e. for a total of 200 periods of the prisoner’s dilemma. The payoffs in the
Prisoner’s Dilemma in their experiment were given by « =7, =12 and y =4 (Table 3).

The second treatment we are interested in is the treatment they call “Computer50”. This treatment coincides with “Part-
ner,” except that subjects had a 50% chance of meeting a computer partner programmed to play the “Tit-for-Tat” strategy.
In the language of our model a “Tit-for-Tat” player is characterized by a level of sophistication h=1 and always mimics the
action of the opponent in the previous period.

Table 2 shows the average cooperation rate in the last two 10-period interactions, where there are most chances that
the learning process has converged. What is interesting about these results is (i) that the property of NIC seems satisfied on
average, (ii) that there is a sharp drop after 6 periods in Partner treatment and that (iii) this sharp drop occurs two periods
later in the Computer50 treatment. The results display two typical patterns of repeated Prisoner’s Dilemma experiments.
The sharp drop at the end is often referred to as “endgame effect” and the fact that cooperation rates are high again in initial
periods of the next T-period interaction is often referred to as “restart effect”.

We next ask whether we can explain their findings from both treatments with one common set of parameters of our
model. Our sufficient condition to rule out defection as a stochastically stable state yields p (2, 9] and o~ [(m/10)7<(3/7).
This is satisfied e.g. if p=5 and m=10. But since we do not know p and m, we cannot rule out that both cooperative states
and states characterized by defection might be stochastically stable. We start by analyzing the “Partner”-treatment. First
note that the Condition from Proposition 4 boils down to (p — 1/p) > (19/23), which is the same as saying p > 6. We can state
the following result.
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Table 3
Frequencies with which cooperation was chosen in the experiment conditional on 1-period history and the (sufficient) restrictions on beliefs stemming
from the theory. History of play in the table has the format (a;, a_;).

Partner treatment

CcC CcD DC DD
Pr(C)-Exp (Periods 1-180) 0.89 0.23 0.38 0.07
Pr(C)-Exp (Periods 81-180) 0.89 0.20 0.44 0.06
Pr(C)-Exp (Periods 1-100) 0.88 0.23 0.34 0.07
1(C|.)-Theory >0.83 - €[0, 0.47] 0

Computer50 treatment

CC CcD DC DD
Pr(C)-Exp (Periods 1-180) 0.88 0.48 0.16 0.08
Pr(C)-Exp (Periods 81-180) 0.89 0.49 0.11 0.07
Pr(C)-Exp (Periods 1-100) 0.88 0.48 0.18 0.10
1(C|.)-Theory >0.76 - €[0.10, 0.54] 0

Proposition 6. If(h, k)=(1,5), p>6and p~! [(m/10)]<(3/7) the path of play were agents cooperate in the first six periods of
all T-period interactions and defect afterwards is induced in the unique stochastically stable state.

Proof. Appendix B.O

Hence for a level of sophistication h=1 and degree of forward looking k=5 our model can rationalize this path of play.'”
What can we say about the beliefs required to sustain such a state? If m is not too large (in fact m < 13), this path of play
induces beliefs u(C|(C, C))>5/6 and u(C|(D, D))=0. There are also some restrictions on off path beliefs. Table 3 shows the
theoretically required beliefs and empirical frequencies in the first 100 periods of play. If participants do form beliefs by
relying on empirical frequencies, as suggested by the theory, then our learning process can provide an explanation for their
results.

Still our model has quite some free parameters. And of course we did choose parameters ((h, k)=(1, 5) and p > 6) that -
while appearing intuitively reasonable - can explain these data rather than choosing parameters at random. A better test
of the theory is whether we can explain the data from a different treatment using the same parameters. In order to do this
we consider the Computer50 treatment described above. Holding fixed the degree of forward looking for all agents, agents
should have stronger incentives to cooperate in this case. The following proposition confirms this intuition.

Proposition 7. If(h, k)=(1,5), p>6 and p~' [(m/10)]<(3/7) and if there is a 50% chance of meeting a tit-for tat (computer)
player the path of play were agents cooperate in the first eight periods of all T-period interactions and defect afterwards is induced
in the unique stochastically stable state.

Proof. Appendix B.O

If m <19 this path induces beliefs £(C|(C, C)) > 7/8 and u(C|(D, D)) =0, which is consistent with the empirical frequencies
(see Table 3).18

Finally we ask whether individual decisions can be explained using our theory. We will consider three measures: (i)
which percentage of participants satisfy the property of non-increasing cooperation (NIC) and hence are consistent with our
theory for some k and h, (ii) which percentage of participants behave exactly in accordance with our theoretical prediction
(forh=1,k=5)or cooperate one period longer or less long and (iii) whether the modal behavior coincides with our theoretical
prediction (h=1, k=5).

Table 4 shows the results. In both treatments the modal behavior exactly coincides with our theoretical prediction. 86%
of participants satisfy NIC in the Partner treatment and 77% in the Computer50 treatment. Not only aggregate behavior but
also the distribution of individual behaviors responds to the treatment change in the direction predicted by the theory of
limited forward looking players. Note also that, while just short of 50% of individual behavior coincides with the theoretical
prediction (£1) of our model, less than 20% of behavior is consistent with Nash equilibrium (+2) in the Partner treatment.

4. Heterogeneous agents

We ask whether agents with a higher degree of forward-looking (k) will always be able to exploit others with a lower
degree of forward looking, i.e. whether there is an evolutionary sense in which agents should be more or less forward looking.
We consider the following simple example. Assume that there are two types. k; is a myopic type with (h, k)=(1, 1) and k,

17 One could also explain this path with higher values of h, but we find it most convincing to use the most simple decision rule (involving least
sophistication).

18 Note that cooperating until the opponent defects or until period 8 (whichever comes first) and defecting afterwards is also a sequential equilibrium of
this game (Kreps et al., 1982). Cooperating in the Partner treatment, however, cannot be part of a sequential equilibrium.
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Table 4
Percentage of 10-period behaviors that are in accordance with theory (for parameters (h, k)=(1, 5), p > 6) in periods 181-200. LFP stands for “learning by
limited forward looking players”.

Partner Computer50

AllC 0.04 0.04
(cceeceeeccen) 0.04 0.18
(CCCCCececeb,b) 0.11 0.25
(¢cCececep,npb) 0.18 0.04
(¢,CCcceb,pbb) 0.25 -
(¢,CCCcbb,D,DD) - -
(¢cccCb,bb,D,D,D) 0.04 -
(¢,CCb,D,D,D,D,D,D) 0.04 -
(C,C,D,D,D,D,D,D,D,D) 0.04 -
(C,D,D,D,D,D,D,D,D,D) 0.14 0.07
AllD - 0.04
Other 0.14 0.35
Satisfy NIC (h=1) 0.86 0.77
Theory prediction (LFP) +1 0.43 0.48
Modal behavior = theory (LFP) Yes Yes

is forward-looking characterized by (h, k)=(1, 2). Denote the share of k; agents by o. Irrespective of their type and class,
agents are randomly matched to play a 4-period repeated Prisoner’s Dilemma. The stage game payoffs are given by the payoff
matrix (3). We want to consider two different scenarios. In the first agents know that the population is heterogeneous and
are able to observe the type of their match at the end of an interaction, store this information in their memory and thus to
form conditional beliefs. In the second scenario agents are not able to form conditional beliefs. The reason could be either
that they (wrongly) assume that the population is homogeneous or that they are simply never able to observe (or infer) the
type of their opponent.

4.1. Conditional beliefs

In this scenario all agents are aware that the population is composed of two different types and hence can react to this
knowledge. In particular forward-looking types can update their priors on the type they are facing (and thus their conditional
beliefs about behavior in future periods) depending on the behavior they observe in earlier periods. Remember that o is the
population share of myopic (kq ) types.

Proposition8. Ifo<((3x—B—2y)/(3a — B - v)), then forward looking agents (k) obtain higher average payoffs in all absorbing
states. If o € [((3a — B—2y)[(Ba— B—y)), (B — B—3y)/(3x — B))] then myopic agents (k1) obtain higher average payoffs in all
absorbing states and if o > ((3ac — B —3y)/(3a — B)) all agents obtain the same average payoff in all states.

Proof. Appendix B.O

The condition o <((3c — 8 —3y)/(3x — B)) is simply necessary for absorbing states with cooperation to exist at all. If the
condition is not met, i.e. if there are too many myopic types who always defect, then all absorbing states will display full
defection. Given that absorbing states with cooperation do exist, forward looking agents do only make higher profits in
expectation if o is not too high. Else myopic agents do make higher payoffs in these states. The reason is that when forward-
looking agents decide on their action choice they expect to be able to exploit a cooperative opponent in later periods of of
their horizon (t+1, ...t+k). But this is not true in an absorbing state, since other forward looking types do reason in the
same way. Consequently they overestimate the relative benefit of cooperation and choose cooperation in a range of o where
they should be choosing defection.

These results have natural implications in terms of evolution. In particular they show that evolution need not eliminate
myopic players, but that states where o > ((3a — 8 — 2y)/(3c — B — y)) can be stable in an evolutionary model. Which states
will be stable will depend of course on the precise evolutionary model considered. Finally note that if matching were
assortative, i.e., if forward looking types were matched with increased probability with other forward-looking types and
vice versa, forward-looking types will tend to have higher payoffs on average.'?

4.2. Unconditional beliefs
In the case where agents are not able to infer the type of their opponents (or simply assume that the population is

homogeneous) and thus form beliefs that are not conditional on the type of their opponent. In this case the only absorbing
state involves full defection, as the following Claim illustrates.

19 See e.g. Myerson et al. (1991) or Mengel (2007, 2008) for models of assortative matching in the prisoner’s dilemma.
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Proposition 9. If beliefs are unconditional all absorbing states involve full defection and all agents obtain the same payoff in
expectation.

Proof. Appendix B.O

The intuition is simply that if forward-looking types are repeatedly matched with myopic types their beliefs will even-
tually decrease below the cooperation threshold. But given this, there is positive probability that even a small number of
myopic types can induce the beliefs of all forward-looking types to decrease. In such states forward-looking types might
still have high beliefs about the cooperation probability following a history of joint cooperation (since myopic types never
cooperate). The problem is that their beliefs about initial cooperation (after the null history) and about cooperation after uni-
lateral cooperation will be too low to induce cooperative outcomes. The lack of strategic reasoning is in this case responsible
for them not being able to restore cooperative outcomes.

5. Conclusions

We studied agents interacting in finitely repeated games, who are adaptive, but also forward-looking to some degree. We
have shown that in a pure absorbing set either Nash equilibria satisfying very weak conditions or locally efficient profiles
can be induced. In 2 x 2 prisoner’s dilemma and coordination games there are parameter conditions under which only the
efficient outcomes are induced in stochastically stable states. We have also seen that these results can provide explanations
for common findings in experiments, such as cooperation in finitely repeated games, the “endgame effect” and the “restart
effect”

A number of other papers have shown that cooperation in the prisoner’s dilemma can arise as the outcome of a learning
process (see e.g. Karandikar et al., 1998 or Levine and Pesendorfer, 2007. A recurrent pattern in these papers seems to be that
the rationality of agents has to be “bounded enough” in order to achieve cooperation. In particular agents are not allowed
to choose best responses in these models. In the present paper, on the other hand, agents are allowed to be quite rational.
In particular they are more sophisticated than myopic best response learners. Still they are able to achieve cooperation.

Further research could build in Section hyperlinkTDSEC:44 and study under which conditions forward looking behavior
emerges as a result of evolutionary selection. It seems also worthwhile to test forward-looking behavior experimentally to
distinguish this from other possible explanations of the “endgame” and “restart” effects in social dilemma games.

Appendix A. The transition matrix

Denote by H(s) the history associated with state s and by M;(H(s)) the memory of a player in class i associated with that
history and let M(H(s)) = (M1 (H(s)), M5 (H(s))). Call s a successor of s € Sif s is obtained from s by (i) deleting the first coordinate
from M;(H(s)) (if |M;(H(s))| = m) and by adding a new element r;(5) to the right (i.e. as m-th coordinate) and (ii) by deleting the
first coordinate of H(s) (if [H(s)| = h) and by adding 7(s) = (r1(s), r2(5)) as h-th coordinate or (if t = 0modT) by setting H(s) = HO.
The learning process can then be described by a transition matrix P € P where P is defined as follows.

Definition (Transition matrices) Let P be the set of transition matrices P that satisfy Vs, s’ €S:

P(s.5) >0 sris a successor of sand
’ ri(s7) € BRU(ui(H(s)).

Appendix B. Proofs

Remember that we denoted by BR;(-) player i’s best response correspondence for the one shot game. We also denoted
by BRIF( -) the instantaneous best response of player i for the repeated game in the sense that for any plan of choices
(af,at*t, .. .al?*k) e argmax V(u!(H), (af)) the first element of the plan (a} € BR;(-)).

The first property we establish is that all pure absorbing profiles are individually rational in the sense that they guarantee
each player at least the (pure strategy) minmax payoff.

Lemma 1. All pure absorbing profiles are individually rational.

Proof. Consider a pure absorbing action profile (a}, a*;) where the same actions are chosen atallt,...t+(T—X)

T=t,...t+(T—1).
by both players. If af € BR;(a*;), then af guarantees the minmax payoff 7 to playeri, Vt,...t+(T—A).
Ifa; ¢ BRi(a*;) nmiaf, a*;) < 7 then this must be because player i believes that a deviation at t (to say ;' with 7r;(a;’, a*;) >

wi(ar, a*;)) yields a payoff lower than 7(a}, a*;) < 7 for some T e[t+1, t+k]. (Since (az, aii)h[ T is a pure absorbing

profile the payoffs without deviation are n(a;, a*;) < 7 for all such 7. Hence, if this were not the case then i would have
incentives to deviate to a;’ at t and ensure herself (at least) the minmax payoff at t.) T has to be within the same T-period
interaction and within i’s foresight (k). Denote her belief at time t about —i’s choices at 7 by uf(azimf“)). Now if she believes

att that at T she will choose an action af € BRi(/Lf(afi\HT(t))), then her (instantaneous) payoff at T will not be below 7. Hence

the deviating profile (a’f, e a’f*k) must be such that she plans not to choose an (instantaneous) best response at t. But she
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will find it optimal at t not to choose a (myopic) best response (or any other action guaranteeing her 7) at 7 only if there
isa v e[t+1, t+k] where she expects to obtain a lower payoff than 7 in case of a deviation etc. At t, though, she certainly
expects to choose a (myopic) best response at t +k, because of limited foresight. Since she will expect to obtain at least 7 at
t+k, and hence at all 7", 7/, T etc, it cannot be that 7;(a}, a*;) < 7.

Let us now focus on periods ¢’ where a pure absorbing state does not require (according to definition 4) that a? is chosen.
Assume first that £ € {[T], ..., [T]+A}. Then the exact same reasoning as above guarantees that payoffs must lie above 7 for
all such t'. Assume next that t' e {[T]—A+1, ..., [T]}. If a,?’ = af, then player i can guarantee herself the minmax payoff by
the previous arguments. Now assume that af’ # af for some t'at an absorbing state. Take the first such t'. At ¢’ the history
(of length h) coincides with that of t'—1 (because of A1 and since A <k+1 by assumption) and hence in an absorbing state
beliefs do as well. But then the only reason why at t’ a different action may be chosen is that the horizon of play is shorter
than before. But if this is the case it must also be the case that (i) a; ¢ BR;j(a*;) A w(af, a*;) > 7 and (ii) a’f € BRy(a* ;). Hence
average payoffs above the minmax level can be guaranteed. O

Lemma 2. Assume (h, k)>(0, 1). For any game there exists a real number n(h, k) > 0 such that action profiles which are not Nash
are pure absorbing if and only if they are locally efficient and o= [m|T] <n(h, k).

Proof. First we show sufficiency. Denote by d* = (a;,a*;)a locally efficient action profile and consider a state where T-
period interactions have the following structure: (a*, .. a ,ar,...)with A e{1, ..., k—1}. (If there is no such state that is
%/—’

T—Aperiods
absorbing, then there will also not be a state of the form (..., d*, ..., d*,...) that is absorbing since beliefs conditional on
——

T—A periods
history HO can never be ruled out to coincide with beliefs after the ‘pure’ history (a*, . . ., a*).)

We have to find beliefs that sustain this profile and are consistent with choices made under decision rule (1). We
know that u(a* |(@*, ...,a*))>1— p~1fm/T] and u(a'_;|(a*, ...,a*)) < p~'[m/T1,Va'_;  a*, since memory of size m per-
mits to draw a’_; at most [m/T] times in a sample of size p. (In states which induce pure absorbing profiles such as above
there is only one instance in each T-period interaction where a history (a*, ..., a*) of any length is followed by a profile
ar # a*. At most [m/T] such instances are remembered.) Now a sufficient condition for the profile to be pure absorbing
is that BR{[u(a*,|(@", ..., d"))] = a;,Vt < T — A, Vi whenever u(a* |(@, ...,d*))=1— p~'[m/T]. Whenever w(a_;H) is s.t.
BR![u(a_;|H)] € Ar, Vt and for every history H of the form (a*, ..., &), (@*,...,d, d"),...,(a*, ..., &, d",...), it is possible to

N——

X periods
find n(h, k) small enough such that Vo1 1m/T71<n(h, k) : BR{[M(a_”H)] =af,Vt<T—A.
The reason is the following: because of condition (2) of the definition of local efficiency, play will remain within A" in all
periods te T— A, ...T, i.e. for all histories of the form (@*, ..., @), (@*, ..., @, d"), ..., (@, ...,a,d’,...): BR{[1u(a_i|H)] € Ar.
N——

A periods
We have already seen that M(aji|(a*, ..., @*))>1 —n(h, k) is possible. Now (because of conditions (2) and (3)) there exists
anaction@_; € A_y for both i such that m;(BR(@_;), d_;) < m;(a*). Since d_; € A_y and a* is not a Nash equilibrium, this action
a_; € A_y will be reached via best responses and hence be observed after a deviation history. But this means that there exist
beliefs sustaining profile (a*, ..., a*, a,...)with A e{1,..., k—1}.
——

T—Xperiods
Next we show necessity. (i) First assume that @* is locally efficient but that the condition p~1 [m/T7 <n(h, k) is not
satisfied. Note that then (if o~! [m/T]>n(h, k)) there is posmve probability (for either i) that beliefs are drawn such that
BR;[u(a*; |(ax, ...,a*))] # ar. If this is the case then at some t agent i will not choose a; (or conversely —i will not choose

a*;)and Vt > T the memory conditional on history (a*, ..., @*) will contain at most as many elements a*; att than at t. But
then it is possible to construct a path away from the candidate absorbing profile a* by repeatedly drawing beliefs such that
BRi[u(a* (&, ..., a"))] + a.

Now we show that Non-Nash profiles have to be locally efficient starting with part (2) of the definition of local efficiency
(ii). Assume first that (2) is violated for A’. Note then that as @* is not a Nash equilibrium, some player i must have a best
response BR;(a*;) = a;7, which will be chosen in a T-period interaction for some te {T—2, ..., T} after a history (a*,...a*).
Note that any set A’ with property (2) has to contain a;’ by definition.

Now ifAr = {(af, a*,), (ay, a*,), (a}, a_y), (ay, a_y), . ..} does not satisfy (2), then there is a strictly positive probability that
at some point ¢ player i will hold a belief u; € AA;s such that BRf(,u;) = a"; ¢ AAs. (Note that this belief can be sampled even
if[c;,-]’ i1s played only in the last period of each T-period interaction, since it still counts as a reaction to the history at [T] — 1:
H (a;,a;).)

Furthermoré either the set Av = (Ayy U (a’;)) x A_yr does not satisfy (2) or a* is not efficient in A” by assumption. We show
why efficiency is necessary in step (iii). Assume hence the former and denote by A ,(M) the distributions on M which respect
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the sampling procedure p.%° Then since there exist p/, uv e A,(M;(@*, ..., @*)) such that a;/ e BRi(') and a’; € BR;(ur) it
is possible that beliefs are repeatedly drawn from M;(a*, . .., @*) such that another action a;” is played etc. Repeating this
argument it can be seen that paths can be constructed which lead away from the absorbing profile a*.

(iii) The fact that d* has to be pareto efficient in A’ follows from the following observation. Assume A’ =
{(af, a*,), (af, d'_;), (@', a* ), (@', ')}, where d'; € BRj(a* ;). We will show that a* has to be pareto efficient in A'. If it fails to
be pareto efficient in A’, it will also fail to be pareto efficient in any A” > A’. Now since the profile a* is not a Nash equilibrium,
there must exist at least one player i such that a; ¢ BR;(a*;). Thus (a}, a*;) can only be optimal for player i if she believes
that deviating at t will reduce her payoff in some periods t € {t+1, ..., t+k}. But if @* is not pareto efficient then there must
be a';, a'_; € A’ such that either (a';, a*;) or (@';, ’_;) must yield a higher payoff to both players for (a';, a'_;) # (af, a* ;). (If
this is not true for player i it must be true for player —i.) But since a’; € BR;(a*;), this means that (by Condition (1) of the
definition of local efficiency) that w_;(a’;, a*;) < w_;(a;}, a* ;). Hence (since (a}, a*;) should fail to be pareto efficient) we will
have mr(a';, ' _;)>m;(a;, a* ;)Vi. But if this is the case the best response to any belief with support on A_; will be a;’ irrespective
of k. Hence there are no beliefs supporting a* as an absorbing profile.

(iv) Finally if part (1) of the definition of local efficiency is not satisfied, then there is positive probability to diverge from a*
simply because there is positive probability that players repeatedly choose a different element from BR,F[/L(a,i (@, ...,a%)l.
If part (3) is not satisfied then irrespective of the belief about —i’s choice after deviating from a* player i has an instantaneous
best response guaranteeing (weakly) higher payoffs irrespective of the future path and hence has incentives to deviate. O

Proof of Proposition 1

Proof. Part (ii) follows directly from Lemmas 1 and 2. For part (i) the proof is as follows. Consider any state where the
NE a* is played at each t. We will first show that if C1 is satisfied such a state is absorbing. It is sufficient that beliefs sat-

isfy ju(a*|(a*, ..., a*)) = 1and that u(a_;|(@*, ..., (a;, a*,))is such thatZHk*lZa_,eAuiT(a,,-|Hf‘1(t))ni(a,-, a_;) — km(a*) < 0,

T=t
holds whenever C1 is satisfied. Finally if C1 is not satisfied, i.e. if there exists a’; such that 7i(a';, a_;)>mi(a*), V a_; € A_;, then
there is no belief for which player i would strictly prefer to choose af rather than a';. O

Proof of Proposition 2

Proof. We will show that there exists a number K € N and a probability p >0 such that from any s € S the probability is at
least p to converge within K periods to a pure absorbing set. K and p are time independent and state independent. Hence the
probability of not reaching a pure absorbing set after at least rK periods is at most (1 — p)” which tends to zero as r— oo.

(i) Let st=(M", H') be the state in period t > m. Denote by a* the profile chosen at t. If H'*1 = H! = (a*, .. ., a*) then we can
go to step (ii) of the proof (setting t=t”, which will be defined in step (ii)). Assume H*1 « Ht. Then, since the set of all
possible histories A is finite, 37 >t such that H” = H” for some 7 € [t, 7/ — 1]. But then there is positive probability that
H7*1=H™1 etc,, i.e., there is positive probability to return to history H? any finite number of times. At history H, there
is positive probability, that each agent i samples the last p plays in her memory associated with that history M;(H®). This
is always possible, since each element M;(H) of an agent’s memory contains m instances where this history occurred.
Denote this sample by &. There is also positive probability that the next p times that the history is H* the agent samples
& again and chooses the same best response.

(ii) Order the histories according to t as follows: H?, H™*!, ..., H"~1. Now assume there exists H*” € [H?, H"~!] where
H™ =: ((a@*, ..., a*)) is part of an absorbing set. Then there is positive probability to sample only the last p periods for
the next m — p periods thereby creating a homogeneous memory M(H*") = (a*,, ..., a*,). This is possible whenever

m > p, which is true by definition. Since a} € BR(a*;) an absorbing set has been reached.

(iii) Assume now instead that there does not exist H”” e [H?, H”~1] with this property. Now for any 7’ €[t, T/ — 1] there is
positive probability that each agent samples the last p periods where the history was H'”, i.e., takes a homogeneous
sample (q, ... a). The best response to(q, . . . a) for each agent lies on a directed path leading to an absorbing set since the
game is acyclic. Again now 37"’ > 7 such that H” = H™" for some 7V € [t”, 7"/ — 1], since the set of all histories is finite.
But then again there is positive probability that all agents take the same sample and choose the same best response
to this sample in the next p periods VH™" ...H"”~1, If there is a history in H™", ..., H”"~1 that is part of an absorbing
set, then jump to (ii). Else repeat step (iii). Note next that since the game is acyclic a directed path from any (q, ...a)
to a history (a*, ..., a*) which is part of a pure absorbing set exists. Using the algorithm above, there is thus a positive
probability ps to reach any history on that path and eventually a history which is part of an absorbing set. This is possible
whenever m > p, which is true by definition.

To sum up, we have shown that from any state s there is positive probability ps to converge to a pure absorbing set. By
setting p = misnpS > 0 it follows that from any initial state the process converges with at least probability p to an absorbing
Se

set in K periods. O

20 Forexampleif M =(A, A, B)and p =2, the degenerate distribution placing probability one on B does not respect the sampling procedure, while distributions
placing probability (1/2) on both A and B or probability 1 on A do.
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Proof of absorbing sets Prisoner’s Dilemma:

Proof. That the set X is absorbing follows directly from Proposition 1. The proof that X¢ induces pure absorbing profiles
(under the conditions mentioned) follows from Lemma 2. It remains to show that the upper bound on p~1[ m/T] is given by
((ox — y)/er). The most restrictive conditions (for the efficient profile to be absorbing) are encountered in the case (k, h)=(2,
1) where ©(C|(D, C))=0. In this case the condition is that both players have to find it advantageous to choose C after a history
of aq, i.e. that

V(u(@r). ©) > V(u(@r). D) & u(Clan) > X.

But then since M(s) contains at most [m/T] choices of D and since p coordinates from M(s) are randomly drawn to form
this belief, the inequality p~! [m/T7<1 - (y/a)=((« — y)/a) follows. Also note that there can be no other absorbing states
not contained in either X¢ or Xp, since every absorbing state involving some cooperation must be in X¢. Condition (ii) of the
definition of X is implied by the property of non-increasing cooperation (see the proof of Proposition 3 below). If condition
(i) fails, then beliefs may be drawn (placing “too high” probability on the opponent choosing D after a cooperative history)
which lead to convergenve to Xp. O

Proof of Proposition 3

Proof. Assume that at period t (such thatt—1[ # OmodT,VI=1,..., h) beliefs of agent i are such that she finds it optimal to
choose cooperation (C). If VT=t+1,...,t+k—1:7 # O0modT, then the maximization problem at t+1 is identical to that at t.
But then (since we are in a pure absorbing state) the same action has to be chosen at t and t+ 1. If not, then at t+ 1 the agent
will have strictly “less foresight” than at t. But then defection (D) will seem relatively better to cooperation (D) at t compared
to the situation at t where the agent looks k periods forward. The reason is that choosing defection must always reduce the
probability with which the opponent is expected to cooperate in the future. (If this were not the case both agents would
defect at all t+1.) Hence if the agent cooperates at t+ 1 she will cooperate as well at t (if t —[ # OmodT, VI=1,...,h).O

s-trees

For most of the following proofs we will rely on the graph-theoretic techniques developed by Freidlin and Wentzell
(1984).2! They can be summarized as follows. For any state s an s-tree is a directed network on the set of absorbing states €2,
whose root is s and such that there is a unique directed path joining any other s’c €2 to s. For each arrow s’ — s in any given
s-tree the “cost” of the arrow is defined as the minimum number of simultaneous trembles (€ — perturbations) necessary to
reach s” from s’. The cost of the tree is obtained by adding up the costs of all its arrows and the stochastic potential of a state
s is defined as the minimum cost across all s-trees.

Proof of Proposition 4

Proof. (i) Consider first transitions from Xp — Xc. Denote by k1) the minimal number of mistakes necessary in order
for one pair of players in a T-period interaction to start choosing cooperation in T— A consecutive periods for some A € {0,
...k—1}. Note that «1)> 1 will hold for any s € Xp, since otherwise s could not have been absorbing in the first place. (The
reason is that if one player can induce the opponent to cooperate by switching once unilaterally, she will have incentives to
do so).

Next we will show that 2 trembles («x1)=2) are sufficient. Assume that in the first period of a T-period interaction
characterized by joint cooperation (denote this period by t) player 1 trembles such that a‘ = (C, D) and that then at t + 1 player
2 trembles such that a‘t! = (D, C). Consider choices at t +2. Player 1 will choose Cif 141(C|(C, D)) > (y/(ct +2(B — ¥))) =: 1
(where u1(C|(C, D)) is player 1’s belief that player 2 will cooperate after a history Ho1 =(C, D) where player 2 defected and
player 1 cooperated). The sufficient threshold fi; is derived as follows. First note that the least favorable case for such a
transition is the case with (h, k)=(1, 2). Then we observe that

V(u(-). (C. D)) = p1(CI(C, DY)ex + ((CIC)B + (1 — u(CIC))y

+(1 = u(CI(C, DY)[p1(CI(C, D)B+ (1 — p(CI(C, D))y] and] (4)
V(u(-), (D, D)) = p11(CI(C, D)[B+ m(CI(D, C)B + (1 — 1 (CI(D, C)))y ]

+(1 = w1 (CI(C, DY)y + m(CID)B + (1 — 1 (CID))y .

We want to find conditions on p(C|(C, D)) such that V(u(-), (C, D))>V(u(-), (D, D)) for all candidate states s € Xp. Clearly
/L(C|D) = 0 is determined “on the outcome path”. By setting u(C|(D, C))=0, ,u(C|E) to either {0, 1} and taking the maximum
of the two critical values obtained this way we will get the threshold ft1 from above. (w(C|(D, C))=0is the worst case for such a
transition. (Remember that we are looking for a sufficient condition.) Now note that since player 2 cooperated at t+1 following
the history H,1 =(C, D) we know that u§+2(C|(C, D))>(1/p). The same is true for player 2 at t+3, i.e. ,LL§+3(C|(C, D))>(1/p).
Hence if (1/p) > (v/(a+2(B — v))), then both players will start to cooperate in this T-period interaction.

21 See also Young (1993, 1998).
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Finally note that after two agents have been “infected” (through «c)=2 trembles as described above) the whole
population can be infected. Note first that the “infected” players have beliefs ((C/H®) > (1/p). Furthermore their beliefs
,LL(C|6)2 min{((T — X — 1)/p), 1}, since they both cooperated for at least T— A consecutive periods in their previous interac-
tion. Hence they will have incentives to cooperate after the null history. If the “non-infected” player trembles and chooses C
after the null history (say at t') then at t' + 1 we will either observe @’ +! = (C, C), in which case the new agent will be infected
or we will observe d'+! = (C, D), in which case the “non-infected” agent can be infected as described above. Hence at most
one tremble per player is needed for this transition.

(ii) Let us then turn to the reverse transitions Xc — Xp. Again we are interested first in the minimal number of mistakes kp1)
needed for a pair of players to start choosing defection at each t. But while above we were looking for a sufficient condition,
we are now interested in a necessary condition for this transition to be possible. First assume that two players simultaneously
make a mistake and choose (D, D) at some time t. Then it can be shown by comparing the analogous expressions to (4) that
a necessary condition for either player to choose D (D) also at t+1 is that 2 > 8. Secondly assume that player 1 makes two
mistakes and chooses D at t and t+1.22 Now we want to identify a sufficient condition for a transition not to be possible, so
we consider the most favorable case for such a transition which is again (h, k)=(1, 2).

Next we consider both player’s decisions at t+2. We will show that a necessary condition for player 2 to choose D at t+2
is that u(C|(D, C)) > ﬁ To see this compare

V(. (C, D)) = u(CI(D, O)lex + p(CIC)B + (1 — u(CIC))y]
+(1 = pu(CID, ONI(CID, €))B + (1 - u(CI(D, C)))yland
V(w, (D, D)) = u(CI(D, ONIB + u(CI(C, DB + (1 — u(CI(C, D))y

+(1 = (CI(D, ON(CID)B + (1 — u(CID))y].

Then it can be seen that a necessary condition for a transition to be possible from any state in X is that ME+Z(C|(D, ) >
(y/(B - y)). Now there is some state in Xc where player 2 has only one observation C in the memory conditional on (D, C).
But then since Since p periods are drawn from the memory to form this belief we need ((p—1)/p)>((8-2y)/(B—y) for a
transition not to be possible from any state in X¢. By analyzing the analogous expressions for player 1 it can be shown that
player 1 has no incentives to start choosing D at t+2. Hence under condition ((o — 1)/p) <(y)/(8 — y) at least three trembles
are needed to “infect” one pair of agents. .

But note that for the two infected agents beliefs are still ©(C|H®)> ((0 —1)/p) and u(C|C)=((p — 1)/p). But this means
that “infected” agents will choose C again after the null history. (If this were not true then s could not have been absorbing
in the first place). Hence at least three trembles per player are needed to induce this transition (under the conditions above).

(iii) Combining the conditions found in (i) ad (ii) we first note that ((p—1)/0)>((B-=2V)(B-Y))=2y<B.
Furthermore we have that ((8-2y)/(B—y))<((@+2B8-3y)/(e¢+2(B—y)). Hence a sufficient condition thus is
((p=1)p=((x+2B—3y)[(a+2(B—y)), which is the condition from Proposition 3.

(iv) To finish the proof take any state s € Xp and consider a minimal s-tree. Assume first that there exists a state s’ € X¢ such
that the transition from s’ to s requiring the least amount of trembles is direct (i.e., does not pass through another absorbing
state). Under our conditions the transition s'— s requires more trembles than s — s’. But then we can simply redirect the
arrow s'— s thereby creating an s’ tree with smaller stochastic potential. If the shortest transition s’ — s is indirect (passing
through other states in X¢) do the following. Take the arrow s” — s leading to s and reverse it. Since s” — s has a cost of at
least two under our conditions we have created an s”-tree with potential ¥/(s”) < ¥(s). If strict inequality holds the proof is
complete. Assume thus ¥ (s"")=y(s). Then consider the arrow s”” — s'” and reverse it etc Now at some point there must exist
a state s" on the path s’ — s”” such that reversing this link saves one “tremble” per player. Else the s-tree could not have been
minimal in the first place. Reversing this link will yield an s tree with ¥(s"V)<(s”) < ¥(s). O

Proof of Proposition 5:

Proof. The proof follows from the proof of Proposition 3. Since now the efficient outcome (C, C) is also a Nash equilibrium
of the one-shot game, condition (2) is not needed for the result. O

Proof of Proposition 6

Proof. Assume that ©(C|(C, C))=5/6 and u(C|(D, D))=0 (determined on the “outcome” path) and denote “off-path” beliefs
W(C|(D, C))=:x and u(C|(C, D))=:y. By Proposition 3, if an agent finds it optimal to cooperate in period 6, she will find it
optimal to cooperate in period 2, .. ., 5. Also if an agent finds it optimal to defect in period 7, she will find it optimal to do so
in periods 8, ..., 10. We show next that under the conditions of the Proposition all agents will find it optimal to cooperate
in period 6 and to defect in period 7. Denote the vectors (C, D, D, D, D) =: d(C) and (D, D, D, D, D) =: a(D). (Note that only

22 No other constellation of two trembles can induce the transition. If first player 1 trembles and then player 2, the probability that both players attach
to the event that the opponent defects after a history where they themselves defected and the opponent cooperated will increase, making it even more
attractive for them to cooperate.
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the first choice is realized. The remaining choices determine the continuation payoff. Since we assume that defection will
be optimal from period 7 on we know the continuation path must be all D in both cases.) To show the first claim, it is
then sufficient to verify that V(ut(C|C), a(C)) ~ 27.72 (where we have set y=0 as worst case) exceeds V(u{(C|C), a(D)) =
133+ (5/6)122;1:1)(]' +16(1 — x)(5/6). To show the second claim (that defection is optimal in period 7) it is sufficient to

establish that V(uit(C|C), G(C)) ~ 25.82 is smaller than V(ui(C|C), (D)) = 13.3 + (5/6)122j:1xf +12(1 - x)(5/6)>26.13
where a(C) :=(C, C, C,D) and a(D) := (D, D, D, D). Both inequalities are satisfied whenever x € [0, 0.49]. Whenever m <13
beliefs will always lie in the relevant intervals. We still need to show that agents cooperate in period 1, since this case is
not covered by Proposition 3. Note that in any state where agents cooperate in period 2, .. ., 6 the memory after history (D,
D) must contain sufficiently many D entries to deter defection in periods 2, ..., 6. But if this is true, then agents will have
incentives to cooperate at t=1 as well. We have now shown that all absorbing states that involve any cooperation at all are
characterized by 6 periods of mutual cooperation followed by 4 periods of mutual defection. But then if p>6and m <13 we
know from Proposition 2 that all stochastically stable states must involve some cooperation. Hence the stochastically stable
states must be of the form above. O

Proof of Proposition 7:

Proof. Assume that u(C|(C, C))=7/8, u(C|H®)=1 and u(C|(D, D))=0 and denote off-equilibrium beliefs x£(C|(D, C))=:x and
1(CI(C, D))=y. In analogy to the proof of Proposition 6, we will show that under the conditions of the Proposition all agents
will find it optimal to cooperate in period 8 and to defect in period 9. For this we verify that V(/L”(QC), (C,D,D))~2213 +
7x exceeds V(u't(C|C), (D, D, D)) ~ 19 + 7x + (21/2)x% which requires x<0.54 and that V(ui(C|C), (C, D)) ~ (65/4) +y is
smaller than V(M“(C\&), (D, D)) ~ 16 + 7x. Note that y will be at least (1/2) since a tit-for-tat player will always respond with
cooperation to (C, D). But then Vx> 0.1 the latter inequality is satisfied. But then whenever m < 19 beliefs will always lie in
the relevant intervals. O

Proof of Proposition 8:

Proof. First note that absorbing states with full defection exist for all 0. Obviously in these states all agents will have the
same average payoffs. Note also that myopic types will always choose defection since it is a dominant strategy in the one-
shot game. Hence whenever o > ((3c — 8 —3y)/(3x — B8)) or whenever 3« — <0, all absorbing states will be characterized
by full defection. If o <((3a — B —3y)/(3a — B) forward-looking types k, will find it always optimal to cooperate after the
null history (given all beliefs 1(C|H?, k3) = 1; u(C|C, k3)=(2/3); w(C|HO, k1) = u(C|C, k1) = 0). But then given that k; types
cooperate in the first threeand defect in the fourth period, k; types will make higher expected payoffs whenever

I1¢(ky)=11¢(ky) &

oy+(1-0)B+3y>(1-0)[3a+y]+03y &
B3 — -2y

7Z3q-p-y "

Proof of Proposition 9:

Proof. Note that whenever o >0 there is always positive probability that some k; agents are matched with only k; agents
for at least m periods. Consequently their (unconditional) beliefs will converge to p(C/H%)=0 (or at least will fall below the
cooperation threshold) and they will start choosing defection at all initial s. There is then again positive probability that such
“infected” agents will be matched amongst each other (thereby continuing to defect) and that the k; types will be matched
with the remaining k, types. Hence from any state there is positive probability to reach a state where all agents defect. O

References

Andreoni, J., 1988. Why free ride? Strategies and learning in public goods experiments. J. Public Econ. 37 (3), 291-304.

Andreoni, J., Miller, J., 1993. Rational cooperation in the finitely repeated Prisoner’s dilemma: experimental evidence. Econ. ]. 103, 570-585.

Bac, M., 1996. Corruption, supervision and the structure of hierarchies. ]. Law Econ. Org. 12, 277-298.

Basu, K., Weibull, J., 1991. Strategy subsets closed under rational behavior. Econ. Lett. 36, 141-146.

Binmore, K., Mc Carthy, J., Ponti, G., Samuelson, L., Shaked, A., 2001. A backward induction experiment. ]. Econ. Theory 104 (1), 48-88.

Blume, L., 2004. Evolutionary Equilibrium with Forward-looking Players, Working Paper. Santa Fe Institute.

Burlando, R., Hey, J., 1997. Do Anglo-Saxons free-ride more? J. Public Econ. 64, 41-60.

Ehrblatt, W.Z,, Hyndman, K., Oezbay, E., Schotter, A., 2010. Convergence: an experimental study of teaching and learning in repeated games. J. Eur. Econ.
Assoc. 10 (3), 573-604.

Freidlin, M.L, Wentzell, A.D., 1984. Random Perturbations of Dynamical Systems. Springer-Verlag, New York.

Fudenberg, D., Levine, D., 1989. Reputation and equilibrium selection in games with a patient player. Econometrica 57, 759-778.

Fudenberg, D., Levine, D., 1993. Self-confirming equilibrium. Econometrica 61 (3), 523-545.

Fudenberg, D., Levine, D., 1998. The Theory of Learning in Games. MIT-Press, Cambridge.

Fudenberg, D., Kreps, D.M., 1995. Learning in extensive form games. I. Self confirming equilibria. Games Econ. Behav. 8, 20-55.

Fujiwara-Greve, T., Krabbe-Nielsen, C., 1999. Learning to Coordinate by Forward Looking Players. Riv. Int. Sci. Soc. CXIII (3), 413-437.

Ghosh, S., Ray, D., 1996. Cooperation in community interaction without information flows. Rev. Econ. Stud. 63, 491-519.

Gueth, W., Schmittberger, R., Schwarze, B., 1982. An experimental analysis of ultimatum bargaining. J. Econ. Behav. Org. 3 (4), 367-388.

Heller, Y., 2014. Three steps ahead. Theor. Econ., forthcoming.

Jehiel, P., 1995. Limited horizon forecast in repeated alternate games. J. Econ. Theory 67, 497-519.

Jehiel, P., 1998. Learning to play limited forecast equilibria. Games Econ. Behav. 22, 274-298.

Please cite this article in press as: Mengel, F., Learning by (limited) forward looking players. ]. Econ. Behav. Organ. (2014),
http://dx.doi.org/10.1016/j.jebo.2014.08.001



dx.doi.org/10.1016/j.jebo.2014.08.001
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0005
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0005
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0005
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0005
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0005
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0005
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0005
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0005
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0005
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0005
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0005
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0005
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0005
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0005
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0005
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0005
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0005
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0005
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0010
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0010
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0010
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0010
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0010
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0010
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0010
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0010
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0010
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0010
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0010
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0010
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0010
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0010
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0010
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0010
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0015
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0015
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0015
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0015
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0015
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0015
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0015
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0015
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0015
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0015
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0015
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0015
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0015
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0015
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0015
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0020
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0020
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0020
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0020
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0020
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0020
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0020
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0020
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0020
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0020
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0020
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0020
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0025
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0025
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0025
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0025
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0025
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0025
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0025
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0025
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0025
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0025
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0025
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0025
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0030
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0030
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0030
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0030
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0030
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0030
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0030
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0030
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0030
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0030
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0035
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0035
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0035
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0035
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0035
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0035
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0035
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0035
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0035
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0035
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0035
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0045
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0045
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0045
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0045
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0045
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0045
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0045
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0045
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0045
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0045
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0045
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0045
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0045
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0045
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0045
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0045
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0045
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0045
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0045
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0045
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0050
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0050
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0050
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0050
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0050
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0050
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0050
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0050
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0055
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0055
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0055
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0055
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0055
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0055
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0055
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0055
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0055
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0055
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0055
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0055
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0055
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0055
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0055
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0060
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0060
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0060
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0060
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0060
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0060
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0060
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0060
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0065
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0065
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0065
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0065
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0065
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0065
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0065
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0065
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0070
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0070
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0070
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0070
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0070
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0070
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0070
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0070
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0070
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0070
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0070
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0070
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0070
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0070
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0070
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0070
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0075
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0075
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0075
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0075
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0075
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0075
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0075
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0075
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0075
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0075
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0075
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0075
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0075
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0075
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0075
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0075
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0080
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0080
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0080
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0080
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0080
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0080
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0080
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0080
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0080
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0080
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0080
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0080
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0080
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0080
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0085
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0085
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0085
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0085
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0085
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0085
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0085
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0085
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0085
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0085
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0085
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0085
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0085
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0085
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0085
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0090
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0090
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0090
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0090
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0090
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0090
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0095
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0095
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0095
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0095
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0095
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0095
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0095
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0095
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0095
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0095
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0095
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0095
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0095
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0095
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0100
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0100
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0100
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0100
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0100
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0100
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0100
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0100
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0100
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0100
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0100
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0100
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0100

G Model
JEBO-3406; No.of Pages19

F. Mengel / Journal of Economic Behavior & Organization xxx (2014) xxx—-xxx 19

Jehiel, P., 2001. Limited foresight may force cooperation. Rev. Econ. Stud. 68, 369-391.

Karlin, S., Taylor, H.M., 1975. A First Course in Stochastic Processes. Academic Press, San Diego.

Kandori, M., Mailath, G., Rob, S., 1993. Learning, mutation, and long run equilibria in games. Econometrica 61, 29-56.

Karandikar, R., Mookherjee, D., Ray, D., Vega-Redondo, F., 1998. Evolving aspirations and cooperation. J. Econ. Theory 80, 292-331.

Kreps, D., Milgrom, P., Roberts, J., Wilson, R., 1982. Rational cooperation in the finitely repeated Prisoner’s dilemma. J. Econ. Theory 27 (2), 245-252.
Levine, D., Pesendorfer, W., 2007. The evolution of cooperation through imitation. Games Econ. Behav. 58, 293-315.

Mengel, F., 2007. The evolution of function-valued traits for conditional cooperation. J. Theor. Biol. 245, 564-575.

Mengel, F., 2008. Matching structure and the cultural transmission of social norms. J. Econ. Behav. Org. 67, 608-623.

Myerson, R.B., Pollock, G.B., Swinkels, .M., 1991. Viscous population equilibria. Games Econ. Behav. 3, 101-109.

Selten, R., Stoecker, 1986. End behaviour in sequences of finite Prisoner’s dilemma supergames: a learning theory approach. J. Econ. Behav. Org. 7, 47-70.
Selten, R., 1991. Anticipatory learning in two-person games. In: Selten, R. (Ed.), Game Equilibrium Models I. Springer-Verlag, Berlin, pp. 98-154.
Ule, A., 2005. Exclusion and Cooperation in Networks (Ph.D. thesis). Tinbergen Institute.

Watson, J., 1993. A reputation refinement without equilibrium. Econometrica 61, 199-205.

Young, P., 1993. The evolution of conventions. Econometrica 61 (1), 57-84.

Young, P., 1998. Individual Strategy and Social Structure. Princeton University Press, Princeton, New Jersey.

Please cite this article in press as: Mengel, F., Learning by (limited) forward looking players. J. Econ. Behav. Organ. (2014),
http://dx.doi.org/10.1016/j.jebo.2014.08.001



dx.doi.org/10.1016/j.jebo.2014.08.001
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0105
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0105
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0105
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0105
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0105
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0105
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0105
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0105
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0105
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0105
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0105
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0105
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0110
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0110
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0110
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0110
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0110
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0110
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0110
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0110
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0110
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0110
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0115
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0115
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0115
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0115
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0115
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0115
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0115
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0115
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0115
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0115
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0115
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0115
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0115
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0120
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0120
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0120
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0120
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0120
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0120
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0120
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0120
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0120
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0120
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0120
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0125
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0125
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0125
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0125
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0125
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0125
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0125
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0125
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0125
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0125
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0125
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0125
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0125
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0125
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0125
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0125
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0130
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0130
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0130
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0130
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0130
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0130
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0130
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0130
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0130
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0130
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0130
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0130
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0130
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0135
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0135
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0135
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0135
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0135
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0135
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0135
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0135
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0135
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0135
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0135
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0135
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0135
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0135
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0135
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0140
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0140
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0140
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0140
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0140
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0140
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0140
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0140
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0140
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0140
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0140
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0140
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0140
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0140
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0140
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0140
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0140
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0145
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0145
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0145
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0145
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0145
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0145
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0145
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0145
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0145
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0145
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0150
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0150
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0150
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0150
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0150
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0150
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0150
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0150
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0150
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0150
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0150
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0150
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0150
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0150
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0150
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0150
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0150
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0150
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0150
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0150
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0150
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0155
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0155
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0155
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0155
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0155
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0155
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0155
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0155
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0155
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0155
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0155
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0155
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0155
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0155
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0155
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0155
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0155
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0155
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0155
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0160
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0160
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0160
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0160
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0160
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0160
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0160
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0160
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0160
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0165
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0165
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0165
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0165
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0165
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0165
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0165
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0165
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0165
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0165
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0170
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0170
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0170
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0170
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0170
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0170
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0170
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0170
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0170
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0170
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0175
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0175
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0175
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0175
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0175
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0175
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0175
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0175
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0175
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0175
http://refhub.elsevier.com/S0167-2681(14)00215-7/sbref0175

	Learning by (limited) forward looking players
	1 Introduction
	2 The model
	2.1 Basic definitions
	2.2 Histories
	2.3 Learning, memory, beliefs
	2.4 Choices
	2.5 Discussion
	2.6 Techniques

	3 Results
	3.1 Young's theorem (1993)
	3.2 Absorbing sets
	3.3 Stochastically stable states
	3.3.1 Prisoner's Dilemma
	3.3.2 Coordination games

	3.4 Application to experimental results

	4 Heterogeneous agents
	4.1 Conditional beliefs
	4.2 Unconditional beliefs

	5 Conclusions
	Appendix A The transition matrix
	Appendix B Proofs
	References


