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Abstract

We develop a model where workers, anticipating the risk of becoming unemployed, invest in con-

nections in order to access information about available jobs that other workers may have. The

investment in connections is high when the job separation rate in the labor market is moderate,

whereas it is low for either low or high levels of job separation rate. The equilibrium response of

network investment to changes in the labor market conditions generates novel empirical predic-

tions. In particular, the probability that a worker finds a new job via his connections increases in

the separation rate when the separation rate is low, while it decreases when the separation rate

is high. These predictions are supported by the empirical patterns that we document for the UK

labor market.
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1. Introduction

It is well established that job contact networks play a prominent role in matching workers with

vacant jobs. Empirical work, starting with Rees (1966) and Granovetter (1973), shows that between

30 percent and 50 percent of jobs are filled through the use of social networks. The findings of

Granovetter (1973) and Rees (1966) have been generalized across countries, industrial sectors and

demographic characteristics, see for example, Blau and Robins (1990), Topa (2001), Munshi (2003),

Loury (2006), Bayer, et al. (2008), Cappellari and Tatsiramos (2010), and Cingano and Rosolia

(2012).2 The evidence that many workers become aware of available jobs through word-of-mouth

has led to a number of theoretical studies, which explore the importance of social networks for

labor market outcomes. For example, Boorman (1975), Mortensen and Vishwanath (1994), Arrow

and Borzekowski (2004), Calvó-Armengol (2004), Calvó-Armengol and Jackson (2004, 2007), Calvó-

Armengol and Zenou (2005), Fontaine (2007), and Cahuc and Fontaine (2009).

Most of this work assumes that the intensity of information flow in the network is exogenous,

an assumption that prevents the study of how incentives in networking relate to different labor

market conditions. As the process of forming connections and keeping them active requires time and

effort, it is natural to posit that the resources that an individual spends in searching via his network

are, at least in part, the result of cost and benefit analysis. This paper investigates, theoretically

and empirically, the nature of the feedback between labor market conditions and the role of social

networks in matching vacancies with job seekers.

Our first contribution is to develop a simple model of the decision of workers to invest in network

contacts for job finding. Workers invest in connections with the view of accessing information about

new jobs that other workers may have. A particular role played by connections is that they partially

insure workers against the risk of unemployment, which is higher when the job separation rate is

higher. Hence, individuals’ incentives to invest in the network depend on the labor market conditions.

This interplay generates a set of novel comparative statics results, which we now illustrate.

2See Ioannides and Loury (2004) for an exhaustive survey on social networks and labor market.
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When the job separation rate is low, a worker does not invest much in the network because the

risk of unemployment is low. When the job separation rate is high, workers will not invest much

in connections because they anticipate that workers with whom they interact are either most likely

looking for a job as well or are in contact with many workers who need their referral. So, workers’

investment in searching via the network is pronounced when there is a moderate separation rate in the

labor market. The main result of the paper is to show that this inverted U -shape relation between

job separation rate and network investment determines an inverted U -shape relation between job

separation rate and the probability of a worker to find a job via his social contacts, which we term

network matching rate.

The non-monotonic relation between job separation rate and network matching rate is novel

and important. It is not consistent with the predictions of existing work, which assumes that the

intensity with which individuals look for jobs through their networks is exogenous. Furthermore,

such equilibrium relation has the implication that, in times of turbulence, individuals who rely on

social connections more than average, such as unskilled workers, young job seekers, ethnic minorities

and immigrants, will be more adversely affected by negative shocks.

We have derived these predictions in a static labor market model with exogenous vacancy rate. In

our theoretical analysis, we extend the model to a dynamic setting. The network is formed initially

and then the dynamics of a labor market with free entry of firms à la Pissarides (2000) unravels.

After deriving formally the conditions for equilibrium, we provide a numerical exercise that confirms

the robustness of the mechanisms underlying our basic model.

Our second contribution is to document how network investment and network matching rate

respond to changes in the probability of entering into unemployment. We study the labor market

outcomes of workers using the UK Quarterly Labour Force Survey (QLFS) over the period from

1994 to 2005. In this survey, respondents looking for a job were asked about their main job search

method. This information allows us to determine the proportion of job seekers, in a given region,

that reported to use friends, relatives and colleagues as a main job search method in each period.

This is our proxy for network investment. Furthermore, in the survey, respondents who found a job

in the three months previous to the interview were asked how they found their current position. This
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information allows us to construct the proportion of workers that, in each region, reported to have

found their new job by “hearing from someone who worked there”. This is our proxy for network

matching rate.

Using the information in the survey on respondents’ region of residence, we investigate regional

differences in network investment in job search and in the network matching rate. We first calculate

our proxies of network investment and network matching rate at a yearly frequency. We then regress

each of these variables against the yearly averages of the job separation rate, also constructed at the

regional level. In line with our theoretical predictions, we find that the effect of the job separation

rate on network investment, and on network matching rate, is positive and concave. Nonetheless,

when labor market conditions deteriorate, the relationship becomes negative.

These empirical findings are robust to the inclusion of time dummies and to longer time spans of

aggregation of the data (five-year average). This assures us that the relationship between network

investment and network matching rate with job separation rate are not driven by time trends in

the data. The findings are also robust to a further disaggregation of the data based on workers’

educational attainment, a proxy for workers’ skills. The results of this last exercise show that, in line

with our model, a worsening of labor market conditions may reduce the effectiveness of networks in

job search for low skilled workers, who are the ones relying more on networks in the first place. In

this sense, low skilled workers become even more vulnerable in downturns.

Our paper contributes to the literature of network referrals in labor markets. Most of the litera-

ture on labor market and social networks assumes that the use of job contact networks is exogenous

to labor market conditions. Notable exceptions are Boorman (1975) and Calvó-Armengol (2004).3

Boorman (1975) is the first to provide a model that integrates social networks with labor markets

and his focus is on workers’ incentives to form weak versus strong ties. Calvó-Armengol (2004)

provides a characterization of stable job contact networks in a two-sided link formation model of the

type introduced by Jackson and Wolinsky (1996). Our model is complementary to this earlier work.

3The theory of network formation is a recent but very active field of study. For a survey of this research, see Goyal

(2007) and Jackson (2008). Complex random networks have also received large attention in economics, for example,

Cabrales, Calvó-Armengol and Zenou (2011) and Galeotti, et al. (2010); for a survey see Vega-Redondo (2007).
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While we do not focus on the specific details of the architecture of equilibrium job contact networks,

we explore how labor market conditions affect the use of social networks and their effectiveness in

matching job seekers to vacancies. To the best of our knowledge, our paper is the first to analyze

these questions systematically.

Montgomery (1991) and, more recently, Galenianos (2012), study another role of job contact

networks: to transmit information about the quality of workers. We abstract from the effects that

connections may have in alleviating asymmetric information between firms and workers, and focus

on the role of connections in spreading information about job opportunities. More importantly, in

our model, the use of social networks is endogenous, an ingredient that gives rise to new implications

and empirical predictions.

Our work also relates to the labor market literature with endogenous search effort pioneered by

Diamond (1982). For recent surveys, see Mortensen and Pissarides (1999) and Pissarides (2000).

From this literature we borrow the idea that search units are chosen optimally to maximize the net

returns from search, and we apply it to the formation of job contact networks. We then derive a

micro-founded matching function where the number of matchings between workers and vacancies

depends on the average connectivity of the endogenous job contact network.

2. Model

We develop a simple model of the decision of workers to invest in network contacts for job finding.

In the model, the benefit to a worker of forming connections is the increase in the probability to

find a job when needed; the cost is the effort invested in building and maintaining such connections.

Since the necessity of a worker to rely on his connections to find an occupation depends on market

conditions, the equilibrium outcome provides predictions on how labor market conditions affect the

formation of the job contact network and, consequently, the network matching rate.

The basic model is static and wage and vacancy rate are both exogenous. Due to the simplicity

of this model, our analytical results, presented in Section 3, cleanly highlight how a change in some

fundamentals of the labor market affects the incentives of workers to invest in larger or smaller
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networks, and the resulting network matching rate. At the end of Section 3, we shall consider a

dynamic version of our model, where the network is formed initially and then a standard labor

market dynamics unravels. We derive the equilibrium condition of network investment in this steady

state model where vacancy rate is endogenous. We then provide numerical evidence that the basic

mechanisms derived in the static model are robust.

The model has three building blocks: labor market turnover, information diffusion within the

network, and formation of job contact networks. There is a large set of risk neutral workers N =

{1, ..., n}. Initially all workers are employed and earn an exogenous wage that, without loss of

generality, is normalized to 1.

Labor Market Turnover. Two exogenous parameters govern the labor market turnover.

Job loss. A randomly selected sample of size B = δn > 1 of workers become unemployed, where

δ ∈ (0, 1) ∩Q is the job separation rate. We denote by B ⊂ N the set of workers who lose their job

and we call them job seekers.

Job opening. A number V = an of new vacancies opens in the market, where a ∈ (0, 1]∩Q is the

vacancy rate. These vacant jobs are distributed to workers in the following way: δV vacancies reach

a randomly selected sample of job seekers, and the remaining vacancies reach a randomly selected

sample of workers who did not lose their job. Let A ⊂ N be the set of workers who receive a direct

job offer.

Under this protocol, nobody receives more than one direct job offer. The set U = B ∩ {N \A} is

the set of workers who have lost their job and did not receive a direct offer; note that |U| = δ(1−a)n.

The set O = A ∩ {N \ B} contains workers who have not lost their job and received a direct offer.

We say that a worker i ∈ O has a needless offer and we note that there are |O| = a(1− δ)n needless

offers.

Ex-ante, a representative worker anticipates that with probability δ(1−a) he will be unemployed

and without a new offer. In that case, he earns an unemployment benefit which, without loss of

generality, is normalized to 0. In order to insure themselves against this risk, workers invest in social

connections with the view of accessing needless offers.

Job Contact Network. We specify the network formation game below. For the moment, let
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us assume that workers are located in an undirected network g. A link between workers i and j is

denoted by gij = 1, while gij = 0 means that i and j are not linked. The set of all possible undirected

networks is G. With some abuse of notation, we denote the set of i’s neighbors belonging to V ⊂ N

in network g as Ni(V) = {j ∈ V \ {i} : gij = 1}; ηi(V) = |Ni(V)| is the number of links that i has

with workers belonging to V.

Job transmission in the network. We assume that information about jobs flows only from workers

with a needless offer to job seekers.4 Formally, each i ∈ O passes the information to one and only

one j ∈ Ni(B), chosen at random. If i is not linked to any job seeker, i.e., Ni(B) is the empty set,

the offer is lost.5

Formation of job contact networks. The protocol of network formation follows Cabrales, et al.

(2011). We consider the following simultaneous network formation game. Each worker i chooses a

costly network investment si ≥ 0; the marginal cost of a unit of investment is constant and equal

to c.6 The set of pure strategies available to worker i is Si = R+. A pure strategy profile is

s = (s1, ..., sn) ∈ S = Rn+, and s−i indicates the strategies of all workers other than worker i. We

denote by y(s) =
∑

i∈N si the aggregate workers’ network investment. For a profile s, we assume

4We are assuming that information only flows one-step in the network. As it is shown in Appendix A.2, this

assumption is not important for our results.

5We are assuming that a worker passes a needless offer to one of his social contacts, chosen at random. The

implication of this assumption is that two job seekers, both connected to a worker with a needless offer, “compete” for

such offer. If a worker with a needless offer is allowed to give it to both job seekers, then they will have an identical offer

and therefore competition for the job will still be present in the hiring process (given that one job offer corresponds to

one vacancy).

6All the results we present can be derived with arbitrary cost functions C(s) that are increasing and convex in s.

6



that a link between an arbitrary pair of workers i and j forms with probability7

(1) Pr(gij = 1|s) =

 min
{
sisj
y(s) , 1

}
if y(s) > 0,

0 otherwise.

A profile s generates a multinomial random graph. When workers choose the same level of investment,

say s, the induced random graph is binomial, the probability that two workers are connected equals

the per-capita network investment, min{s/n, 1}, and the average connectivity of the random graph

(the expected number of neighbors of a node) is min{s/n, 1}(n− 1).8

Interpretation of the model of network formation. There are two complementary interpretations

of the process of network formation that we have formalized. The first interpretation is that network

investment reflects the time that an individual spends in organizations, clubs, conferences, churches,

etc. An individual who participates in many organizations has greater chances to meet other people

and form connections with them. In turn, these connections may provide valuable information about

job opportunities. The second interpretation is that individuals are connected in a pre-existing

network. For example, we may think of a group of immigrants living in the same neighborhood

and define the pre-existing network by geographical proximity. This is the assumption behind the

approach of Topa (2001), which finds a significantly positive amount of social interactions within

neighborhoods. While the existence of such a link (for example, living in closed proximity) is a

necessary condition for information exchange, it is not sufficient: for the information to flow from

one individual to another, their communication links must be active, which requires investment from

both workers. In this case, workers’ network investment determines the strength of each pre-existing

7Expression (1) can be derived by requiring three axioms on network formation. These axioms are: one, undirected

links, i.e., Pr(gij = 1|s) = Pr(gji = 1|s); two, aggregate constant returns to scale, i.e., for all i ∈ N ,
∑n
j=1 Pr(gij =

1|s) = si; and three, anonymous link formation, i.e., for all j, l ∈ N , Pr(gji = 1|s)/sj = Pr(gli = 1|s)/sl, for all

i ∈ N \ {j, l}. See Cabrales, et al. (2011) for details.

8We refer to Erdos and Renyi (1959) for a study of binomial random graphs, and to Chung and Lu (2002) for a

study of multinomial random graphs. Vega-Redondo (2007) and Jackson (2008) provide a detailed overview of the

rapidly growing literature on complex networks.
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link in the community.

Utilities and Equilibrium. For a strategy profile s = (si, s−i), let Ψi(s) be the probability that

worker i ∈ B accesses at least one offer from the network, which we shall refer to as i’s network

matching rate and that we will derive in the next section. The expected utility to a worker i ∈ N is:

(2) EUi(si, s−i) = 1− δ(1− a)[1−Ψi(s)]− csi.

The last term represents the cost of investment in the network and the first part is the probability

that worker i will be employed and therefore earning a wage equal to 1. This is the complement of

the probability that worker i is a job seeker and he neither accesses a direct offer nor information

from the network.

A pure strategy equilibrium is s such that, for all i ∈ N ,

EUi(si, s−i) ≥ EUi(s′i, s−i),∀s′i ∈ Si.

We focus on pure strategy symmetric equilibrium in large labor markets, hereafter equilibrium. A

large labor market is a labor market in which n → ∞. Note that, by definition, B/n = δ and

V/n = a.9

3. Analysis

We first consider the case where the job contact network is given and we explicitly derive the

network matching rate. We then derive the equilibrium network and provide comparative statics

result. All proofs of the analytical results are in Appendix A.1.

9We present the analysis for large labor markets. However, our results can be easily extended to an environment

with a finite and sufficiently large n.
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3.1. Exogenous job-contact network

For simplicity, we focus on networks generated by a symmetric profile of network investment, i.e.,

si = s for all i ∈ N . We recall that a symmetric profile of investments generates a binomial random

graph, which in a large labor market coincides with a Poisson random graph. Since all offers are

identical, the probability that an arbitrary job seeker i ∈ B finds a job—the matching rate—is given

by m(s) = a+ (1− a)Ψ(s). We now derive the network matching rate Ψ(s).

The probability that i ∈ B has η links with workers who have a needless offer is Pr (ηi(O) = η) =

B (η|p, |O|), where B(·|p, |O|) is the binomial distribution, p = s/n is the probability of a success and

|O| is the number of trials. Let j be an arbitrary i’s neighbor with a needless offer, i.e., j ∈ Ni(O).

The probability that j is connected to ω job seekers (given that he is already linked to i) is simply:

Pr (ηj(B) = ω|gij = 1) = B (η − 1|p, |B| − 1) ,

and the probability that j passes the job information to i is 1/ω. So, the expected probability that

the connection to j results in a job information to i is:

|B|∑
ω=1

Pr(ηj(B) = ω|gij = 1)
1

ω
.

We now observe that the probability that each i’s neighbor, with a needless offer, passes the infor-

mation to i is independent. Hence, if worker i has η links with workers like j, the probability that i

does not hear about a new job is:

1−
|B|∑
ω=1

Pr(ηj(B) = ω|gij = 1)
1

ω

η ,
and the expected probability that i ∈ B does not get an offer via the network is:

(3) φ(s) =

|O|∑
η=0

Pr(ηi(O) = η)

1−
|B|∑
ω=1

Pr(ηj(B) = ω|gij = 1)
1

ω

η .
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Using |B| = δn and |O| = na(1− δ) and the binomial identity, we can rewrite (3) as follows:

(4) φ(s) =

[
1− 1− (1− p)nδ

δn

]na(1−δ)

.

Since p = s/n, in a large labor market we obtain that the network matching rate is

(5) Ψ(s) = 1− lim
n→∞

φ(s) = 1− e−
a(1−δ)
δ

(1−e−sδ).

Proposition 1 Consider a large labor market and suppose that si = s for all i ∈ N . Then, the

matching rate and the network matching rate are decreasing in separation rate.10

The network matching rate describes the extent to which network information transmission alle-

viates labor market frictions. Proposition 1 shows that, under the assumption of exogenous networks,

any change in labor market conditions that decreases the number of jobs available in the network,

a(1 − δ), relative to the proportion of job seekers in the network, δ, unambiguously decreases the

effectiveness of the network in matching job seekers to vacancies.

3.2. Endogenous job-contact network

We now study the implication of allowing individuals to choose strategically how much to invest

in the network. Given that all agents j 6= i invest sj = s, the problem of agent i is to choose si to

maximize:

EUi(si, s) = 1− δ(1− a)[1−Ψi(si, s)]− csi,

where, in a large labor market,

Ψi(si, s) = 1− e−
a(1−δ)
δ

1−e−sδ
s

si .

The following proposition characterizes interior equilibria.11

10It is easy to show that a decrease in vacancy rate has the same effects as an increase in separation rate.

11We note that there always exists an equilibrium where workers do not invest in the network, i.e., si = 0 for all i ∈ N .
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Proposition 2 Consider a large labor market. An interior equilibrium s∗ exists if, and only if,

c < aδ(1− a)(1− δ), and s∗ is the unique solution to:

(6) δ(1− a)

[
a(1− δ)
δs∗

(
1− e−s∗δ

)
e
−a(1−δ)

δ

(
1−e−s∗δ

)]
= c.

In the unique interior equilibrium, the level of network investment balances a worker’s marginal

returns with marginal costs. The marginal returns are the marginal increase in network matching

rate (the term in square brackets), weighted by the likelihood a worker needs the network to find a

job, δ(1−a). The next result shows the equilibrium relation between job separation rate, investment

in searching for jobs via the network, and the network matching rate.12

Proposition 3 Consider a large labor market and suppose that c < aδ(1− a)(1− δ).

1. For every a ∈ (0, 1), there exists δ̄(a) > 0 such that if δ < δ̄(a), then the network investment

increases in the separation rate, otherwise it decreases in the separation rate.

2. For every a ∈ (0, 1), there exist δ̂(a) > 0 and δ̃(a) ≥ δ̂(a) such that if δ < δ̂(a), then the network

matching rate increases in the separation rate, while if δ > δ̃(a) it decreases in the separation

rate.

The first part of Proposition 3 shows that the investment in the network is low when the separation

rate is either low or high whereas, when the separation rate is at intermediate levels, workers invest

heavily in the network. Intuitively, when the separation rate is low, there is not much value in

However, analyzing the best response dynamics after a perturbation around the equilibrium, it is possible to show that

this equilibrium is unstable whenever it coexists with an interior equilibrium. Moreover, when c ≥ aδ(1− a)(1− δ) the

equilibrium in which workers do not invest in the network is the only symmetric equilibrium. A formal proof of this

statement is available upon request to the authors.

12We focus on separation rate because, in the dynamic model we analyze below, we will endogenize the arrival rate

of offers via free entry of firms. Furthermore, we can recover the job separation rate from the data and, therefore, test

the predictions of the model. We note, however, that in this static model the effects of an increase in the separation

rate on investment in the network and network matching rate mimic the effects induced by a decrease in the arrival

rate of offers.
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Figure 1: A simulation of the equilibrium for a = 0.2, c = 0.04 and δ ∈ [0.025, 0.15].

investing in connections because the risk of losing a job is low. When the separation rate is high,

the value of investing in connections is also low because most of the links will be formed with other

job seekers and there will be high competition for needless offers. So, the use of the network will be

more pronounced in labor markets where the job separation rate is moderate. In these cases, agents

value connections because the risk of losing a job is tangible and they anticipate that competition

for referrals is not too severe.

The non-monotonic relationship between network investment and separation rate leads to a sim-

ilar relationship between network matching rate and separation rate. When the separation rate is

low, job contact networks are not highly connected, which implies that the network matching rate

is low. In this case, an increase in the separation rate increases the connectivity of the network and,

consequently, the probability of finding a job via the network also increases. However, as the separa-

tion rate increases further, the network becomes crowded with job seekers. This creates a congestion

effect, which eventually reduces the network matching rate. Figure 1 summarizes the comparative

statics of the network investment, and of the network matching rate, with respect to the separation

rate. In the figure, we have fixed the vacancy rate to a = 0.2 and the cost of network investment

to c = 0.04. For different values of separation rate δ ∈ [0.025, 0.15], we have derived the equilibrium

level of network investment and the resulting network matching rate.
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The positive correlation between network matching rate and separation rate is in sharp contrast

from the correlation that is obtained in a model where the network is taken as exogenous (see

Proposition 1). As we shall see, the introduction of endogenous effort in searching for jobs via the

social network allows to rationalize the empirical patterns that we will document below for the UK

labor market.13

We conclude the analysis of endogenous job contact networks with a study of their welfare

properties. In particular, we consider the problem of a social planner who chooses a symmetric

profile s ∈ [0,∞) to maximize the expected utility of a randomly selected worker. The objective

function of the social planner is:

SW (s) = 1− δ(1− a)[1−Ψ(s)]− cs.

We note that increasing network investment has two effects on the employment rate of a worker.

On the one hand, it increases the expected number of links of a worker which, in turn, increases

his chances of employment. On the other hand, it increases the average connectivity of each of the

worker’s neighbors and this decreases his hazard rate. While the social planner balances these two

effects, individual workers only take into account the first effect. Since workers do not internalize the

negative externalities that their links produce on others, the job contact network in the interior equi-

librium is over connected relative to what is socially desirable. The following proposition formalizes

13The equilibrium expression of network matching rate depends on the assumption we make about what offer a

job seeker accepts when he receives both an offer from one of his job contact and a direct offer. In particular, the

analysis assumes that he will take the latter. More generally, one might assume that a job seeker will take a direct

offer with probability ρ, while with the complementary probability 1 − ρ the job seeker takes the offer he accesses

from his acquaintances. In this more general specification, the probability that a job seeker finds a job through one

of his job contacts is simply Ψ(s∗)(1 − ρ). Furthermore, the probability that a job seeker finds a job through the

network conditional on not finding a job through other channels is Ψ(s∗)[1 − aρ]/{1 − a[1 − Ψ(s∗)] − aρΨ(s∗)}. For

whatever ρ ∈ [0, 1], the model generates the predictions that the probability of finding a job through the network, both

unconditional and conditional on not finding a job through other channels, is inverted U -shaped with respect to the

job separation rate.

13



these intuitions.

Proposition 4 Consider a large labor market and let s̃ be the solution of the planner problem. If

c ≥ aδ(1− a)(1− b), then s̃ = 0. Otherwise, s̃ < s∗ and it is the unique solution to

(7) aδ(1− a)(1− δ)e−s̃δ[1−Ψ(s̃)] = c.

3.3. Robustness: A Dynamic Model

We now couple our basic static network formation model with a dynamic labor market. Workers

choose their socialization effort at time zero, anticipating the steady state ensuing in the labor market

dynamics. We model the dynamic labor market following the standard random matching approach

as in Pissarides (2000), with the only difference that in our environment the matching function takes

a specific form that incorporates the network matching rate. Our assumption that investments in

the network occur at the beginning of the process formalizes the idea that creating and changing

one’s social network takes time.

Dynamic Labor Market. We briefly describe our dynamic model of the labor market. There are

many firms and many workers, and so each market participant is an atomistic competitor. Time

is continuous and r ∈ (0, 1) is a common discount rate. At each point in time, each unemployed

worker receives an instantaneous value of leisure z > 0. Firms entering the market open a vacancy

at a cost 0 < k < 1; filled vacancies produce a unit of the unique good of this economy and pay a

wage w, which is exogenous.14 Employed workers lose their job at a rate δ. Unemployed workers find

jobs directly by receiving offers at a rate a, which denotes the vacancy rate. Unemployed workers

may obtain information about vacant jobs also from their acquaintances who have a needless offer.

At each point in time, there is a measure (1 − u)a of workers with a needless offer, where u is the

14Analogously we can think that the wage is determined by a bargaining model with inside options (which are

common knowledge), see, for example, Muthoo (1999). For example, suppose the wage is negotiated every period

where, in each period, the worker (respectively the firm) makes a take-it-or-leave-it offer with probability β (respectively

1 − β). If the firm (respectively the worker) rejects the offer, there is a one period holdout where the worker enjoys

home productivity γ while the firm enjoys zero profit. The equilibrium (average) wage per period is simply β+(1−β)γ.
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unemployment rate. Under a symmetric socialization effort profile, the network matching rate is:

(8) Ψ(s, u, a) = 1− e−
a(1−u)
u

(1−e−su),

and the aggregate matching rate is m(s, u, a) = a+ (1− a)Ψ(s, u, a).

Given a symmetric profile of socialization effort s and job separation rate δ, in equilibrium firms

and workers maximize their objective function subject to steady state unemployment. We now derive

the equilibrium conditions and the steady state condition for arbitrary s.15

The in-flow into unemployment is simply δ(1 − u) while the out-flow from unemployment is

um(s, a, u). In steady state we must then have that δ(1− u) = um(s, u, a), or, equivalently:

(9) m(s, u, a) =
δ(1− u)

u
.

Let V and J be the present discounted value of expected profits from a vacant job and a filled job,

respectively. They must satisfy rV = −k + mf (s, u, a)(J − V ) and rJ = 1 − w − δ(J − V ), where

mf (s, u, a) = m(s, u, a)u/a is the rate at which vacant jobs are occupied. In equilibrium, free entry

of firms implies that V = 0, or equivalently m(s, u, a)u/a = k(r+δ)/(1−w). In steady state, vacancy

creation is then governed by

a =
δ(1− u)

k(r + δ)
(1− w).(10)

Equilibrium socialization effort. At time zero, workers simultaneously choose a socialization

effort anticipating the ensuing equilibrium, i.e., (u, a) solve the system of equations (9) and (10).

In particular, given that all other workers choose effort s, worker i chooses socialization effort si in

order to maximize Ui − csi, where Ui is the present discounted value of the expected income stream

of unemployed worker i. Let Wi be the present discounted value for worker i to be employed, then

15Since this is standard, we omit several steps in the derivation of these conditions, see Pissarides (2000) for additional

details.
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rUi = z +mi(si, s, u, a)(Wi − Ui) and rWi = w − δ(Wi − Ui), where

mi(si, s, u, a) = a+ (1− a)Ψi(si, s, a, u) and Ψi(si, s, a, u) = 1− e−
a(1−u)
us

si(1−e−su).

In an interior symmetric equilibrium, si = s > 0 such that

dmi(s, s, u, a)

dsi
=

rc

W − U
r + δ +m(s, u, a)

r + δ
,

which, after some algebra, can be rewritten as:

(11) [1−Ψ(s, u, a)]
a(1− a)(1− u)

u

1− e−su

s
=
cr [r + δ +m(s, a, u)]2

(r + δ)(w − z)
.

To summarize, an interior symmetric equilibrium is given by (s, u, a) which solves the steady state

equation (9), the condition of free entry of firms (10), and the first order condition defining the

optimal socialization effort (11).16

We have not been able to determine analytically the uniqueness of an interior equilibrium and its

comparative statics. In what follows, we provide a numerical exercise which shows that, for realistic

values of the parameters, there is a unique interior equilibrium and its comparative statics, with

respect to job separation rate, is in line with the predictions we derived in our static model.

We choose an interest rate r = 0.012, unemployment benefits z = 0.4 and wage w = 0.8. We also

fix the values of the cost of socialization to c = 0.6 and the cost of opening a vacancy k = 0.8. We

then find the steady state equilibrium for different values of the job separation rate δ between 0.5

percent and 10 percent, and we calculate equilibrium network investment, network matching rate,

unemployment rate and vacancy rate. The range of job destruction rate that we consider is in line

with our findings for the UK labor market, which we discuss in the next section. For intermediate

values of the job separation rate in this range, we find a steady state unemployment around 8 percent

and an average network matching rate around 30 percent; these are also in line with the UK data.

16As in the static model, there always exists an equilibrium where no worker socializes, i.e., si = 0 for all i ∈ N . In

this equilibrium, the network matching rate is zero and (a, u) satisfy conditions (9) and (10).
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Figure 2 summarizes this exercise.17

4. Information transmitted in the network and labor market con-

ditions: UK empirical patterns

We investigate the correlation between labor market conditions, the extent that workers use their

network of contacts in job search, and the rate at which workers find jobs via their network of

contacts. We use the UK Quarterly Labour Force Survey (QLFS), which allows us to explore the

relationship between the job separation rate, our proxy of the labor market conditions, and both the

probability of finding a job via social networks and the use of networks in job search.

Each wave of the QLFS covers a representative sample of the UK population that includes around

60,000 households incorporating from 125,000 to 150,000 individuals, depending on the wave. We

use data from the first quarter of 1995 to the fourth quarter of 2004. Only males of working age

(aged 16 to 64) are considered, so that we are left with an average of 43,000 individuals per wave.

We divided our sample into 20 regions, which are defined in the survey design using the information

about the respondents’ usual residence.18 We construct all our variables at the regional level. In

our estimation, we focus on job seekers because we think that, since they are actively looking for a

job, they could be using their social network strategically. Job seekers are respondents who reported

that they were actively looking for a job. In some regressions, we consider an alternative sample

composed of workers who were unemployed at the time they were looking for a job, and then found a

job; for these workers we can directly map their search strategies into how successful these strategies

were.

17We have conducted a similar numerical exercise for different values of parameters to control the robustness of

these results. The analysis is available upon request to the authors.

18This is the finer level of residence information available in the QLS until 2001. The regions are: Tyne & Wear; rest

of Northern region; South Yorkshire; West Yorkshire; rest of Yorkshire & Humberside; East Midlands; East Anglia;

inner London; outer London; rest of South East; South West; West Midlands (Met county); rest of West Midlands;

greater Manchester; Merseyside; rest of North West; Wales; Strathclyde; rest of Scotland; Northern Ireland.
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Figure 2: The steady state equilibrium of the dynamic model for r = 0.012, z = 0.4, c = 0.6 and
k = 0.8 and δ ∈ [0.005, 0.10].
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In each quarter, job seekers were asked about their main job search method. Respondents were

given a list of available options, from which they could choose only one of them. The available

options were: visit a jobcentre/jobmarket or training and employment agency office; visit a careers

office; visit a jobclub; have your name on the books of a private employment agency; advertise for

jobs in newspapers or journals; answer advertisements in newspapers and journals; study situations

vacant in newspapers or journals; apply directly to employers; ask friends, relatives, colleagues or

trade unions about jobs; wait for the results of an application for a job; do anything else to find

work. We are interested in the proportion of job seekers in a given region that use friends, relatives

and colleagues as a main job search method in each period. This variable is a measure of the extent

that workers use their networks of contacts, and it constitutes our proxy for network investment in

job search.19

In addition, workers who found a job in the previous quarter were asked how they found it.

Again, respondents were given a list of available options, from which they could choose only one of

them. In particular, the available options were: replying to a job advertisement; job center; careers

office; job club; private employment agency or business; direct application; hearing from someone

who worked there; some other way.20 We are interested in the proportion of workers that, in each

region, reported to have found his new job by “hearing from someone who worked there” in each

period. This variable proxies the network matching rate.

While the literature typically concentrates on the effect of network size or population density

on the probability of finding a job through the network,21 we are interested in the effect of labor

19The survey nests search via friends and colleagues with search via trade unions, which is not ideal for our proxy.

Since the proportion of unionized workers has steadily declined in the UK in our sample period, in our analysis we will

control for this by introducing time dummies.

20There have been some changes in this question throughout the history of the QLFS. Since the second quarter of

2005, this question is addressed to everybody who found a new job in the last twelve months or less. Furthermore,

some answers of the second quarter of 1994 are clearly miscoded—a change of the coding was introduced at that time.

For these reasons, we excluded all waves before 1994:Q3 and after 2005:Q1 from our sample.

21See Beaman (2012) and Wabha and Zenou (2005): both find evidence of congestion when network size increases;

in our model, we derive the equilibrium conditions when population size goes to infinity, but as n increases the effect
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market conditions. So, instead of using the number of workers in the market, we use a measure of

the riskiness to become unemployed in a given quarter, namely the job separation rate, which we

calculate at a regional level. We have constructed the unemployment rate in each region using the

ILO definition: the proportion of unemployed workers looking for a job or waiting to start a job in

the next two weeks over the whole active population. We obtained an average yearly unemployment

rate over the period of 7.75 percent, ranging from a minimum of 3.19 percent to a maximum of

19.53 percent. Then, we have calculated the job separation rate (i.e., the probability of transition

from employment to unemployment) using the flows of workers into and out of unemployment at

regional level using quarterly data, which is the highest frequency available in the QLFS. In order to

reduce time aggregation biases, we calculated the separation rate according to equation (5) of Shimer

(2012), which is meant to take into account the problem that, while data is available only at discrete

date, the underlying environment keeps changing over time. Taking yearly averages, we obtained an

average job separation rate over the period of 3.21 percent, which is consistent with earlier work,

ranging from a minimum of 1.41 percent to a maximum of 5.46 percent.

We are interested in studying how network investment and network matching rate change when

the job separation rate changes. In line with our theoretical predictions, plotting the averages in each

region during the whole time period, a positive and concave relationship emerges using a polynomial

fit, as depicted in the two panels of Figure 3.

To investigate the regional differences in the use and effectiveness of social networks in job search,

we calculate our proxy of network investment and network matching rate at a yearly frequency, since

we want to focus on medium and long run changes in the use of social networks. As for the variables

capturing labor market conditions, we take year averages for the 20 regions from 1995 to 2004, so

we end up with 200 observations. We remark that the results we shall provide are robust to longer

time spans of aggregation of the data, for example, five-year averages (see Appendix A.3). In this

sample, the proportion of workers that looked for a job via social networks is 10.88 percent on

average, ranging from 3 percent to 19.08 percent, and the proportion of workers that found a job

is in line with other studies, i.e., there is a congestion effect if the cost of socialization is sufficiently small.
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(a) Network Investment and Job Separation Rate, Regional Averages
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(b) Network Matching Rate and Job Separation Rate, Regional Averages

Figure 3: Regional averages in the whole time period 1995–2004 of our proxies for network investment
and network matching rate plotted against the job separation rate.
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via friends or relatives working in the same firm has an average value of 29.78 percent, ranging from

15.69 percent to 43.17 percent.

We take two approaches to more formally investigate the data. We first understand how much of

the variation of unemployment, job separation rate, network investment and network matching rate

are due to regional variations, rather than time variation. We then try to capture how much of the

regional variation in network investment and network matching rate can be explained by local labor

market conditions, captured by the job separation rate.

The first model that we analyze is a simple linear probability regression where the independent

variables are year and regional dummies. That is:

Yj,t = α0 +
∑
j=1,19

αjIj +
∑
t=1,10

βtIt + εt,

where Yj,t is the value of the dependent variable in a given region in a given period (unemployment

rate, job separation rate, network investment and network matching rate), Ij is an indicator function

that takes value 1 if the observation comes from region j, and It is an indicator function that takes

value 1 in year t.

The results, reported in Table 1, show that most of the variation of unemployment, job separation

rate, network investment and network matching rate is explained by regional differences. Regional

and year dummies explain 91.4 percent of the variation in unemployment, and regional dummies

explain nearly two thirds of this for unemployment. The regional variation is even more pronounced

for the job separation rate: 65.8 percent of the variation comes from regional differences, whereas

variation over time explains less than 5 percent. Regional and year dummies explain 64.8 percent of

the variation of network investment rate; regional dummies alone explain 60 percent of such variation.

Similarly, regional and year dummies explain 47.5 percent of the variation in the network matching

rate, with regional differences explaining more than 80 percent of this variation.

We then analyze a linear probability model where we regress network investment and network
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Table 1: Linear probability model with only regional and time dummies by region of residence.

Unemployment Separation Rate Network Network Matching
Rate Investment Rate

Regional Dummies Yes Yes Yes Yes Yes Yes Yes Yes

Year Dummies Yes No Yes No Yes No Yes No

R2 0.914 0.557 0.704 0.658 0.648 0.390 0.475 0.393

Adj. R2 0.899 0.510 0.656 0.622 0.590 0.325 0.389 0.328

Obs. 200 200 200 200 200 200 200 200

Source: UK QLFS, male respondents, aged 16-64, waves from 1995 to 2004.

Standard errors bootstrapped using 1000 repetitions, in parenthesis. ∗∗∗ p < .01, ∗∗ p < .05, ∗ p < .1.

matching rate against the job separation rate and its squared value. Formally, the model is:

Yj,t = γ0 + γ1δj,t + γ2δ
2
j,t + εj,t,

where Yj,t is the value of the dependent variable in a given region in a given period (in this case,

network investment and network matching rate) and δj,t is the job separation rate in region j at time

t. In some regression, we also include time dummies to fully control for time trends.

Table 2 reports the results for network investment and for network matching rate. We find that

the separation rate has a significant and, on average, positive effect on network investment, and that

the coefficient of its squared value is significant and negative. In line with our theoretical model,

worse labor market conditions give incentives to workers to rely more on their social networks, but

this effect is lower the higher the job separation rate. While the overall impact is, on average, positive

in the range of values that the independent variables take, confirming a positive correlation between

network investment and the riskiness of the labor market, when the separation rate is more than 4.7

percent the effect starts to decrease. Hence, an increase in the separation rate eventually decreases

network investment in regions that face extremely bad labor market conditions.
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To have a quantitative idea of the magnitude of these effects, a back-of-the-envelope calculation

suggests that an increase of one percentage point of the job separation rate around its average value

is associated to an increase in network usage of 1.24 percentage points. These calculations are not

different when we consider job seekers who are not employed.

The estimates in Table 2 also show that there is an increasing and concave relationship between

network matching rate and job separation rate. Around the average value of the job separation rate,

an increase of one percentage point of the job separation rate is associated to an increase in network

matching rate of 0.58 percentage points. While the relationship between network matching rate and

job separation rate is on average positive in our sample, it becomes negative for separation rates

above 3.92 percent.

The effects reported in Table 2 are robust to the introduction of year dummies, which allows to

control for time aggregation (see footnote 19). Qualitatively similar results are obtained by removing

one of the regions at a time, so that we can confidently conclude that our estimates do not depend

on few outliers.

So far, we have used the job separation rate computed at a regional level. This may be prob-

lematic since labor market conditions influence differently workers that have different employment

opportunities. We tackle this issue by computing the separation rate separately for workers of dif-

ferent educational achievement in each period and in each region. In other words, we are changing

the definition of labor market: instead of referring to local labor markets, we are considering that

only workers with similar educational attainments are in the same local labor market.

We divide our sample into low, medium and high skilled workers. We use the definition of skill lev-

els of individuals put forward by the International Standard Classification of Education (ISCED1997).

This classification is as follows: Low = ISCED 0–2 (pre-primary education; primary or first stage of

education of basic education; lower secondary education or second stage of basic education); Middle

= ISCED 3–4 ([upper] secondary education; post-secondary non tertiary education); High = 5–6

(first stage of tertiary education [not leading directly to an advanced research qualification]; second

stage of tertiary education [leading to an advanced research qualification]).22

22When no information was available on the degree obtained, i.e. for all respondents that got a degree abroad, we
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Figure 4: Regional averages by skill level in the whole time period 1995–2004 of our proxies for
network investment and network matching rate plotted against the job separation rate.

Using this definition of the labor market, we obtained an average job separation rate of 3.17

percent, ranging from a minimum of 0.23 percent to a maximum of 10.3 percent. The job separation

rate is very different across skill groups. It is only 2.08 percent on average for high skilled workers,

it is 2.69 percent for medium skilled workers, and it reaches an average value of 4.74 percent for

low skilled workers. The relationship between the job separation rate and network investment, and

network matching rate, is depicted in the two panels of Figure 4. A polynomial fit of the data suggests

a positive and concave relationship of our proxies of network investment and network matching rate

with the job separation rate, as predicted by our model. Furthermore, Figure 4 suggests that

differences across skill groups account for most of the variation in network investment and network

matching rate, relative to differences within skill groups or through time.23

The results of the regressions for our proxies of network investment and network matching rate

use “age left full-time education”, and classified them as low skill if they left education before age 16, high skilled if

they left education after age 21 and medium skilled otherwise. See Manacorda, et al. (2006) for a discussion of this

point.

23Simple regressions using time and educational dummies (available upon request) confirm this.
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are reported in Table 3.24 The estimation results are qualitatively similar to the ones where workers

with different skills were pulled together within a region (Table 2). For example, an increase of one

percentage point of the separation rate is associated to an increase in the odds ratio of looking for

a job through the social network by 1.13 percentage points and of finding a job through the social

network by 2.91 percentage points.

Quantitatively, the relationship between job separation rate and network matching rate is very

different across workers with different skills. For low skilled workers, who experience a job separation

rate higher than the average, an increase in job separation rate of one percentage point around their

average is associated to a small increase of 0.46 percent in network investment, and of a 1.57 percent

in network matching rate. Furthermore, the predicted effect on the network matching rate is negative

for 12.5 percent of the observations of low skilled workers. In contrast, the effect of a one percentage

increase in the job separation rate from its average value for highly skilled workers would imply

a predicted increase in network investment of 1.60 percent, an increase in the network matching

rate of 3.84 percent, and the predicted effect on the network matching rate is positive for all the

observations of high skilled workers. These findings are in line with our model, which predicts that

adverse labor market conditions should affect more workers who rely on job contact networks more

than the average, which as can be seen in panel (a) of Figure 4, are low skilled workers.25

Contrary to the prediction of a model with exogenous job contact networks, the stylized fact

emerging from this section is that the separation rate is associated positively with network investment,

and network matching rate, when the job separation rate is low and negatively when it is high.

Furthermore, a worsening of labor market conditions may reduce the effectiveness of networks in

24In Appendix A.3, we provide the estimates when we perform the exercise separately for the three skill groups of

workers (see Tables 6 and 7). The results show that the positive and concave relationship between separation rate

and network investment, and network matching rate, is also present when we exploit variation across regions within

workers with the same educational attainment. We do not find qualitative differences on the way network investment

and network matching rate are affected by job destruction rate across skill groups.

25Furthermore, as documented by Battu, et al. (2011), Holzer (1987) and Elliott (1999), minority workers are often

low skilled and tend to rely more on informal job search channels.
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a job search for low skilled workers, who are the ones relying more on networks in the first place.

In this sense, low skilled workers become even more vulnerable in downturns. The overall message

is that the use of networks, and their efficiency in matching workers to jobs, depends on the labor

market conditions. This should be taken into account when designing labor market policies aimed at

reducing unemployment, because these effects are different across groups of workers and they might

affect search behavior in a way that partially offsets their impact.

5. Conclusion

In this paper, we investigate how labor market conditions affect the formation of job contact

networks and how this interplay shapes labor market outcomes. We have shown that, taking into

account the endogeneity of job contact networks leads to predictions that are in line with the docu-

mented empirical patterns.

Our empirical analysis has focused on regional differences. This is in line with the underlying

premise of our theoretical model, which assumes that creating and changing networks takes more

time than other labor market variables to adjust (such as vacancy rate and wage). Despite our model

taking this assumption to the extreme (for example, network investment is once and for all), similar

results could be obtained in a model where network investment can be adjusted over time, but at

a lower rate than other labor market variables. This implies that one should also observe similar

correlations by exploiting time variations. In a previous version of the paper (Galeotti and Merlino,

2010) we have explored how the individual probability of finding a job via the network was affected

by labor market conditions taking advantage of the panel dimension of the UK QLFS. There, we

also found qualitatively similar results at the individual level using fixed effects logit models with

individual and time fixed effects.

In the model, we assume symmetry across all workers when they decide how much to invest in

searching for jobs via the network. In particular, all workers earn the same wage, and the reason to

invest in connections comes from the risk of becoming unemployed. If wages were dispersed then there

would be an additional reason to invest in connections, which is to find a job that pays a higher wage.
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Furthermore, workers earning a different wage to start with will have different incentives to search. In

particular, workers earning a higher wage will find it less profitable to invest in the network because

the probability that their acquaintances will pass information about vacancies that pay high salaries

will be lower (as they might want to keep that job for themselves). Despite these complications, for

each particular worker, it will still be the case that an increase in the job separation rate has two

opposite implications. On the one hand, it increases the incentives to invest in connections because it

is more likely that the worker has to actively search for better jobs. On the other hand, it decreases

the incentives to invest in connections because each contacted worker will either have less incentives

to spread the information or more contacts to refer the vacancy to. This is the basic trade-off that

generates all the main insights in our simple model with symmetric workers. We expect that this

trade-off plays a similar role once different forms of heterogeneity are introduced in the model. A

full-fledged analysis is left for further research.

We have focused on labor markets but the question of how the state of the economy shapes

informal institutions is much broader. For example, there is a large amount of empirical work on

the effects of social capital on economic growth. Often this work struggles with the fact that social

capital is an endogenous variable, raising concerns of identification of the models. Referring to this

literature, Durlauf (2002, pp. F474) noted: “...it seems clear that researchers need to provide explicit

models of the co-determination of individual outcomes and social capital, so that the identification

problems (...) may be rigorously assessed”. Our paper aims to contribute to this line of research

by providing a tractable model, where the interplay amongst aggregate variables and individual in-

vestment in informal organizations is mapped into equilibrium correlations amongst these variables,

that cannot be accounted for in a model where informal institutions are exogenous.

Andrea Galeotti – Department of Economics, University of Essex, United Kingdom.

Luca Paolo Merlino – University of Vienna, Austria; FNR-FNRS and ECARES, SBSEM, Université

libre de Bruxelles, Belgium.
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Appendix

A.1. Proofs of Lemmas and Propositions

Proof of Proposition 1 First, it is straightforward to verify that ∂Ψ
∂s (s) > 0 and that ∂Ψ

∂a (s) > 0.

We now show that Ψ(s) is decreasing in δ. The derivative of Ψ(s) with respect to δ has the same

sign as the derivative of (1−δ)
δ

(
1− e−sδ

)
with respect to δ, which is given by

(12)
e−sδ[δ(1− δ)s+ 1]− 1

δ2
.

Expression (12) is negative when e−sδ[δ(1−δ)s+1] < 1 which is equivalent to −sδ+ln(1+δ(1−δ)s) <

0. This holds because −sδ+ ln(1 + δ(1− δ)s)|s=0 = 0 and −sδ+ ln(1 + δ(1− δ)s) is decreasing in s.

Hence, ∂Ψ
∂δ (s) < 0 for all s > 0. Second, the comparative statics with respect to the matching rate

and the unemployment rate follows by the comparative statics of the network matching rate. This

concludes the proof of Proposition 1. �

Proof of Proposition 2 Suppose an interior equilibrium exists. Consider a profile s where sj = s,

∀j 6= i. Under profile s, the probability that i ∈ B does not receive an offer from the network is

φi(si, s) =

[
1− pi

1− (1− p)nδ

δnp

]na(1−δ)

,

where pi = sis/[si + (n − 1)s] and p = s2/[si + (n − 1)s]. Next note that for every s > 0, i’s best

response, say ŝi, has the property that ŝis ≤ [ŝi + (n − 1)s]. Indeed, if ŝis > [ŝi + (n − 1)s], then i

could decrease his own networking effort and still be linked to any arbitrary worker with probability

1. Hence, an interior equilibrium s∗ solves:

∂EUi
∂si

(s∗, s∗) = −δ(1− a)
∂φi
∂si

(s∗, s∗)− c = 0.
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Since

∂φi
∂si

(si, s) = a(1− δ)n

(
1− si

δns

(
1−

(
1− s2

si + (n− 1)s

)δn))a(1−δ)n−1

(
sis

(si + (n− 1)s) 2

(
1− s2

si + (n− 1)s

)δn−1

− 1

δns

(
1−

(
1− s2

si + (n− 1)s

)δn))
,

in large labor markets, we have that:

lim
n→∞

∂φi
∂si

(si, s) = −a(1− δ)
sδ

(
1− e−sδ

)
e−

a(1−δ)
δ

1−e−sδ
s

si .

Therefore, s∗ must solve

(13)
a(1− a)(1− δ)

s∗

(
1− e−s∗δ

)
e
−a(1−δ)

δ

(
1−e−s∗δ

)
= c,

which is equivalent to condition (6) stated in Proposition 2. It is easy to see that ∂φi
∂si

(si, s) is

continuous in the limit as it converges to (13) when n goes to infinity,26 which ensures that the

solution of the n-game converges to the solution of the limit game. We now show that there exists

a unique solution to this equation and we derive the conditions for existence. We start noticing

that the LHS is decreasing in s∗ because both
(
1− e−s∗δ

)
/s∗ and e

−a(1−δ)
δ

(
1−e−s∗δ

)
are decreasing

in s∗. Furthermore, when s∗ goes to 0, the LHS converges to aδ(1 − a)(1 − δ), while when s∗ goes

to infinity the LHS converges to 0. Since marginal returns are continuous in si, it follows that an

interior symmetric equilibrium exists if and only if c < aδ(1− a)(1− δ), in which case there is only

one symmetric interior equilibrium. This concludes the proof of Proposition 2. �

Proof of Proposition 3 We first prove part 1. We derive ds∗/dδ by implicit differentiation of (6)

and obtain

(14)
ds∗

dδ
=
e−s

∗δ [s(1− δ) + 1]− 1 + a(1− δ)(1− e−s∗δ)1−e−s∗δ−δ(1−δ)se−s∗δ
δ2

(1− δ)
(

1−e−s∗δ−s∗δe−s∗δ
s∗ + a(1− δ)(1− e−s∗δ)e−s∗δ

) .

26In other words, it is possible to show that for each ε > 0, there exists an n(ε) such that for each n > n(ε), the

distance of the two expressions is at most ε.
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Since the denominator is positive, the sign of this derivative depends on the sign of the numerator.

Defining x =
a(1−δ)

(
1−e−s∗δ

)
δ , we rewrite expression (14) as follows

(15)
ds∗

dδ
=

dx
dδ + (1− x)dxdδ − δ

(
dx
dδ

)2
+ δ(1− x)d

2x
d2δ

a
[

1−e−s∗δ−δs∗e−s∗δ
s∗ + (1− e−s∗δ) a(1− δ)e−s∗δ

] ,
where

dx

dδ
= a

e−s
∗δ[δ(1− δ)s∗ + 1]− 1

δ2
< 0.

The derivative of the numerator of expression (15) with respect to δ when ds/dδ = 0 is

(16)
(1− a)

s∗
e−x

[
dx

dδ
+ (1− x)

dx

dδ
− δ

(
dx

dδ

)2

+ δ(1− x)
d2x

d2δ

]
,

where,

d2x

d2δ
= −2

δ

dx

dδ
− sae−δs

∗
(2 + s− δs)
δ

.

After some algebra, (16) can be written as

(1− a)

δs∗
e−x

[
dx

dδ

(
x− δ dx

dδ

)
− (1− x)sae−δs

∗
(2 + s− δs)

]
.

The first term in the square brackets is always negative because dx
dδ is always negative, and x is

positive. On the other hand, 2 + s − δs > 0 for δ ∈ [0, 1] and s ≥ 0. Note furthermore that when

dFOC
dδ = 0, by (15) it follows that dx

dδ = − x
δ(1−x) < 0, which implies that (1− x) > 0. Hence the last

term is also negative. Furthermore, dFOC
dδ is positive when δ = 0 and negative when δ = 1. Since

when dFOC
dδ = 0, d2FOC

d2δ
is negative, by continuity, (15) crosses the δ-axis only once, precisely at

δ̄(a) > 0. Hence, if δ < δ̄(a), the derivative is positive, while if δ > δ̄(a), it is negative. Note that

this is the value of δ where s∗ is maximum. This concludes the first part of the proof of Proposition

3.

We now turn to the second part of Proposition 3. The change in equilibrium network productivity
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when δ changes is described by:

(17)
dΨ(s, a, δ)

dδ
= aφ(s∗)

[
−1− es∗δ

δ2
+ (1− δ)e−s∗δ

(
s∗

δ
+
ds∗

dδ

)]
.

While the first term in the square parenthesis is always negative, the sign of the second one depends

on the sign of ds∗/dδ. Using part 1 of Proposition (3), ds∗/dδ is negative when δ is sufficiently

high, and hence dΨ(s, a, δ)/dδ would be negative as well. When δ tends to 0, ds∗/dδ tends to ∞.

Furthermore, the limit of expression (17) as δ goes to 0 is also∞. Since the derivative is continuous,

its sign is positive when δ is close enough to 0. This concludes the proof of Proposition 3. �

Proof of Proposition 4 The derivative of social welfare with respect to socialization effort is:

dSW

ds
(s) = δ(1− a)a(1− δ)

[
1−

1− (1− s
n)nδ

nδ

]na(1−δ)−1 (
1− s

n

)nδ−1
− c,

and in large labor markets become

lim
n→∞

dSW

ds
(s) = δ(1− a)a(1− δ)e−sδe−

a(1−δ)
δ (1−e−sδ) − c.

Note that dSW
ds (0) = aδ(1−a)(1−δ)−c, lims→∞

dSW
ds (s) = −c. Moreover, dSWds (s) is strictly decreasing

in s, since both
(
1− e−sδ

)
and sδ are strictly increasing in s ∈ (0,∞). Hence, if c ≥ aδ(1−a)(1− δ),

the social planner chooses s̃ = 0, while for all c < aδ(1− a)(1− δ) the optimal solution s̃ is uniquely

defined by

aδ(1− a)(1− δ)e−
a(1−δ)
δ (1−e−s̃δ)−s̃δ = c.

Finally, it is easy to verify that at equilibrium s∗, dSW
ds (s∗) < 0, and since dSW

ds (s) is decreasing in s,

it follows that s̃ < s∗ for all c < aδ(1− a)(1− δ). This concludes the proof of Proposition 4. �

A.2. Indirect information flow

This appendix examines the implications of indirect information flow in the matching process

of workers with firms and how it shapes workers’ socialization incentives. Information flow in the
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network now follows the following process. As in the basic model, each worker l with a needless

offer gives it to one of his unemployed neighbors, chosen at random. If worker l has only employed

friends, then he chooses one of them at random, say j, and gives him the information. For simplicity,

we assume that if j had himself a needless offer, then the offer he receives from l is lost. If, on the

contrary, worker j did not have a needless offer, then he selects at random one of his unemployed

friends, say i, and passes the information to him. We also assume that the information passed from j

to i reaches i with probability γ ∈ [0, 1], where γ is the decay in the information flow. So, information

now may flow two-steps away in the network.

We observe that a job seeker does not hear about new jobs from his friends if: 1) he does not

access information from his friends who received a needless offer directly and 2) he does not get

information from his contacts who are employed, do not have a needless offer directly, but have

heard of a job opportunity from at least one of their friends. The probability associated to the event

described in 1) is given by (4). We now derive the probability associated to the event described in

2). For concreteness, in what follows, i ∈ B and chooses si, while all other workers choose effort s.

Moreover, worker j is employed and he does not have a needless offer, j ∈ N \{B∪O}, while worker

l ∈ O.

First, suppose j and l are linked, i.e., gjl = 1. The probability that j receives information from l

is:

(1− pi)(1− p)nδ−1

n(1−δ)∑
v=1

Pr(ηl(N \ {B}) = v|glj = 1)
1

v
.

That is, worker l’s friends must be all employed, (1 − pi)(1 − p)nδ−1, and, conditioning on having

v links, worker l gives the information to j with probability 1/v. So, if worker j is linked with ω

workers such as l, the probability that j does not receive information is:

1− (1− pi)(1− p)nδ−1

n(1−δ)∑
v=1

Pr(ηl(N \ {B}) = v|glj = 1)
1

v

ω .
Summing across all possible number of j’s neighbors who are employed and with a needless offer, we
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obtain the probability that j accesses at least an indirect offer:

Θ(s) = 1−
|O|∑
ω=0

B(ω|p, |O|)

1− (1− pi)(1− p)nδ−1

n(1−δ)∑
v=1

Pr(ηl(N \ {B}) = v|glj = 1)
1

v

ω ,
and in a large labor market it is equal to:

(18) Θ(s) = 1− e−a(e−sδ−e−s).

Note that in a complete network worker l has always links with unemployed workers and therefore

every worker like j will never receive information. When the network is not complete, it is easy to

verify that the probability that j gets information is non-monotonic in s—it first increases when s

is low to begin with and then it decreases. Therefore, greater connectivity of workers other than

unemployed i may have a positive effect on the probability that i gets a job. This illustrates a

novel effect which emerges from indirect information flow. In fact, when the network is not very

connected to start with, high socialization investments of other workers have a positive effect on the

value of worker i’s socialization investment because it makes more likely that i’s neighbors have job

information to pass along.

Second, consider our original job seeker i and suppose he has η links with workers like j above.

The probability that i does not receive an offer from each of these η contacts is:

η∑
d=0

B(d|Θ(s), η)

[
1−

nδ∑
t=1

Pr(ηj(B) = t|gij = 1)
γ

t

]d
.

In words, with probability B(d|Θ(s), η), d out of the η contacts of i have received an offer from one

of their employed friends. Suppose j is one of these individuals; then the probability that i receives

information from j depends on the level of the decay in the information flow and the number of

unemployed workers connected to j. Summing across all possible number of links that worker i can
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have with workers like j, we obtain the probability that i does not access an indirect offer:

φini (si, s−i) =

n(1−a)(1−δ)∑
η=0

B(η|pi, n(1−a)(1−δ))
η∑
d=0

B(d|Θ(s), η)

[
1−

nδ∑
t=1

Pr(ηj(NU ) = t|gij = 1)
γ

t

]d
,

and clearly the probability that i gets at least an indirect offer is Ψin
i (si, s−i) = 1 − φini (si, s−i). In

a large labor market, this is equal to

(19) Ψin(si, s−i) = 1− e−
γ(1−δ)(1−a)

δ

si
s (1−e−sδ)Θ(s).

In a symmetric profile where si = s for all i ∈ N , the probability that an unemployed worker hears

a job indirectly is non monotonic in socialization effort and the intuition follows from the effect of

indirect information flow which we have discussed above.

Finally, the overall probability that an unemployed worker gets at least an offer in a symmetric

profile is:

Ψ̃in(s) = 1− φ(s)φin(s) = 1− e−
1−δ
δ (1−e−sδ)(a+γ(1−a)Θ(s)).(20)

The network matching rate is decreasing in the decay of information flow and under full decay we

are back to the network matching rate (5) developed in Section 3. Under indirect information flow,

the expected utility of a worker i choosing si and facing a strategy of others sj = s for all j 6= i is:

EUi(si, s−i) = 1− δ(1− a)φi(si, s−i)φ
in
i (si, s−i)− csi.

Proposition 5 Consider a large labor market and consider indirect information flow. An interior

equilibrium exists if and only if c < ab(1 − a)(1 − a). In a symmetric interior equilibrium every

worker chooses ŝ which is the unique solution to:

(21)
(1− δ)(1− a)

ŝ

(
1− e−ŝδ

)
(a+ γ(1− a)Θ(ŝ))

(
1− Ψ̃in(ŝ)

)
= c.
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Proof of Proposition 5 Equilibrium condition (21) is obtained by taking the partial derivatives

of EUi(si, s−i) with respect to si and imposing symmetry, i.e, sj = s for all j ∈ N . We now show

that a solution exists and it is unique if and only if c < aδ(1− a)(1− δ). To see this note that when

s→ 0 the LHS of (21) equals aδ(1− a)(1− δ) and when s→∞ the LHS of (21) equals 0. So, it is

sufficient to show that the LHS of (21) is decreasing in s, which we now prove. We first claim that

the following expression is decreasing in s:

1

s

(
1− e−sδ

)
(a+ γ(1− a)Θ(s)) .

Taking the derivatives of the above expression with respect to s we have that

1

s2

[
−(a+ γ(1− a)Θ(s))(1− e−sδ(1− δ)) + (1− e−sδ)γ(1− a)

∂Θ(s)

∂s

]
.

Since ∂Θ
∂s (s) = (1−Θ(s))a

(
e−s − δe−sδ

)
, then the above derivative is negative if and only if

γ(1− a)a(1−Θ(s))(1− e−sδ)
(
e−s − δe−sδ

)
< (a+ γ(1− a)Θ(s))(1− e−sδ(1− δ)).

Since the RHS of the inequality is always positive, if
(
e−s − δe−sδ

)
< 0 the claim follows. So, suppose

that
(
e−s − δe−sδ

)
> 0. Here note that

1− e−sδ(1− δ) > (1− e−sδ)
(
e−s − δe−sδ

)
,

if and only if, taking the log, ln(1− δ) + sδ > 0 which is obviously true. Next, note that a+ γ(1−

a)Θ(s) > γ(1 − a)a(1 − Θ(s)) if and only if a + γ[Θ(s) − a(1 − Θ(s))] > 0, which holds because

a+ γ[Θ(s)− a(1−Θ(s))] > a(1− γ(1− a)) > 0. These two observations imply our first claim. Using

similar arguments, it is easy to show that (1 − Ψ̃in(s)) is also decreasing in s. Hence, the LHS of

expression (21) is decreasing in s. Proposition 5 follows. �

To conclude, note that (21) is the same as (6) but for the fact that the job network supply is

(1− δ) (a+ δ(1− a)Θ(ŝ)) instead of a(1− δ) as in the baseline model. But both are decreasing in δ,
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and, as a result, the comparative statics with respect to δ does not change.

A.3. Robustness Empirical Analysis.

Tables 4 and 5 show that the results described in Table 2 and 3 of Section 4 are robust to longer

time spans aggregation of the data, i.e., five years averages instead of one year averages. Tables 6 and

7 replicate the analysis in Table 3 separately for the three skills groups and show that the positive

and concave relationship between network investment and network matching rate, and job separation

rate, is also present when we exploit variation across regions within workers with an homogenous

educational attainment.

Table 4: Linear probability model regressing the proportion of job seekers using friends and relatives
as the main job search method and the proportion of workers that found a job via their social
networks against the job separation rate by region of residence, 5 years averages.

Network Investment Network Matching Rate

Job Seekers Unemployed
Job Seekers

Job Seekers Unemployed
Job Seekers

δt 6.215 6.013 21.109*** 22.196***
(5.433) (5.576) (7.187) (6.916)

δ2
t −68.640 −65.727 −283.691*** −297.611***

(77.713) (74.899) (94.016) (99.368)

Dummy −0.022*** −0.021*** −0.020** −0.017**
2000− 2005 (0.006) (0.006) (0.008) (0.008)

R2 0.447 0.423 0.446 0.426

Adj. R2 0.401 0.374 0.400 0.379

Obs. 40 40 40 40

Source: UK QLFS, all male respondents, aged 16-64, waves from 1995 to 2004.

Standard errors bootstrapped using 1000 repetitions, in parenthesis. ∗∗∗ p < .01, ∗∗ p < .05, ∗ p < .1.
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Table 5: Linear probability model regressing the proportion of job seekers using friends and relatives
as the main job search method and the proportion of workers that found a job via their social
networks against the job separation rate by skill level and region of residence, 5 years averages.

Network Investment Network Matching Rate

Job Seekers Unemployed
Job Seekers

Job Seekers Unemployed
Job Seekers

δt 2.889*** 2.511*** 7.507*** 7.533***
(0.616) (0.686) (1.274) (1.414)

δ2
t −21.072*** −17.570** −53.907*** −54.882***

(7.102) (8.124) (14.592) (16.051)

Dummy −0.018*** −0.017*** −0.012 −0.012
2000− 2005 (0.005) (0.006) (0.010) (0.012)

R2 0.356 0.302 0.435 0.393

Adj. R2 0.339 0.284 0.420 0.378

Obs. 120 120 120 120

Source: UK QLFS, all male respondents, aged 16-64, waves from 1995 to 2004.

Standard errors bootstrapped using 1000 repetitions, in parenthesis. ∗∗∗ p < .01, ∗∗ p < .05, ∗ p < .1.
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Table 6: Linear probability model regressing the proportion of job seekers using friends and relatives
as the main job search method against the job separation rate by region of residence for different
skill levels.

Low Skilled Medium Skilled High Skilled

δt 1.977** 3.244*** 2.907** 2.961** 0.950 0.632
(0.825) (0.716) (1.220) (1.218) (1.079) (1.180)

δ2
t −15.671** −23.736*** −22.055 −26.015 −15.527 −9.578

(7.197) (6.093) (20.239) (19.514) (19.587) (21.217)

Year No Yes No Yes No Yes
Dummies

R2 0.036 0.293 0.160 0.290 0.004 0.034

Adj. R2 0.026 0.252 0.152 0.248 −0.006 −0.022

Obs. 200 200 200 200 200 200

Source: UK QLFS, all male respondents, aged 16-64, waves from 1995:Q1 to 2004:Q4.

Standard errors bootstrapped using 1000 repetitions, in parenthesis. ∗∗∗ p < .01, ∗∗ p < .05, ∗ p < .1.
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Table 7: Linear probability model regressing the proportion of workers that found a job via friends
and relatives against the job separation rate by region of residence for different skill levels.

Low Skilled Medium Skilled High Skilled

δt 3.476** 4.438*** 5.242*** 5.403*** 4.175** 5.380***
(1.393) (1.454) (1.880) (1.826) (1.813) (1.733)

δ2
t −24.615** −31.096** −60.431** −66.135** −92.919*** −111.936***

(11.905) (13.126) (30.520) (29.225) (34.283) (32.994)

Year No Yes No Yes No Yes
Dummies

R2 0.066 0.186 0.077 0.123 0.047 0.113

Adj. R2 0.057 0.138 0.068 0.072 0.037 0.062

Obs. 200 200 200 200 200 200

Source: UK QLFS, all male respondents, aged 16-64, waves from 1995:Q1 to 2004:Q4.

Standard errors bootstrapped using 1000 repetitions, in parenthesis. ∗∗∗ p < .01, ∗∗ p < .05, ∗ p < .1.
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