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Abstract

In this paper we provide a detailed analysis of the impact of persistent cycles on the well-
known semi-parametric unit root tests of Phillips and Perron (1988, Biometrika 75, 335�346).
It is shown analytically and through Monte Carlo simulations that the presence of complex
(near) unit roots can severely bias the size properties of these unit root test procedures.
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1 Introduction

Cycles are an important feature of many macroeconomic, �nancial and other time series. As

such, studying their impact on the performance of pre-testing procedures, in particular on the

limiting null distributions and �nite sample properties of zero frequency unit root test statistics,

is of particular relevance. This is undertaken in Castro, Rodrigues and Taylor (2011) [CRT],

for the familiar augmented Dickey-Fuller [ADF] tests, the variance ratio test of Breitung (2002)

and the M unit root tests of Stock (1999) and Perron and Ng (1996).

This paper contributes to the literature in two ways. First it provides asymptotic and �nite

sample results for the ordinary least squares [OLS] estimator of the parameter of a nearly inte-

grated �rst-order autoregressive (AR(1)) model driven by shocks which are generated according

to a near integrated cyclical process; that is, a process characterised by a second order autore-

gressive structure with complex roots in the neighbourhood of unity. A second contribution

relates to the discussion of the behaviour of the well known and widely used Phillips-Perron

[PP] unit root tests (Phillips, 1987, Phillips and Perron, 1988) in this important context. It will

be shown that the presence of persistent cycles can seriously impact upon both the small and

large sample properties of these tests.

The remainder of the paper is organized as follows. In section 2 we present our reference

time series model which allows for persistent cycles (cyclical near-unit roots) and we brie�y
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outline the PP unit root tests. Section 3 details the large sample behaviour of the PP unit root

statistics and associated tests when persistent cycles are present in the data. In section 4, we

report �nite sample simulation results relating to the performance of the least squares estimator

from a �rst order autoregression and of the PP tests when persistent cycles are present in the

data. Section 5 concludes. All proofs are collected in an mathematical appendix.

2 The Model and Unit Root Tests

2.1 The Time Series Model

Autoregressive (AR) processes with roots on the complex unit circle are non-stationary and

display persistent cyclical behavior similar to that of persistent business cycles (see Bierens,

2001, Allen, 1997). Hence, consider, without loss of generality, a univariate time series fxtg
generated according to an autoregressive process of order 3 [AR(3)], viz.,

#�(L)(1� '0TL)xt = "t; "t � IID(0; �2); t = 1; 2; : : : ; T (1)

where L denotes the usual lag operator. It is assumed throughout that the process is initialised

at x�2 = x�1 = x0 = 0, although weakening this assumption to allow these starting values

to be of op(T 1=2) would not change any of the asymptotic results which follow. In (1) the

autoregressive polynomial #�(L) = (1 � 2 cos(�)'�TL + '2�TL2), with � 2 (0; �) and '�T :=
exp (c�=T ) ' (1 + c�=T ) with c� � 0 and �xed. Consequently, when c� = 0 (c� < 0), #�(L)

admits the complex conjugate pair of unit (near-unit) roots, exp (�i�) � cos (�) � i sin (�), at
the spectral frequency �. Notice that when c� < 0 a complex conjugate pair of stable roots

at frequency � is obtained for any �nite T . The polynomial #�(L) generates a persistent cycle

of 2�=� periods. Indeed, and as noted by Díaz-Emparanza (2004), it also generates an aliased

cycle of 2�=(2� � �) periods, and as such our analysis in fact covers � 2 (0; 2�)� f�g.
In (1) we also allow for a (near) unit root at the zero frequency through the parameter

'0T := exp (c0=T ) ' (1 + c0=T ) with c0 � 0 and �xed; a zero frequency unit (near-unit) root

is obtained when c0 = 0 (c0 < 0). In the case where c0 = c� = 0, fxtg is integrated of order
one at both the zero and � spectral frequencies, denoted I0(1) and I�(1), respectively. In this

case, it follows that zt := �xt, where � := (1 � L), will be I�(1) but I0(0), while ut := ��xt,
where �� :=

�
1� 2 cos(�)L+ L2

�
, will be I0(1) but I�(0). Our focus in this paper is on testing

the standard zero frequency unit root null hypothesis that xt � I0(1), H0 : '0T = 1, against

the alternative that xt � I0(0), H1 : j'0T j < 1, in the case where #�(L) admits a pair of

near-integrated complex roots at frequency �.

Note that model (1) can be easily extended to allow for deterministic components, weak

dependence in f"tg, and unit roots at other cyclical frequencies lying in (0; �) and/or at the
Nyquist (�) frequency, without altering the qualitative conclusions which can be drawn from

the analysis of (1). For expositional purposes we will therefore restrict our attention to (1).
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2.2 The PP Unit Root Test

The use of lag augmentation using lags of the dependent variable in the ADF regression (see,

for example, Dickey and Fuller, 1979) is motivated by the need to generate residuals which are

free of serial correlation. However, an alternative unit root testing approach that can be used

in the context of models with weakly dependent errors is that of Phillips (1987) and Phillips

and Perron (1988), known as the Phillips�Perron [PP] unit root tests. In contrast to the ADF

approach, the PP tests deal with serial correlation in the errors by employing a nonparametric

serial correlation correction factor, which is based on a consistent estimate of the long�run

variance of the error process. An in-depth investigation into the behaviour of the PP test when

di¤erent types of �rst order AR and MA dependencies are allowed for in the errors is given in

Nabeya and Perron (1994), Perron and Ng (1996) and Perron and Ng (1998).

The application of the PP unit root tests is based on the ordinary least squares (OLS)

parameter estimate, �̂ from the AR(1) (pseudo-) equation

xt = �xt�1 + ut: (2)

It is straightforward to show, using (A.5) in the Appendix and the results given in Hamilton

(1994, p.517), that � = 1 + 2c0T�1(1 � cos�) + O(T�2) in (2). Using the estimate �̂, the PP
unit root statistics are then computed as

Z� := T (�̂� 1)� 1
2

�
�̂
2 � s2

� 1

T 2

TX
t=1

x2t�1

!�1
(3)

Zt :=
s

�̂
tb�=1 � 1

2

�
�̂
2 � s2

� �̂2
T 2

TX
t=1

x2t�1

!�1=2
(4)

where tb�=1 := s�1 (�̂� 1)�PT
t=1 x

2
t�1

�1=2
and s2 := T�1

PT
t=1 bu2t and �̂2 are estimators of the

short and long run variances of futg; respectively. Following Perron and Ng (1996), two alter-
native estimators for the long-run variance may be considered. Firstly, a non-parametric kernel

estimator based on the sample autocovariances, �̂
2
= s2WA, with s

2
WA :=

PT�1
h=�T+1 !(h=m)̂h,

̂h := T�1
PT�jhj
t=1 butbut+jhj, where but are the OLS residuals from regressing xt on xt�1, with

kernel function ! (�) satisfying e.g. the general conditions reported in Jansson (2002, Assump-
tion A3) and the bandwidth parameter m 2 (0;1) satisfying 1=m + m2=T ! 0 as T ! 1
(which corresponds to Assumption A4 of Jansson, 2002). Secondly, a parametric autoregres-

sive spectral density [ASD] estimator, �̂
2
= s2AR; of the form suggested by Berk (1974), where

s2AR := s
2
k=
�
1�

Pk
i=1 b�i�2 ; and s2k := T�1Pb"2k;t, are computed using the estimates from the

ADF-type regression,

�xt = b�xt�1 + kX
j=1

b�j�xt�j + b"k;t (5)

for k = 2.
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3 Asymptotic Distribution Theory

In the case where ut in (2) satis�es certain mixing conditions, Phillips (1987) and Phillips and

Perron (1988, Theorem 3, p.342) present the limit results of the statistics in (3) and (4) under

the unit root null hypothesis, � = 1 in (2). However, where the data are generated according

to (1) these mixing conditions are violated. This is because here ut in (2) can be shown to be

given by ut = "t+1�yt�1+2�yt�2, where 1 := 2 cos��T�1(c0�2 cos�(c0+ c�))+O(T�2)
and 2 := �1�T�1(c0+2c�)+O(T�2), which admits (near-) unit root behaviour at frequency
�. As a consequence the limit results given in Phillips (1987) and Phillips and Perron (1988)

are no longer valid. To that end, in Proposition 3.1 we now detail the impact on the asymptotic

distributions of the PP tests when the data display persistent cyclical behaviour.

Proposition 3.1 Let the time series process fxtg be generated by (1) with '0T := 1+ c0=T and
'�T := 1 + c�=T; with c0 � 0; c� � 0 and �xed. Then for any � 2 (0; �), the OLS estimator b�
from (2) is such that, as T !1,

b�� 1) �
(1� cos�)

R 1
0

�h
W�
�;c�

(r)
i2
+
h
W �
�;c�

(r)
i2�

dr

2 (1 + cos�)
R 1
0 W

2
0;c0

(r) dr +
R 1
0

�h
W�
�;c�

(r)
i2
+
h
W �
�;c�

(r)
i2�

dr

(6)

where W0;c0 (r) ; W
�
�;c�

(r) and W �
�;c�

(r) are mutually independent standard Ornstein-Uhlenbeck

[OU] processes on [0,1].

Remark 1: Observing from Tanaka (1996, p.115) and Phillips (1989) that the functionals of

the OU processes which appear in the right member of (6) have positive support, and that

(1� cos�) and (1 + cos�) both lie in the interval (0; 2) for all � 2 (0; �), it is seen that (b�� 1)
will take negative values with probability one in the limit. As a result, T (b�� 1) will diverge to
�1 as T !1.

Remark 2: Noting that the expected value of a squared Brownian motion integrated between

zero and one is equal to 1
2 , it is seen that in the case where c0 = c� = 0, E (b�)) 1� (1�cos�)

(1+cos�)+1 .

This result is useful as it tells us that the expected value of b� will depend on the frequency �
at which the cyclical unit roots occur. In particular, noting that (1�cos�)

(1+cos�)+1 ! 0 as � ! 0 and

that (1�cos�)
(1+cos�)+1 ! 2 as � ! �; it follows that E (b�) will converge to 1 as � ! 0 and to �1 as

�! �. These patterns can clearly be seen in Figure 1 which is discussed in the next section.

Let us now turn our attention to the large sample behaviour of the Z� and Zt unit root

statistics in (3) and (4) when the long-run variance is estimated by either a kernel-based or ASD

estimator. These results are established in Theorem 3.1.

Theorem 3.1 Let the conditions of Proposition 3.1 hold. Then, for any � 2 (0; �), we have
that, as T !1:

(i) for �̂
2
:= s2WA, Z� ! �1 and Zt ! �1;
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(ii) for �̂
2
:= s2AR, Z� ! �1 and Zt ! �1.

Remark 3: The results in Theorem 3.1 show that the PP tests diverge as the sample size

diverges, regardless of whether a kernel-based or ASD long run variance estimator is used.

However, while the kernel-based PP unit root statistics always diverge to �1 in the presence of

persistent cycles, the ASD-based PP statistics diverge to either +1 or �1. As a consequence,
the kernel-based PP tests will have asymptotic size unity in the presence of persistent cycles,

while the ASD-based tests will have asymptotic size of either unity or zero. The behaviour of

these statistics is then governed by the large sample behaviour of the long run variance estimate

used. To gain more insight into the mechanics observe, using (3) and (6), that

Z� = T (�̂� 1)� 1
2

�
�̂
2 � s2

� 1

T 2

TX
t=1

x2t�1

!�1
= �TO+p (1)�

1

2

�
O+p

�
(mT )�

�
�O+p (T )

�
=O+p (1) (7)

where � is an indicator function such that � = 1 when a kernel-based long-run variance estimator

is used and � = 0 when an ASD based long-run variance estimator is considered, and O+p (1) is

used to indicate a quantity that is Op(1) and strictly positive in the limit. In the case of the

kernel-based estimator, �̂
2
:= s2WA, it then follows, due to the non-stationarity of (1�L)xt, that

s2WA = Op (mT ), where m is the bandwidth used to compute s2WA (see, the proof of Theorem

2 in Taylor 2003), and hence that Z� will diverge to �1 at the rate mT , with the same result

holding for Zt. In the case of the ASD estimator, �̂
2
:= s2AR, CRT establish the result that

s2AR
p! �2=(4 (1� cos�)2). Consequently, the Z� statistic will now diverge at the slower Op(T )

rate. Whether it diverges to +1 or �1 is determined by the relative magnitude of the �rst

and third terms on the right hand side of (7); speci�cally, for values of � close to zero the term

arising from s2 will dominate, e¤ecting divergence to +1, while otherwise Z� will be dominated
by T (�̂� 1) and, hence, will diverge to �1. The same holds for the test based on Zt. These
patterns are again clearly seen in Figure 1 which will be discussed in the next section.

Remark 4: It is straightforward to show that the results stated in Proposition 3.1 and Theorem

3.1 continue to hold under weaker linear process conditions on f"tg provided Assumptions 1.1-

1.2 of Gregoir (2004), adapted slightly to our situation, are satis�ed. Precisely, these conditions

entail that "t = d(L)et, where ("t;Ft) is a martingale di¤erence sequence, with �ltration (Ft),
such that E

�
"2t jFt�1

�
= �2 and suptE

�
j"tj2+�jFt�1

�
< 1 a.s. for some � > 0 and where

d(L) := 1 +
P1
j=1 djz

j is such that d (z) 6= 0 for z = 0 and z = � and
P1
j=1 j jdj j <1. In such

cases the lag truncation order, k, used in (5) needs to be such that 1=k + k3=T ! 0 as T !1;
see Said and Dickey (1984) and Chang and Park (2002).

4 Monte Carlo Experiments

In this section, we investigate the �nite sample properties of the PP unit root tests detailed in

section 2.2 when (near-) non-stationary cycles are present in the data. All results reported in
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this section are based on 5; 000Monte Carlo replications and were programmed using MATLAB.

Results are presented for the case of linear de-trended data only; the results for demeaned data

are qualitatively similar and are therefore omitted but can be obtained upon request.

The results of the experiments reported in Figures 1-5, relate to data generated according

to: h
1�

�
1 +

c0
T

�
L
i �
1� 2 cos(�)

�
1 +

c�
T

�
L+

�
1 +

c�
T

�2
L2
�
xt = �t � NIID(0; 1) (8)

with c0 = 0, so that the unit root null hypothesis holds, and with � 2 f0; 0:1�; :::; �g and
c� 2 f0;�5;�20;�100g. Results are reported for the sample sizes T 2 f100; 500g, initialised at
x�2 = x�1 = x0 = 0.

Remark 5: Notice that although we have included the frequencies � = 0 and � = � in our

Monte Carlo exercise, these were not allowed in the theoretical analysis conducted in the previous

section since they lead to second order integration (double unit root behaviour) at the zero and

Nyquist frequencies respectively.

We �rst investigate the �nite sample dependence of the OLS estimate, b�, from (2) on the

frequency � at which a persistent cycle occurs. To that end, in Figure 1, we plot the average

(taken across the Monte Carlo replications) value of b� against �.
Insert Figures 1� 2 about here

Figure 1 clearly highlights the result that for small values of c� the average of b� can vary
considerably from 1 in �nite samples, mirroring the asymptotic predictions discussed in Remark

2. This is particularly apparent when � > �
2 ; indeed as � approaches � it clearly converges

towards �1, as predicted by the results in Proposition 3.1 (see Remark 2). For larger values
of c� this e¤ect is attenuated for T = 100 but is still present for T = 500. As � approaches

zero, again the �nite samples results would appear to very closely mirror the prediction from

the asymptotic theory.

We next investigate the �nite sample behaviour of the kernel-based and ASD-based long-run

variance estimators used in constructing the PP tests. Results are reported in Figure 2 for both

the kernel-based Bartlett (denoted s2B) and the Quadratic Spectral (denoted s
2
QS) windows,

together with the autoregressive spectral (s2AR) estimator. From the results in Figure 2 we

observe that when the constant used to select the kernel window is � = 12; [the value of this

parameter used in the simulations reported in Figures 3-5 below] then for c� = 0 and c� = �5;
s2 > s2i ; i = AR; B; and QS; and consequently the component (s

2
i � s2) in the PP test statistics

will always be negative, thereby e¤ecting a shift to the right of the tests� distributions and

consequently leading to an under-rejection of the null hypothesis of a unit root.

Next in Figures 3-5 we report the empirical (null) rejection frequencies of the PP unit root

tests for a nominal 5% signi�cance level using the asymptotic critical values appropriate to

the case where (near-) non-stationary cycles are not present in the data; that is, from the

Dickey-Fuller (1979) distributions (see Hamilton, 1994, Tables B.5 and B.6, pp. 762-763). For
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�̂
2
:= s2WA, results are reported for the Bartlett and the Quadratic Spectral kernels, using the

data-dependent bandwidth formulations for these kernels suggested in Newey and West (1994,

Equations (3.8) to (3.15) and Table 1) with k = 12. For �̂
2
:= s2AR, we set the augmentation

order in the ADF type regression as k = 2.

Insert Figures 3 � 5 about here

A �rst observation that can be drawn from the results in Figures 3-5 is that the large sample

results given in Theorem 3.1 appear to provide useful predictions for the small sample behaviour

of the PP tests in the presence of persistent cycles. From the results in Theorem 3.1 we would

anticipate that those tests based on s2WA will almost always reject the null hypothesis of a zero

frequency unit root, when it is true, when a persistent cyclical component is present in the

data, but that the behaviour of the tests based on the ASD estimator, s2AR, will depend on

the frequency of the persistent cycle. This behaviour becomes more noticeable for the larger

sample (T = 500) considered and particularly so for the tests based on the Bartlett estimator.

From Figures 3-5 we also observe that the tests based on s2AR tend to be very undersized for low

frequency persistent cycles, with the converse true for high frequency cycles. This is a direct

consequence of the results reported in Figures 1-2 where we saw that b� ! �1 as � ! �; so

that T (b� � 1) will dominate the behaviour of the statistics, since T (b� � 1) ! �1 as � ! �:

On the other hand, as �! 0; it follows that b�! 1 and the behaviour of the statistics becomes

dominated by s2AR:

An important point to note in this analysis is that as � ! 0 the cyclical component�
1� 2 cos(�)(1 + c�

T )L+ (1 +
c�
T )

2L2
�
becomes indistinguishable from an I(2) component, as

also observed by Bierens (2001). Haldrup and Lildholdt (2002) provide a discussion of the limit

and �nite sample behaviour of the ADF and PP unit root tests when the data generating mech-

anism is an I(2) process. Their main conclusions regarding the PP test are consistent with

the results observed in Figures 4 and 5 (they only considered kernel based long-run variance

estimators in their analysis) when � is in the neighbourhood of zero. In particular, Haldrup and

Lildholdt (2002) observe that the densities of the PP tests have only moderate concentration in

the negative region; as a result, these tests will very unlikely reject the null hypothesis in favour

of stationarity in the I(2) region.

5 Conclusions

In this paper we have shown that the Phillips and Perron (1988) [PP] unit root t- and normalised

bias type test statistics have degenerate limiting null distributions in the presence of (near-)

non-stationary cycles in the data, yielding tests with an asymptotic size of either one or unity,

when (near-) non-stationary cycles are present. The PP tests which employ a kernel-based

long run variance estimator will always have asymptotic size of unity in such cases, while the

corresponding tests based on an autoregressive spectral density estimator of the long run variance

will have size of either unity or zero depending on the frequency at which the non-stationary

cycle occurs.
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Appendix

For the purpose of analysing the impact of (near) integrated cycles on the limit distributions

of the least-squares estimator of a �rst order AR model parameter and the PP zero frequency

unit root tests discussed in section 2.2 it will prove useful to �rst consider a frequency speci�c

orthogonal decomposition of xt. CRT show that for a time series process fxtg generated by (1)
with '0T = 1 + c0=T and '�T = 1 + c�=T; and c0 � 0; c� � 0 and �xed, for any � 2 (0; �) the
following decomposition holds,

xt = �0S0;c0(t) + C�;t +Op(1) (A.1)

where C�;t =
���
sin�

n
sin [�(t+ 1)]S��;c�(t)� cos [�(t+ 1)]S

�
�;c�

(t)
o
+

���
sin� fcos [� (t+ 1)]S

�
�;c�

(t)

+ sin [� (t+ 1)]S��;c�(t)g; S0;c0(t) :=
Pt
j=1 '

t�j
0T "j , S

�
�;c�

(t) :=
Pt
j=1 '

t�j
�T "j cos (j�), S

�
�;c�

(t) :=Pt
j=1 '

t�j
�T "j sin (j�), �0 := 1=2 (1� cos�), �

�
� := (1� (2� '0T ) cos�) =2 (1� cos�), and �

�
� :=

� sin (�)'0T =2 (1� cos�). To simplify notation, in what follows we de�ne ��� := 1
2 + op(T

�1),

and ��� := � sin (�) =2 (1� cos�) + op(T�1):

The generalisation of the result in (A.1) to lags of xt is now provided in Proposition A.1.

This result will prove useful in what follows.

Proposition A.1: Let the time series process fxtg be generated by (1) with '0T := 1 + c0=T

and '�T := 1 + c�=T; and c0 � 0; c� � 0 and �xed. Then, for any � 2 (0; �),

xt�k = �0S0;c0(t� k) + C�;t�k +Op(1); k = 1; 2; 3 (A.2)

where �0 := 1=2 (1� cos�) ; C�;t�k := ��k��S�;c�(t�k) with ��;1 := diagf� (2 sin�)
�1 ;� [2(1� cos�)]�1g;

��;2 := diag
n
� (2 cos�+1)

2 sin� ; 2 cos��12(cos��1)

o
; ��;3 := diag

�
�(4 cos

2 �+2 cos��1)
2 sin� ;�(�4 cos

2 �+2 cos�+1)
2(cos��1)

�
;

�� :=

"
sin [(t+ 1)�] � cos [(t+ 1)�]
cos [(t+ 1)�] sin [(t+ 1)�]

#
and S�;c�(t� k) := (S��;c�(t� k); S

�
�;c�

(t� k))0.

Proof: If {xt} is generated by (1) then using the approximation in CRT it follows that,

xt�k =
1

2 (1� cos�)

t�kX
j=1

't�j0T "j +
1� 2 cos (�) + '0TL
2 (1� cos�) sin�

t�kX
j=1

sin [� (t� k + 1� j)]'t�j�T "j : (A.3)

9



The �rst term on the right-hand side of (A.3) is immediately seen to correspond to the zero

frequency component, �0S0;c0(t� k). Turning to the second term, observe that
t�kX
j=1

sin [� (t� k + 1� j)]'t�j�T "j = sin [(t� k + 1)�]
t�kX
j=1

cos(j�)'t�j�T "j

� cos [(t� k + 1)�]
t�kX
j=1

sin(j�)'t�j�T "j

= sin [(t� k + 1)�]S��;c�(t� k)� cos [(t� k + 1)�]S
�
�;c�

(t� k):

(A.4)

Consider �rst the case of k = 1. From (A.3) and (A.4) we obtain that;

C�;t�1 =
1� 2 cos�
2 (1� cos�)

1

sin�

n
sin (�t)S��;c�(t� 1)� cos (�t)S

�
�;c�

(t� 1)
o

+
1

2 (1� cos�)
1

sin�

n
sin [� (t� 1)]S��;c�(t� 2)� cos [� (t� 1)]S

�
�;c�

(t� 2)
o
:

Furthermore, using conventional trigonometric identities this can be simpli�ed to,

C�;t�1 = � 1

2 sin�
fsin [� (t+ 1)]S�(t� 1)� cos [� (t+ 1)]S�(t� 1)g

+
1

2(cos�� 1) fcos [� (t+ 1)]S�(t� 1) + sin [� (t+ 1)]S�(t� 1)g+Op(1)

or equivalently as C�;t�1 = ��1��S�;c�(t � 1), as de�ned in Proposition A.1. The results for
C�;t�2 and C�;t�3 are obtained along similar lines. �

Proof of Proposition 3.1: Note from (1) with #�(L) = (1 � 2 cos(�)'�TL + '2�TL2), '0T =
(1 + c0=T ) and '�T = (1 + c�=T ) that,

xt =
h�
1 +

c0
T

�
+ 2 (cos�)

�
1 +

c�
T

�i
xt�1 �

��
1 +

c�
T

�2
+ 2 (cos�)

�
1 +

c�
T

��
1 +

c0
T

��
xt�2

+
�
1 +

c�
T

�2
xt�3 + "t (A.5)

and therefore b� := �PT
t=1 x

2
t�1

��1PT
t=1 xt�1xt can be written as a linear combination of three

components: the parameters of the process and the �rst and second order autocorrelations, i.e.,

b� =
h�
1 +

c0
T

�
+ 2 (cos�)

�
1 +

c�
T

�i
�

�
��
1 +

c�
T

�2
+ 2 (cos�)

�
1 +

c�
T

��
1 +

c0
T

�� PT
t=1 xt�1xt�2PT
t=1 x

2
t�1

+
�
1 +

c�
T

�2 PT
t=1 xt�1xt�3PT
t=1 x

2
t�1

+

PT
t=1 xt�1"tPT
t=1 x

2
t�1

: (A.6)

Using results from Chan and Wei (1988), it is straightforward to show that:

1

T 2

TX
t=1

xt�1xt�1�k =
1

T 2

TX
t=1

(C0;t�1 + C�;t�1) (C0;t�1�k + C�;t�1�k) + op(1)

)
�2
R 1
0 W

2
0;c0

(r) dr

4 (1� cos (�))2
+
�2

4

�
cos (k�)

2(1� cos (�)) sin2 (�)

�Z 1

0
W(��)2

�;c�
dr; k = 0; 1; 2 (A.7)

10



where we have de�ned W(��)2

�;c�
:= [W�

�;c�
(r)]2 + [W �

�;c�
(r)]2:

Noting that T
�2PT

t=1 xt�1"t
T�2

PT
t=1 x

2
t�1

in (A.6) is op (1) ; and using (A.7) it then follows that:

�k :=
T�2

PT
t=1 xt�1xt�1�k

T�2
PT
t=1 x

2
t�1

) 1�
(1� cos (k�))

R 1
0 W

(��)2

�;c�
dr

2 sin2 �
(1�cos�)

R 1
0 W

2
0;c0

(r)2 dr +
R 1
0 W

(��)2

�;c�
dr
; k = 1; 2: (A.8)

Noting that (A.6) can be written as b� = [1 + 2 (cos�)]� [1 + 2 (cos�)] �1 + �2 + op (1), we then
have, from the joint convergence result in (A.8), that

b� ) (1 + 2 cos�)
(1� cos�)

R 1
0 W

(��)2

�;c�
dr

2 sin2 �
(1�cos�)

R 1
0 W

2
0;c0

(r)2 dr +
R 1
0 W

(��)2

�;c�
dr

+1�
(1� cos 2�)

R 1
0 W

(��)2

�;c�
dr

2 sin2 �
(1�cos�)

R 1
0 W

2
0;c0

(r)2 dr +
R 1
0 W

(��)2

�;c�
dr

= 1 +
[(1 + 2 cos�) (1� cos�)� (1� cos 2�)]

R 1
0 W

(��)2

�;c�
dr

2 sin2 �
(1�cos�)

R 1
0 W

2
0;c0

(r)2 dr +
R 1
0 W

(��)2

�;c�
dr

:

Noting that cos 2� = 2 cos� � 1 and that
�
sin2 �

�
= (1� cos�) = (1 + cos�) this simpli�es to

the result stated in (6). �

Proof of Theorem 3.1: Consider �rst the case where kernel based long-run variance estimators

are used in the PP test statistics. First from the proof of Theorem 2 in Taylor (2003) it follows

that �̂
2
= s2WA = Op (mT ). Next consider s

2 = 1
T

PT
t=1 bu2t . Noting that

s2 =
1

T

 
TX
t=1

�x2t � (�̂� 1)
TX
t=1

xt�1�xt

!
;

then using (6), the result from Chan and Wei (1988) that T�2
PT
t=1�x

2
t )

�2
R 1
0 W

(��)2

�;c�
dr

4 sin2 �
, and �-

nally that based on Chan andWei (1988), and the corresponding result that T�2
PT
t=1 xt�1�xt )

�
�2
R 1
0 W

(��)2

�;c�
dr

8 sin2 �
, we obtain that,

T�1s2 )
�2
R 1
0 W

(��)2

�;c�
dr

4 sin2 �

0@1
2
+

(1� cos�)
R 1
0 W

(��)2

�;c�
dr

2 (1 + cos�)
R 1
0 W0;c0 (r)

2 dr + dr +
R 1
0 W

(��)2

�;c�
dr

1A :
As a result, s2 is of Op(T ).

For the Z� statistic we therefore have that

Z� = T (�̂� 1)� 1
2

�
�̂
2 � s2

� 1

T 2

TX
t=1

x2t�1

!�1
= �O+p (T )�

1

2
(O+p (mT )�O+p (T ))=O+p (1)

11



which is therefore seen to diverge to �1 at rate mT as T !1, where we have used the result
that (�̂� 1) is always negative (see Remark 1). Regarding the Zt statistic, following Ng and
Perron (1996), we have that Zt = Z�

�
1

�̂
2
T 2

PT
t=1 x

2
t�1

�1=2
so that,

Zt = �O+p (T )=O+p
�p
mT

�
� 1
2
(O+p (mT )�O+p (T ))=O+p

�p
mT

�
which again diverges to �1 as T !1.

For the case where a spectral autoregressive long-run variance estimator is used in construct-

ing the test statistics in (3), then since �̂
2
= s2AR = Op (1), and s2 = 1

T

PT
t=1 bu2t = Op(T ); it

follows that,

Z� = T (�̂� 1)� 1
2

�
�̂
2 � s2

� 1

T 2

TX
t=1

x2t�1

!�1
= �TO+p (1)�

1

2
(O+p (1)�O+p (T ))=O+p (1)

= �O+p (T )

and, consequently, diverges to either +1 or �1 as T !1. Similarly for Zt, we have that

Zt = �O+p (T )=O+p (1)�
1

2
(O+p (1)�O+p (T ))=O+p (1)

= �O+p (T )

which again diverges to either +1 or �1 as T !1. �
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Figure 1: Average AR(1) Parameter Estimate. DGP (8) with c0 = 0:
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Figure 2: Average Long Run Variance Estimates. DGP (8) with c0 = 0
T = 100; c� = 0 T = 500; c� = 0
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Note: � is the constant used to determine the kernel window, i.e. for the Bartlett, m = [(�T=100)2=9] and for
the Quadratic Spectral kernel m = [�(T=100)2=25]: The results in this table are computed with � = 12:



Figure 3: Empirical Rejection Frequencies of the PP Tests using an Autoregressive Spectral Density

Estimator of the Long Run Variance. DGP (8) with c0 = 0:
T = 100, c� = 0 T = 500, c� = 0
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Figure 4: Empirical Rejection Frequencies of the PP Tests using a Kernel-based Long Run Variance

Estimator (Bartlett). DGP (8) with c0 = 0:
T=100; c� = 0 T=500; c� = 0
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Figure 5: Empirical Rejection Frequencies of the PP Tests using a Kernel-based Long Run Variance

Estimator (Quadratic Spectral). DGP (8) with c0 = 0:
T=100; c� = 0 T=500; c� = 0
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