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The Political Economy of Natural Disaster Damage 

Abstract 

Economic damage from natural hazards can sometimes be prevented and always miti-

gated. However, private individuals tend to underinvest in such measures due to prob-

lems of collective action, information asymmetry and myopic behavior. Governments, 

which can in principle correct these market failures, themselves face incentives to un-

derinvest in costly disaster prevention policies and damage mitigation regulations. 

Yet, disaster damage varies greatly across countries. We argue that rational actors will 

invest more in trying to prevent and mitigate damage the larger a country’s propensity 

to experience frequent and strong natural hazards. Accordingly, economic loss from 

an actually occurring disaster will be smaller the larger a country’s disaster propensity 

– holding everything else equal, such as hazard magnitude, the country’s total wealth 

and per capita income. At the same time, damage is not entirely preventable and 

smaller losses tend to be random. Disaster propensity will therefore have a larger 

marginal effect on larger predicted damages than on smaller ones. We employ quan-

tile regression analysis in a global sample to test these predictions, focusing on the 

three disaster types causing the vast majority of damage worldwide: earthquakes, 

floods and tropical cyclones. 
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1. Introduction 

With an estimated economic loss of between 82 billion (Knapp et al. 2005), 125 bil-

lion (Munich Re 2011) and 150 billion US$ (Burton and Hicks 2005), hurricane 

Katrina used to be the costliest natural disaster ever. Then March 2011 came and with 

it the earthquake and subsequent tsunami in Japan. Estimated costs of this disaster 

have grown over time to 235 billion (World Bank, March 21) and finally to 309 bil-

lion US$ according to economic and fiscal policy minister Kaoru Yosano (Xinhua, 

March 23). Whatever the final cost will be, the Tōhoku quake will prove to be the 

most expensive natural disaster of all time.  

Should it be surprising that the two costliest disasters were triggered by a hur-

ricane in the US and an earthquake in Japan? On one level, the answer is clearly no. 

Common sense tells us that economic damage of natural disasters is higher the 

wealthier the affected country and the US and Japan are among the wealthiest nations 

in the world, though hurricane Katrina and the Tōhoku quake struck relatively poor 

areas of these countries.  

Still, we argue in this article that because the US and Japan are frequently hit 

by strong tropical cyclones and quakes, the predicted resulting economic loss is sys-

tematically lower than if cyclones and quakes of similar magnitude struck countries 

where such natural hazards generally tend to be less frequent and less strong. Natural 

disaster propensity, i.e. the frequency and intensity of experiencing natural hazards of 

a certain type, influences disaster damage because it determines the incentives faced 

by governments and private actors in undertaking measures that will prevent or at 

least mitigate damage in case hazard strikes. In this respect, the two costliest disasters 

in human history are outliers. They were so costly because existing safety measures 

were insufficient and failed, not because the US and Japanese governments irration-
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ally abstained from taking any precautionary measures in the face of high tropical cy-

clone and earthquake propensity, respectively. In fact, a safety device that fails leads 

to the worst case scenario: If individuals rely on the functioning of, say, a dam they 

will accumulate more wealth in areas behind the dam than they would have in the ab-

sence of the dam, thereby exacerbating the disaster effects (Hallegatte 2012). Thus, 

the absence of security measures reduces the cost of the worst disasters but increases 

the cost of the average disaster.  

In Keefer et al. (2011), we developed a theoretical argument predicting that 

earthquake propensity reduces earthquake mortality. Here, we augment our analysis in 

two important ways. First, we move the focus of the analysis from the death toll of 

disasters to the economic toll. While there is a growing literature analyzing the deter-

minants of disaster mortality (e.g., Kahn 2005; Anbarci et al. 2005; Escaleras et al. 

2007; Neumayer and Plümper 2007; Plümper and Neumayer 2009, Keefer et al. 2011) 

as well as a nascent literature on the determinants of disaster damage (e.g. Mendel-

sohn and Saher 2011; Schumacher and Strobl 2011) we are the first to argue that the 

political economy of natural disaster damage predicts systematically lower damage 

for any given disaster in high disaster propensity countries.  

Whether the effect of disaster propensity on mortality carries over to economic 

damage is not clear a priori. For example, early warning systems, which can dramati-

cally reduce fatality for some disaster types if people are moved out of harm’s way in 

time, are less effective for preventing economic loss as buildings and infrastructure 

cannot be entirely moved out of harms way before hazards strike. One consequence is 

that there are many more disaster events with recorded economic loss than with re-

corded loss of life. While previous studies had to rely on publicly available datasets, 

which do not report damage estimates for most events, we can employ data from a 
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comprehensive database assembled by Munich Re, the biggest re-insurance company 

in the world. 

Second, we extend the analysis to other types of natural disasters, demonstrat-

ing that the systematic impact of disaster propensity is not restricted to earthquakes, 

but carries over to the other two major disaster types, tropical cyclones and floods. 

Together with earthquakes, they account for roughly 70 percent of total worldwide 

economic damage from natural disasters.  

In the next section, we develop a political economy theory of natural disaster 

prevention and loss mitigation. We discuss the various reasons why private individu-

als underinvest in such measures. Governments can step in to overcome collective 

action, information asymmetry and myopic behavior problems, but they also suffer 

from similar incentives to underprovide disaster prevention and loss mitigation meas-

ures. We argue that private and public incentives are a function of disaster propensity 

(the expected frequency and magnitude with which hazards strike). In section 3, we 

describe our empirical research design in some detail and report results in section 4 

from our empirical analysis. Section 5 conducts two important sets of robustness tests. 

Section 6 concludes. 

2. Natural Disaster Prevention and Damage Mitigation 

Modern science has identified the causes of natural hazards and how to prevent or 

mitigate their consequences. Hazards are events triggered by natural forces, but they 

only turn into disasters if people are exposed to the hazard and are not resilient to 

fully absorbing the impact without damage to life or property (Schwab et al. 2007; 

Paul 2011). 

Three major, commonly accepted, factors determine disaster damage. First and 

foremost, the size of economic loss depends on the magnitude of the natural hazard 
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event triggering the disaster. All other things equal, a stronger earthquake, for exam-

ple, will cause more damage than a more moderate one and below a certain threshold 

a quake can hardly be felt, let alone cause much damage. Second, the economic toll is 

higher the wealthier the area hit by the natural hazard (Pielke et al. 1999; Neumayer 

and Barthel 2012; Bouwer 2011). While human beings cannot prevent natural hazards 

or reduce their strengths, they massively influence the level of wealth exposed to the 

forces of nature. There is also a risk that anthropogenic greenhouse gas emissions 

might increase the occurrence or the strength of weather-related natural hazard events 

(Min et al. 2011; Pall et al. 2011). Of course, the likely geographic location of disas-

ters is more easily predictable for some disaster types (e.g., volcanoes) than others 

(e.g., earthquakes) and for some hardly at all (e.g., hail storm). However, people ac-

cumulate wealth in areas known to be prone to, say, flooding or hurricane landfall or 

known to be near active tectonic plate boundaries. And third, people can either en-

tirely prevent damage with appropriate protection measures or at least mitigate dam-

age by increasing the resistance of the exposed wealth stock to the hazard impact. 

Better constructed buildings and infrastructure, even if they were not explicitly built 

with natural hazards in mind, can more easily withstand ground shaking and high-

speed winds, for example, than more poorly constructed ones.  

A theory of disaster damage, however, has to go beyond this functionalist log-

ic and also explain why some private individuals and governments specifically invest 

in disaster prevention and damage mitigation while others do not or not as much. We 

argue that investment incentives depend on the probability and expected magnitude of 

natural hazards, what we call disaster propensity. Where propensity is high, individu-

als have higher incentives to privately invest in prevention and mitigation measures 

and policy-makers are more likely to enact and enforce such measures than where 
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propensity is low. We start with private individuals (both households and profit-

maximizing firms). We argue that due to market failures and due to the expectation of 

public transfers after disaster, private individuals tend to underinvest in disaster pre-

vention and damage mitigation, even if disaster propensity is large, but more so when 

it is low. We then turn to governments, which can intervene to correct these market 

failures. Unfortunately, government intervention and investment in disaster preven-

tion and mitigation might induce individuals in turn to lower their own investments. 

2.1 Private Underinvestment in Disaster Prevention and Loss Mitigation 

Private individuals can adopt two main strategies for reducing expected disaster costs. 

They can refrain from settling or economically operating in high-risk areas or they 

can construct buildings and infrastructure in a way as to minimize the probability that 

they will become damaged if and when a hazard strikes. Neither strategy is particular-

ly popular. High-risk areas such as coastlines or flood plains are often places that pro-

vide large economic and amenity values to those settling or operating there – so long 

as nothing happens. Strong natural hazards tend to be rare, and the time of their occur-

rence as well as their exact location essentially unpredictable, prompting individuals 

to neglect or ignore the risk. For example, no one knows when exactly an earthquake 

will strike or with what magnitude or where its epicenter will be (Hough 2010). 

The second strategy is costly and thus unpopular, too. Earthquake-proof con-

structions increase building costs by at least 10 percent (Kenny 2009), solidly con-

structed dwellings that can withstand high top wind speeds are more expensive than 

light-weight wood constructions that can easily be blown away, and so on. Individual 

solutions to floods are even more expensive, which is why the Dutch water boards, 

some of which stem from the 13th century, can be regarded as one of the earliest pub-

licly provided goods. Compared to the opportunity cost of not settling or operating in 
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high-risk areas, the costs of disaster-proofing settlements are typically smaller. Yet, 

individuals often ignore potential impacts that come with very small probability, un-

known size and unknown timing (Camerer and Kunreuther 1989; Kunreuther 1996) 

and therefore fail to sufficiently protect their property against natural hazards. 

Even if individuals are willing to invest in disaster-proofing buildings, they 

face the additional uncertainty that whether a building will in fact be able to withstand 

the full force of a natural hazard is unknown even to the owner. It is exacting on the 

prospective owner to supervise the construction process in order to verify the quality 

of the materials used and of the construction itself, while disaster-proofness is diffi-

cult to verify after construction. These information asymmetries generate disincen-

tives for voluntary private investment in disaster-proof construction. As Akerlof 

(1970) has argued, an information gap between seller and buyer leads to a situation in 

which sellers do not sell high quality products and buyers assume that goods sold on 

this market are of low standard. Applied to the disaster-proofness of buildings (An-

barci et al. 2005), this means investors will find it difficult to get a higher price for 

high-quality disaster-proof constructions, which in turn discourages investment in 

such constructions in the first place.  

To make things worse, even constructors do not fully know the exact hazard 

strength up to which a construction can withstand the hazard’s destructive force. For 

those constructing a building and willing to invest in disaster-proofness, the worst 

case scenario is to invest marginally too little, in which case the costs of construction 

rise, but the building still does not withstand the hazard if it occurs. To be on the safe 

side, investors would thus have to invest significantly more than the highest expected 

level of hazard strength requires. This renders the investment even more expensive 

than on average necessary. 



9 

Another reason why private actors tend to underinvest in disaster prevention 

and damage mitigation is that they can cover themselves against the low-probability 

risk of natural disaster loss by purchasing insurance. Certain disaster types will be 

covered by general insurance policies, for others individuals or businesses need to buy 

special policies. However, sometimes insurance companies outright refuse to sell spe-

cific insurance policies in particularly high risk areas or set premia so high that few 

wish to buy them. Even if private individuals buy insurance, this does not reduce the 

total economic toll of natural disasters, unless the insurance policies are tied to certain 

requirements that can prevent or mitigate natural disaster loss and that the insured 

need to demonstrate to have enacted in order to receive pay-out. Often, the exact op-

posite may be the case: insured individuals exert less effort at pre-emptively reducing 

natural disaster loss in the knowledge that they will be insured in the event the hazard 

strikes – a phenomenon well-known as moral hazard. A similar problem arises if gov-

ernments compensate disaster victims for their losses. In fact, governments amplify 

the moral hazard problem by creating a so-called charity hazard problem (Raschky 

and Weck-Hannemann 2007). 

Also, buildings and infrastructure can be made to resist the forces of some 

types of natural hazards such as earthquakes and hurricanes, but not others. It would 

be prohibitively expensive for individuals to build flood-proof or fire-proof construc-

tions. No construction can withstand the lava flow from the eruption of a volcano. For 

these disaster types, either individuals resist the temptation to settle and economically 

operate in high-risk areas, which as argued above is unlikely, or the government needs 

to step in with regulations and other policies preventing or reducing settlement or or-

ganizing joint and collective investments such as dykes or flood management schemes 
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protecting buildings and infrastructure that cannot be rendered disaster-proof indi-

vidually. 

Finally, private individuals will underinvest in disaster prevention and mitiga-

tion policies because some of the economic damage in the form of indirect losses will 

be felt not by individuals directly affected, but by others in the wider sub-national re-

gion or even the entire country. Large-scale disasters cause significant collateral dam-

age and macroeconomic distortions that impact the wider population (Lall and 

Deichmann 2010; Hallegatte and Przysluski 2011). Only governments can internalize 

these costs that private individuals will ignore and we now turn to the role of public 

policy. 

2.2 Underprovision of Public Disaster Prevention and Damage Mitigation Policies 

Governments exert a strong influence on disaster costs. To start with, many buildings 

and the vast majority of a country’s infrastructure such as roads, ports, airports, power 

lines etc. are built for public ownership, in full or in part. Governments can thus di-

rectly impact the quality of these constructions. But the influence of governments 

reaches much further (Paul 2011). With private investment into disaster prevention 

and loss mitigation riddled by market failures caused by collective action problems, 

information asymmetries and myopic behavior of economic actors, governments 

could step in to correct these failures. They can discourage or even ban settlement or 

business operations in particularly high-risk areas. They can pass and strictly enforce 

disaster-proof building standards (Kenny 2009; World Bank and United Nations 

2010). They can overcome the collective action problem and provide public goods in 

the form of dam constructions, flood management and warning schemes (Carsell et al. 

2004), fire fighting facilities and the like. 
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Not unlike their citizens, however, governments have incentives to underin-

vest in such policies. They face the following dilemma. On the one hand, they can en-

gage in transfer payments for the benefit of pivotal groups with political influence or 

in projects which promise to increase short-term political support, but are entirely ir-

relevant for preventing or mitigating disaster damage. On the other hand, they can in-

vest in prevention and mitigation measures, which will only increase political support 

in the relatively unlikely event of a severe disaster and is costly both in terms of direct 

and opportunity costs. Not surprisingly, many governments prefer short-term political 

support. This is consistent with the findings of Gasper and Reeves (2011) who show 

that citizens pay greater attention to post-disaster policies than to pre-disaster preven-

tion and mitigation measures. Governments, though they perfectly know that a certain 

amount of long-term investments in disaster prevention and mitigation is in the social 

interest, decide in favor of their short-term incentives and invest too little. Illustrative 

of such incentives is that no one seems to have followed the example of the mayor of 

the small city of Fudai on the North-East coast of Japan who in the 1960s built a six-

teen meter high concrete wall against tsunami waves, which protected Fudai’s 3000 

inhabitants from the tsunami waves following the March 2011 earthquake. In his 

days, mayor Wamura was accused of and ridiculed for wasting public money, even 

though the construction was greatly facilitated by mountains on both sides of the dam 

such that the construction merely needed to close a gap between mountains (Daily 

Mail 2011). Other villages in the vicinity built much smaller dams, which were sim-

ply washed over by the March 2011 tsunami. 

Likewise, in the knowledge that discouraging or banning settlement and busi-

ness operations in high-risk areas is politically unpopular unless a natural disaster oc-

curs, governments will under-engage in such policies. The same applies for passing 
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and enforcing building standards (Healy and Malhotra 2009), which will be perceived 

as an additional burden on private individuals that serves little purpose in the absence 

of disaster. Yet, governments clearly vary in the extent to which they invest in preven-

tion and mitigation measures and our aim is to understand why. 

We argue that these incentives are largely influenced by the likelihood and ex-

pected strength of potential future hazard events. Though neither probability nor mag-

nitude can be known with certainty, areas differ in their propensity to experience fre-

quent and strong natural hazards. For simplicity, we call this disaster propensity even 

though it is strictly speaking hazard propensity or the propensity to experience poten-

tial disasters that matters. Disaster propensity can be approximately known by gov-

ernments and the public either via receiving expert advice from scientists or simply by 

inference from a country’s past history of events. Disaster propensity in turn also af-

fects tax-payers’ willingness to pay for costly prevention and mitigation measures im-

plemented by the government. Thus, the degree to which a government loses political 

support from voters and organized interests depends on whether citizens perceive 

such measures as responsible government action or wasteful over-reaction. Govern-

ments that invest more than citizens are willing to accept lose support. Loss of support 

amongst citizens is more important for democratic countries than for autocracies, in 

which the support amongst a small ruling elite matters more. However, even autocra-

cies cannot entirely ignore citizen support and in Keefer et al. (2011) we explore the 

conditioning effect of political regime type and other governance aspects on earth-

quake mortality. We leave an exploration of such heterogeneity across political re-

gimes in their response to natural hazard risk to future research.  

In sum, when the expected damage of a potential disaster increases, govern-

ments are incentivized to invest more in disaster prevention and damage mitigation. 
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Put differently, a high disaster propensity lowers the political costs to governments of 

investing in prevention and mitigation measures, while a low disaster propensity in-

creases these costs. Governments in countries with a high disaster propensity will thus 

invest more in such policies than governments in countries with a low disaster pro-

pensity.  

Does this mean that governments in high propensity countries can entirely 

prevent disaster damage? This is unlikely to be the case for most hazards. Quake-

proofing buildings, for example, can avert their collapse, but cannot entirely prevent 

property damage within buildings from the shaking of the ground transmitted into the 

shaking of buildings. Infrastructure and buildings that withstand collapse may still be 

damaged as the quake causes cracks and other deficiencies that require repair. Worse 

still, earthquakes can also trigger tsunamis, landslides and fires, which are much more 

difficult to mitigate, let alone prevent. It is telling that a significant portion of the 

damage of Japan’s two costliest earthquakes – the 1995 Kobe quake and the 2011 Tō-

hoku quake – was caused not by the ground shaking itself, but by the ensuing fire and 

tsunami waves, respectively. Likewise, better constructed buildings and infrastructure 

can escape collapse from very high wind speeds, but windows may still be smashed if 

a tropical cyclone passes through. Some damage will be caused by debris dragged 

along by the storm, while the associated rainfall may cause local flooding. In the 

worst case scenario (e.g. hurricane Katrina), the strong winds cause a storm surge that 

breaks the protective dam system. Flood damage can more easily be entirely pre-

vented with a proper system of dams and dykes in place. But it is very difficult to pre-

vent local flooding damage everywhere altogether. Such damage can occur because 

the rainfall in an area exceeds the intake capacity of the ground and, where existent, 
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of the drainage system or because strong rainfall lets creeks and rivers swell and even-

tually leave their streambed where dams and dykes are not existent or are inadequate. 

Two conclusions follow from our reasoning. First, policies enacted by gov-

ernments in high disaster propensity countries typically cannot fully prevent natural 

disaster damage. Small-scale damage is often unavoidable and essentially random. 

For example, the average estimated damage of minor earthquakes – smaller than 6.0 

on the Richter scale – in the low quake propensity countries of Spain (.19 million 

US$), Germany (10.6 million US$) and the UK (16.2 million US$) varies for no ap-

parent reason and is not much different from the average damage of 3.9 million US$ 

caused by minor quakes in Japan with its extreme quake propensity (all values de-

flated to 2009 prices). Where disaster preparedness should have its strongest effect is 

in the mitigation and prevention of large-scale damage. Japan is plagued by frequent 

large quakes. Yet only eleven quakes over the period 1980 to 2009 inflicted damage 

in excess of 500 million US$, only five in excess of one billion US$ and only two in 

excess of 30 billion US$. Compare this to Italy with its much lower quake propensity, 

where a rare earthquake of magnitude 6.3 on the Richter scale struck close to the town 

of L’Aquila in Central Italy in April 2009, leaving almost 300 people dead and caus-

ing an estimated damage of 2.5 billion US$. In contrast, the worst damage any quake 

of magnitude 6.3 (or lower) ever caused in Japan was 586 million US$. 

The second conclusion following from our reasoning is that while govern-

ments in high disaster propensity countries have an incentive to enact policies that can 

mitigate large-scale damage for most of the time, they also have a higher likelihood of 

experiencing an outlier disaster event with extreme damage. Exactly because high 

disaster propensity means that the country is frequently hit by strong natural hazards, 

the likelihood increases that one of these events exceeds the disaster preparedness ca-
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pacity that otherwise prevents large-scale damage. Hurricane Katrina caused damage 

that is about four times larger than the next most damaging hurricane during the 1980 

to 2011 period and at least one order of magnitude larger than average damage for 

similarly strong tropical cyclones. The 1995 Kobe quake and the 2011 Tōhoku quake 

caused about three and ten times higher damage, respectively, than the third most 

damaging quake from 2004 in Chūetsu as well as damage far in excess of average 

damage for even large Japanese quakes. Largely reduced damage from strong disaster 

events can thus go hand in hand with extreme damage from extreme outlier events.  

3. Research Design  

In this section, we test the hypothesis that follows from our discussion of the political 

economy of natural disaster damage, namely that countries with higher disaster pro-

pensity experience lower damage for a hazard of any given strength and that the effect 

of disaster propensity is more pronounced at the upper end of the disaster damage dis-

tribution. This renders ordinary least squares (OLS), the standard workhorse of econ-

ometric analysis, ill-suited for two reasons. First, it is vulnerable to the existence of 

outliers, which as argued above are bound to exist. Second, it fails to take into account 

that disaster propensity is likely to have stronger effects at the top end of the condi-

tional disaster damage distribution than at its lower end. In contrast, quantile regres-

sion, our chosen estimation technique, is more robust to the presence of outliers and 

allows us to go “beyond models for the conditional mean” (Koenker and Hallock 

2001: 151) by estimating different effects of the explanatory variables at different 

points of the conditional disaster damage distribution, thus providing a fuller picture 

of the impact of the explanatory variables than just the conditional mean given by 

OLS. It is also more suitable for heteroskedastic data (Cameron and Trivedi 2009: 
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205) and inspection of residuals as well as formal tests suggest the presence of het-

eroskedasticity in our data. 

We use quantile regression with bootstrapped standard errors with 100 sam-

pling repetitions. We report detailed results for five quantiles, namely the .05, .25, .5 

(median), .75 and .95 quantiles, but for the effect of disaster propensity we also pre-

sent graphs, which show its changing effect as one continuously moves in .05 inter-

vals from the .05 to the .95 quantile. A quantile (or percentile) q is defined such that q 

proportions of the values of the dependent variable fall below and (1-q) proportions 

fall above. Quantile regression works similarly to OLS. The estimation formulas are 

somewhat complex involving linear programming techniques (Cameron and Trivedi 

2009: 206-207), but in essence rather than minimizing the sum of squared residuals as 

with OLS, one minimizes the sum of equally weighted absolute residuals for the me-

dian quantile and the sum of asymmetrically weighted absolute residuals for all other 

quantiles (Koenker and Hallock 2005: 145). 

Analysis of disaster damage is hampered by the fact that none of the publicly 

available disaster datasets provide comprehensive economic loss estimates. This pa-

per’s analysis benefits from the authors having been granted access to a unique high-

quality dataset compiled by Munich Re (2011), the biggest re-insurance company in 

the world. The construction and maintenance of the dataset is described in detail in 

Wirtz et al. (2012) and Kron et al. (2012). Economic loss consists predominantly of 

damage to buildings and the physical infrastructure, but also of production losses if 

economic operations are interrupted as a result of the disaster. Even price increases as 

a consequence of demand surges in the wake of large disasters are included. What is 

not included, however, is the loss of life and no measures of the statistical value of life 

lost enters the economic damage estimates. 
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The data are of course not perfect. For example, smaller disasters are underre-

ported especially in the early periods. Likewise, data on disasters in developing coun-

tries appear to be less reliable than data on events in developed countries. Still, with 

more than 20,000 entries of country years with recorded disaster damage over the pe-

riod 1980 to 2009, it is by far the most comprehensive existing global database on 

natural disaster damage. The database reaches further back in time, but Munich Re 

acknowledges that before 1980 the data become increasingly unreliable and incom-

plete. 

In order to maintain the database, several analysts gather information about 

natural disaster events. Information on economic losses is collected from a variety of 

sources including government representatives, relief organizations and research facili-

ties, but also based on information of insurance associations and insurance services as 

well as on claims made by Munich Re’s customers. Initial reports on losses, which are 

usually available in the immediate aftermath of a disaster, are often highly unreliable. 

To deal with these problems, data are updated continuously as more accurate informa-

tion becomes available, which might be even years after the disaster event.  

Munich Re groups natural disasters into one of 24 types. These are avalanche, 

blizzard/snow storm, drought, flash flood, cold wave/frost, general flood, ground 

shaking/earthquake, hail storm, heat wave, lightning, landslide, local windstorm, 

sandstorm, storm surge, subsidence, tropical cyclone, tempest/severe storm, tornado, 

tsunami, rockfall, volcano, winter damage, wildfire, winter storm. We study the three 

types that cause the largest economic damage: earthquakes, tropical cyclones and 

general floods. General floods are distinguished from and do not include flash floods, 

storm surges and tsunami flooding (Kron et al. 2012: 544-545). General floods are 

typically caused by intense and prolonged rain affecting a large area or by snowmelt. 
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Flash floods instead refer to highly localized events caused by very heavy but geo-

graphically concentrated rainfall temporarily limited to at maximum one day. Storm 

surges are caused by high winds as part of winter storms or tropical cyclones, while 

most tsunamis are caused by earthquakes. 

Natural disasters can thus involve multiple hazard events. Tropical cyclones 

for example may also cause flooding and storm surges. Earthquakes may also cause 

tsunamis and fires. Where multiple hazard events are involved, it is typically impossi-

ble to attribute economic losses to individual hazards. As a general rule (see Kron et 

al. 2012: 538-540 and 544-545 for details), the losses from a tsunami triggered by an 

earthquake are attributed to the earthquake event. So, for example, the March 2011 

natural disaster in Japan, which is not yet in our dataset, would enter as quake dam-

age. For all disasters involving named tropical cyclones, the entire damage is attrib-

uted to the tropical cyclone. For all disasters involving both general floods and 

storms, the loss is generally attributed to the storm events rather than floods, unless 

there is information that water damage dominates damage caused by wind.  

Together, earthquakes, tropical cyclones and general floods account for 

roughly 70 percent of total disaster damage in the Munich Re dataset, with the rest 

scattered over the remaining 21 types. Of the estimated sum of disaster damage 

worldwide over the period 1980 to 2009 of more than 2.8 trillion US$ (in prices of 

2009), 28.8 percent were caused by general floods, 22.8 percent by tropical cyclones 

and 17.6 percent by earthquakes. The average damage is 212, 363 and 224 million 

US$, respectively, but damage is highly skewed with most disasters causing relatively 

small damage and relatively few disasters causing relatively large damage. Of the al-

most 3,900 country years with general flood events, 448 caused damage above 100 

million US$ and 98 resulted in damage above 1 billion US$. For the roughly 1,800 
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country years with tropical cyclone and the 2,200 country years with quake events, 

the relevant numbers are, respectively, 394 and 101 for cyclones and 117 and 40 for 

quakes. That there are more general flood than tropical cyclone and earthquake events 

is entirely consistent with many more countries and many more regions within coun-

tries exposed to flood hazards than exposed to earthquake or tropical cyclone hazards 

(World Bank 2005: 38). 

To appropriately test the predictions derived from our theory, we require 

measures of hazard strength or magnitude, both in order to control for strength itself 

but also to construct a proxy for the latent disaster propensity variable (see the discus-

sion below). The Munich Re database contains Richter scale and top wind speed in-

formation for the vast majority of quake and tropical cyclone events. It holds no com-

prehensive and consistent information on precipitation for floods. However, because 

almost without exception the geographical location of the disaster center is given by 

degree latitude and longitude, we combine information from the NatCatSERVICE 

database with precipitation measures taken from Willmott and Matsuura (2011). We 

acknowledge that the Richter scale is not the only relevant magnitude variable for 

quakes (see Keefer et al. 2011), nor are top wind speed and precipitation the only rel-

evant magnitude variables for tropical cyclones and floods. However, these measures 

capture the main destructive forces of the respective hazard events and offer the best 

available proxy since other relevant magnitude variables (such as focal depth for 

quakes, minimum air pressure for tropical cyclones or the melting of snow in moun-

tains feeding into upstream rivers for floods) are either not reported for the majority of 

relevant disaster events or entirely unavailable.  

We aggregate the data from the individual disaster event to the country-year 

level, principally because with a string of events of a particular disaster type the des-
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ignation of economic loss to each single event is somewhat arbitrary and does not of-

fer much additional information. For 56.4 percent of our country-years only one event 

of a specific disaster type had occurred. To arrive at country-year values in years with 

more than one event of a specific disaster type in a given country, we use the sum of 

values in a year in a country. Our results are robust toward estimating the same esti-

mation models at the individual disaster event level, which produces results that are 

statistically indistinguishable from our results at the country year level. 

We transform the raw hazard magnitude variables in accordance with what 

can be known about their likely non-linear impact on economic loss. Given the Rich-

ter scale is a base-32 logarithmic scale in terms of the amount of energy set free, 

which implies that small increases on the scale result in very large increases in un-

leashed energy (our proxy for hazard strength), we transform the Richter scale magni-

tude according to the formula 32^(Richter magnitude) so that the transformed scale 

measures the energy actually unleashed by the earthquake. Wind speed is typically 

seen as causing damage as a function of its cubed magnitude (Emanuel 2005; Schmidt 

et al. 2009). Nordhaus (2010) finds that a 9th-power transformation of top wind speed 

fits US hurricane damage data best, while Bouwer and Botzen (2011) find a best fit 

for an 8th-power transformation. Both sets of authors acknowledge that their estimated 

best fit power transformations are well above what other studies suggest. We thus take 

the cube of top wind speeds, i.e. the highest or maximum wind speed reached during 

the event, as our measure. For precipitation we know of no suggestions on how to ac-

count for any potential non-linearity. Monthly data on precipitation on a 0.5 degree 

latitude and 0.5 degree longitude spatial resolution is provided by Willmott and Ma-

tsuura (2011) and we use the absolute precipitation during the flood disaster period 

from the nearest measurement point to the disaster centre, implicitly assuming that 
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flood damage is a linear function of precipitation. Ideally, one would like to have data 

on daily rainfall, but such information is not available. Instead, we attribute monthly 

rainfall equally across days; longer lasting floods are attributed more rainfall by sum-

ming up “daily” rainfall over the period of the disaster. 

Compared to the transformed Richter scale as proxy for quake hazard strength, 

our hazard magnitude variables for tropical cyclones and floods suffer from larger 

measurement error. What matters for tropical cyclones are wind speeds sustained over 

some pre-defined short time period rather than top wind speeds as such, which might 

occur for only a few seconds without being sustained for longer. Unfortunately, the 

database only records top wind speeds, which will be correlated with maximum sus-

tained wind speeds, but less than perfectly so. For floods, our precipitation measure 

similarly measures true hazard magnitude only with considerable, probably even lar-

ger, measurement error. Floods need not be exclusively caused by local rainfall. Ra-

ther, they can be caused by rainfall or the melting of snow in far-away regions where 

the excess run-off water is carried by rivers downstream causing a flood there. Unfor-

tunately, we have no way of capturing for each of the 1662 general flood events in our 

sample the relevant area from which the excess water originates. Extending the num-

ber of relevant measurement points away from the nearest one to the disaster center 

would not only increase the likelihood that we capture potentially relevant rainfall in 

remote places, but also the likelihood that we capture irrelevant rainfall that, for to-

pographical reasons, could never reach the area affected by the disaster. 

We use the same sources of information for constructing our central explana-

tory variable disaster propensity – a latent variable. To approximate disaster propen-

sity, we sum over the entire period 1980 to 2008 all the transformed hazard magni-

tudes separately for each of the three specific disaster events occurring in a country. 
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This variable has two desirable properties: it is systematically higher the more fre-

quent a country experiences hazards of a certain type and the stronger these hazard 

events are. For example, the proxy for earthquake propensity takes very high values 

for Japan and Indonesia given very large quake activity, is high for Iran, medium for 

New Zealand and low for Germany or Spain with their low quake activity. It might 

appear problematic to use a value that covers the entire estimation period when this 

value can only be truly known to individuals and governments at the very end of the 

period. However, note that these measures proxy for latent and next to time-invariant 

disaster propensity of countries, such that the value from 1980 to 2008, for which we 

have data, should be very highly correlated with the values from, say, 1900 to 1979 or 

from the entire 19th century, for which we do not have data. 

As control variables we include a country’s total gross domestic product 

(GDP), with data taken from World Bank (2010). All other things equal, countries of 

larger economic size will have more wealth potentially destroyable and are therefore 

expected to experience larger losses. Similarly, economic growth leads to a rise in po-

tentially destroyable wealth and disaster losses may even grow faster than wealth 

(Hallegatte 2011). We have no information on wealth as such, but GDP can function 

as a proxy. While wealth is a stock and GDP is a flow, wealth and income (GDP) are 

highly correlated with each other. From the same source comes information on a 

country’s income per capita. There are reasons why richer countries should experi-

ence lower damages. Buildings and infrastructure tend to be better constructed in 

richer countries and thus more likely to withstand the forces of natural hazards than in 

poorer countries. Also, disaster prevention and damage mitigation measures are costly 

and both private actors and governments should find it easier to finance such meas-

ures in richer than in poorer countries, where economic opportunity cost imposes a 
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more binding constraint. In economic terminology, disaster prevention and damage 

mitigation should be normal goods, that is, goods with a positive per capita income 

elasticity of demand. At the same time, however, richer countries also accumulate 

more capital seemingly protected by such policies, which means they have higher 

capital at risk and thus higher economic losses in case of disasters that are not fully 

prevented (Hallegatte 2011, 2012) The effect of per capita income is therefore am-

biguous, given our proxy for wealth will necessarily fail to fully capture the value of 

capital at risk. Schumacher and Strobl (2011) report non-linear effects of per capita 

income on damage for earthquakes, but not for tropical cyclones or floods. We find no 

evidence for non-linear effects for any of our three disaster types and therefore only 

include the “linear” term. 

The sample size depends on whether an economic loss of a specific disaster 

type is recorded for a country year in the Munich Re database. Country years with no 

known damage are excluded from the sample. This presupposes that the database cap-

tures all relevant natural hazard events of quakes, tropical cyclones and floods – an 

assumption that can be questioned on various grounds: some hazard events will not 

have caused damage because of successful prevention measures, smaller disasters 

from the early years of data collection might have escaped Munich Re’s attention, and 

disaster events in the developing world are likely to be underreported. Starting with 

the latter two factors, they provide yet another reason for out quantile analysis: at 

higher quantiles of the conditional damage distribution under-reporting is not a prob-

lem since high damage events will not have escaped Munich Re’s attention or are un-

reported. As concerns the problem that some hazard events will not have caused dam-

age, as argued in the previous section, in the vast majority of cases hazard events are 

bound to cause some positive damage despite the best mitigation measures in place. 
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This will be particularly true for quakes and tropical cyclones. For floods, on the other 

hand, successful measures, e.g. in the form of dams, might sometimes prevent any 

recorded damage, such that the estimation results for floods might suffer from selec-

tion bias: some country years of damage zero should be in the sample as countries 

successfully withstood the hazard event, but are not included in the sample since no 

economic loss occurred. The sample selection makes it less likely that we find empiri-

cal support for our hypothesis under the assumption that countries with high propen-

sity are more likely to enact policies that can entirely prevent damage for some hazard 

events. The relative under-representation of smaller disasters in the early periods of 

our study does not seem to be severe since in non-reported robustness tests we found 

neither a linear year variable to be statistically significant nor did we find a trend in 

year-specific period dummy variables. The relative underrepresentation of damage in 

the developing world should also not represent a problem for our estimations since, 

firstly, we control for total economic size in countries and, secondly, any sample se-

lection effect is unlikely to be systematically correlated with disaster strength and dis-

aster propensity as these are not systematically higher or lower in developing coun-

tries. The appendix lists the countries included in each of the respective natural disas-

ter event type samples. 

We convert the nominal economic loss, GDP and income per capita data into 

constant US$ of 1995 using the US GDP deflator. Disaster damage is a highly skewed 

variable with the vast majority of events causing relatively little damage and only a 

small minority of events causing very large damage. To reduce skewness, we take the 

natural log of disaster damage and, as Mendelssohn and Saher (2011) have done be-

fore us, estimate log-log models. This allows interpreting the estimated coefficients as 
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elasticities. Our analysis starts in 1980, the year from which onwards damage esti-

mates were comprehensively collected in the database, and ends in 2008. 

4. Results 

Table 1 presents estimation results on the determinants of economic damage from 

earthquakes. Each column presents estimated elasticities at one of the five quantiles 

looked at, moving from the .05 quantile on the left to the .95 quantile on the right. Re-

sults for the lowest quantile at .05 corroborate our contention that very small damages 

tend to be random. With the exception of quake magnitude, none of the explanatory 

variables is statistically significant and the pseudo-R2 value is very low. The explana-

tory power of the estimation model increases for higher quantiles. As can be seen, 

disaster damage is higher the stronger the quake magnitude, as one would expect. Its 

effect increases at higher quantiles, meaning that for higher damages the same in-

crease in unleashed energy results in a larger increase in damage. The estimated elas-

ticity of a country’s GDP is smaller than unitary. This is consistent with Mendelsohn 

and Saher (2011) who similarly find income elasticities below one in their log-log es-

timation models, using EM-DAT as the source for disaster damage. What this implies 

is that quake damage increases less than proportionally with a country’s GDP as a 

proxy for the stock of potentially destroyable wealth. Per capita income has no consis-

tent effect on expected quake damage, being statistically significantly negative for 

only one quantile, the .75 one.  

Quake propensity, our central explanatory variable, is estimated to have a neg-

ative effect on quake damage throughout, albeit statistically indistinguishable from 

zero at the bottom quantile. The estimated elasticities increase for higher quantiles 

and become statistically significant. All other things equal, the effect of quake pro-

pensity on expected quake damage is almost four times larger at the .95 quantile than 
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at the .25 quantile. At the .95 quantile, a ten percent increase in quake propensity low-

ers expected damage by 2.4 percent, whereas the same increase in quake propensity 

lowers expected damage by only .8 percent at the .25 quantile. In other words, a very 

high quake propensity is much more conducive for reducing very large damages than 

it is for reducing relatively small quake damages. An F-test rejects the hypothesis that 

the estimated coefficients at the five quantiles are equal at p<0.0004, while another F-

test rejects the hypothesis that the coefficients at the .25 quantile (i.e., in the middle of 

the lower half of the distribution) and at the .75 quantile (i.e., in the middle of the up-

per half of the distribution) are equal at p<0.0037. Figure 1a illustrates how the elas-

ticity of quake propensity increases in absolute size as one moves in .05 intervals 

from the .05 to the .95 quantile.  

Table 2 presents estimation results for economic damage from tropical cy-

clones. As with earthquakes, the explanatory power of the regression model increases, 

if less strongly, moving from lower to higher quantiles, and damage increases with 

higher tropical cyclone hazard magnitude. Also similar to earthquakes, damage in-

creases less than unitarily with a country’s larger economic size and per capita income 

has no consistent effect on expected tropical cyclone damages. In fact, at the largest 

quantile per capita income even has a statistically significant positive effect. This 

could be because of the larger potentially destroyable wealth in richer countries, 

which might not be fully captured by a country’s total GDP. As concerns tropical cy-

clone propensity, it has no statistically significant effect at the lower quantiles of the 

cyclone damage distribution, but it becomes significant at roughly the median of the 

distribution. An F-test rejects the hypothesis that the estimated coefficients at the five 

quantiles are equal at p<0.0055, while another F-test rejects the hypothesis that the 

coefficients at the specific .25 and .75 quantiles are equal at p<0.0098. Figure 2a 
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graphically summarizes the changing effect of cyclone propensity on expected dam-

age. After an initial unexpected upward spike at low quantiles, it continuously falls 

(that is, becomes stronger in absolute terms) from about the .15 quantile onward, but 

levels off at about the .7 quantile. At high quantiles of the damage distribution cy-

clone propensity has a stronger effect on expected damage than at low quantiles, but 

at very high quantiles the effect is not stronger than at high quantiles. At the .75 quan-

tile, a ten percent increase in tropical cyclone propensity lowers expected cyclone 

damage by about five percent. 

Finally, table 3 presents estimation results for flood damage. The estimated 

elasticities for flood hazard magnitude increase at higher quantiles. As with quakes 

and tropical cyclones, the estimated elasticity of a country’s GDP is less than unitary, 

but somewhat higher than for these two other disaster types. Apparently, flood dam-

age increases almost proportionally with a country’s total economic size. Richer coun-

tries experience lower expected damage, an effect that is statistically distinguishable 

from zero at the lower quantiles up to the median. As concerns flood propensity, simi-

lar to the other disaster types there is no significant effect at the lowest quantile 

looked at. A negative effect starts at the .25 quantile, the effect becomes more nega-

tive and statistically significant at the median quantile, decreases in absolute size as 

well as becoming statistically indistinguishable from zero at the .75 quantile, but in-

creases again in absolute size at the .95 quantile, where it is again statistically distin-

guishable from zero. An F-test rejects the hypothesis that the estimated coefficients at 

the five quantiles are equal at p<0.0751. A similar F-test cannot reject the hypothesis 

that the coefficients at the .25 and .75 quantiles are equal, but rejects the hypothesis 

that the coefficients at the .05 and .95 quantiles are equal at p<0.0165. Figure 3a sum-

marizes the effect of flood propensity at continuously varying .05 intervals of quan-
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tiles of the flood damage distribution. Note that the 90 percent confidence interval 

around the estimated elasticities as represented by the shaded area is relatively larger 

than it was for tropical cyclones propensity, where the confidence interval in turn was 

larger than was the case for quake propensity. This is to be expected, given, as dis-

cussed above, the likely larger measurement error for the cyclone and even larger 

measurement error for the flood propensity measures and the fact that the flood sam-

ple might suffer from sample selection as well. Despite this larger measurement error, 

which renders it less likely that we find statistically significant evidence for our hy-

pothesis, on the whole it remains true that a higher flood propensity has no effect on 

avoiding smaller flood damages, but higher propensity predicts lower damage at high-

er quantiles of the conditional damage distribution. At median flood damage, a ten 

percent increase in flood propensity lowers predicted damage by an estimated 1.8 per-

cent, while at the .95 quantile, the same flood propensity increase lowers predicted 

damage by 2.3 percent. 

5. Robustness tests 

We conducted two sets of important robustness tests. First, our main estimations do 

not include country fixed effects since our theory makes predictions about the cross-

country variation of disaster propensity – a variable that does not change in the short 

term. However, we tested the robustness of our inferences toward including income 

group fixed effects (following the classification of countries into low-, lower middle-, 

upper middle-, high- and high-OECD income groups in World Bank 2010), which 

accounts for heterogeneity across countries according to their economic development 

status, as well as a fixed effect for small island nation states (as defined in World 

Bank 2010), which may be particularly vulnerable (Pelling and Uitto 2001). In addi-

tion, we included a measure of insurance penetration (disaster-relevant insurance pre-
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mia divided by gross domestic product), directly provided by Munich Re (Barthel and 

Neumayer 2012), in order to account for the fact that countries with higher insurance 

penetration are more likely to have disaster damage more comprehensively recorded. 

Detailed results are provided in the replication data, but figures 1b to 3b graphically 

show the effect of disaster propensity on each disaster type. Clearly, the results are 

very similar. For earthquakes, quake propensity has a significantly negative effect 

over a similar range as in the main estimations, except around the .6 quantile where 

the relative large confidence interval just so includes the zero threshold. For tropical 

cyclones, the inferences across the quantiles are also very similar, except for the very 

last one, in which the effect becomes marginally statistically insignificant. For flood 

damage, the effect of flood propensity is actually significantly negative for a wider 

range of quantiles in this robustness test compared to the main estimations. In sum, 

the corroborating empirical evidence for our theory of natural disaster damage is fully 

robust to accounting for country group heterogeneity and for differences in insurance 

penetration rates across countries. 

Our second robustness test deals with the fact that all data on natural disaster 

damage are based on estimates, which carry considerable uncertainty with them. In 

the opening paragraph of this article, we referred to cost estimates for hurricane 

Katrina that vary from a low of 82 billion US$ (Knapp and Brown 2005) to a high of 

150 billion US$ (Burton and Hicks 2005); similarly wide cost estimate intervals will 

almost inevitably result for the vast majority of other disaster events. We therefore 

conducted a Monte Carlo study, similar to what Plümper and Neumayer (2009) do for 

mortality from famines, which aims at exploring the effect of measurement error. 

Specifically, we re-estimated all models 100 times. In each re-estimation, we injected 

a random measurement error of up to ±30 percent on all observations. By reporting 



30 

the full range of coefficients from the Monte Carlo study (minimum to maximum) in 

table 4 rather than merely the mean, we report the full range of vulnerability of our 

estimates to measurement error, not just average vulnerability. Measurement error 

will only be random on average, but it is correlated with the covariates in almost all 

individual iterations. By looking at the full range of the Monte Carlo estimates, we 

thus also take some non-random measurement error into account. 

We focus on estimates for disaster propensity, our central explanatory vari-

able. As one would expect, the minimum of the Monte Carlo estimates suggest a 

stronger effect of disaster propensity, while the maximum suggests a weaker effect 

than the mean of the Monte Carlo estimates, which in turn is close to our main estima-

tion results without induced measurement error. Importantly, however, results are ful-

ly robust for all disaster types in the sense that the sign of the maximum of the Monte 

Carlo estimates is always consistent with the sign of the mean estimate, which in turn 

is consistent with the results from the main estimates without measurement error in-

jected into the observations. In other words, whenever our main estimations suggest a 

negative effect of disaster propensity this is not contradicted by either random (mean 

estimate) or partially non-random measurement error (minimum to maximum) ac-

counted for in the Monte Carlo analysis. 

6. Conclusion 

Economic damage caused by natural hazards can be mitigated, though typically not 

entirely prevented. In this article, we explained why individuals and governments of-

ten fail to do so. Given individuals face collective action problems, myopic behavior 

and asymmetric information, successful disaster prevention and damage mitigation in 

important respects depend on government policies, regulations and interventions. We 

have argued that the incentives to enact both private and public disaster prevention 
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and damage mitigation measures strongly depend on the propensity with which a 

country experiences frequent and strong natural hazards. Where propensity is high, 

the incentives are high and vice versa where propensity is low. Natural disasters thus 

cause more damage when a relatively strong outlier hazard hits an area where histori-

cally hazard events are infrequent or tend to be of low strength. 

We have also argued that the effect of disaster propensity on predicted damage 

is stronger toward the top end of the conditional damage distribution than toward the 

bottom end since smaller losses are often unpreventable and tend to be random. We 

found evidence for this hypothesis in our quantile regressions of damage from earth-

quakes, tropical cyclones and floods, which together make up nearly three quarters of 

global economic damage from natural disasters over the period 1980 to 2008. 

Our analysis does not answer the question whether the lower prevention and 

mitigation efforts undertaken in countries with lower disaster propensity is fully ra-

tional given the lower frequency or intensity of expected disasters or is sub-optimal. 

To answer this question one would have to compare the costs of prevention and miti-

gation efforts to the expected disaster damage costs, which is beyond the scope of this 

article since we have no information on the costs of prevention and mitigation. For the 

same reason, it is unclear whether countries with high disaster propensity invest suffi-

ciently in prevention and mitigation measures in response to the high propensity they 

face or whether even their higher efforts are still below the social optimum. Our the-

ory predicts that prevention and mitigation are likely to be sub-optimal given market 

and government failures, but we cannot empirically demonstrate this. 

One thing we do know is that even where disaster propensity is high, preven-

tion and mitigation can fail and, for the odd strong outlier hazard event, sometimes 

spectacularly so. For example, dams will be built, but built too low to withstand the 
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forces of extreme events. Ironically, the existence of a dyke will encourage settlement 

and investment in high-risk areas so that when the dam breaks fatalities and damage 

massively increase relative to the counterfactual situation of no dyke. As a result, ex-

pected damage for hazard events of “normal” magnitude is much lower, but damage 

will be larger if an exceptionally strong outlier hazard event hits that nullifies the pre-

ventive measures. Both hurricane Katrina and the Tōhoku earthquake demonstrate 

that extreme economic losses and fatalities are possible despite considerable public 

prevention and mitigation efforts. In New Orleans, the levees were just “not built for 

worst case events” (Handwerk 2005) and were inadequately maintained. In Japan, the 

vast majority of people were not killed and the greatest damage was not caused by the 

earthquake itself, for which Japan is well prepared, but by the ensuing tsunami, for 

which it is not. It would have been possible but extremely expensive to protect Ja-

pan’s coastline against waves of such height. In future research, we intend to explore 

further the costs and benefits of disaster prevention and mitigation measures in order 

to provide better insights into what an optimal policy response to a given disaster pro-

pensity would look like. 
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Table 1. Economic loss from earthquakes. 

 

Quantile: .05 .25 .5 .75 .95 
ln quake hazard magnitude 0.0818** 0.302*** 0.452*** 0.640*** 0.702*** 
 (0.0380) (0.0341) (0.0441) (0.0416) (0.0801) 
ln quake propensity -0.00755 -0.0725*** -0.108*** -0.207*** -0.242** 
 (0.0197) (0.0259) (0.0343) (0.0461) (0.103) 
ln per capita income of country 0.0387 -0.0332 -0.164 -0.404** 0.0204 
 (0.0542) (0.0859) (0.118) (0.176) (0.236) 
ln Gross Domestic Product of country 0.0722 0.369*** 0.502*** 0.753*** 0.633*** 
 (0.0540) (0.0528) (0.0831) (0.0875) (0.130) 
Constant -8.000*** -15.80*** -18.69*** -22.07*** -19.60*** 
 (1.545) (1.132) (1.497) (1.577) (3.720) 
Observations 847 847 847 847 847 
Countries 117 117 117 117 117 
R-squared 0.02 0.12 0.19 0.25 0.24 
 

Note: Dependent variable is the natural log of disaster loss. Bootstrapped standard 

errors in parentheses, based on 100 iterations. 

** significant at .05 level  *** at .01 level. 
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Table 2. Economic loss from tropical cyclones. 

 

Quantile: .05 .25 .5 .75 .95 
ln tropical cyclone hazard magnitude 1.459*** 1.420*** 1.607*** 1.468*** 0.917*** 
 (0.373) (0.217) (0.159) (0.187) (0.172) 
ln tropical cyclone propensity 0.242 0.240 -0.420* -0.524*** -0.370* 
 (0.206) (0.244) (0.233) (0.166) (0.199) 
ln per capita income of country -0.301 -0.0938 -0.273** 0.0728 0.202** 
 (0.200) (0.170) (0.111) (0.114) (0.102) 
ln Gross Domestic Product of country 0.278** 0.457*** 0.740*** 0.489*** 0.345*** 
 (0.129) (0.131) (0.0822) (0.0727) (0.0772) 
Constant -31.72*** -33.87*** -28.67*** -19.61*** -9.898*** 
 (5.950) (2.889) (2.749) (2.312) (2.637) 
Observations 428 428 428 428 428 
Countries 62 62 62 62 62 
R-squared 0.18 0.22 0.27 0.22 0.27 
 

Note: Dependent variable is the natural log of disaster loss. Bootstrapped standard 

errors in parentheses, based on 100 iterations. 

* significant at .1 level  ** at .05 level  *** at .01 level. 
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Table 3. Economic loss from general floods. 

 

Quantile: .05 .25 .5 .75 .95 
ln flood hazard magnitude 0.272*** 0.540*** 0.733*** 0.751*** 0.714*** 
 (0.0609) (0.0698) (0.0475) (0.0651) (0.0813) 
ln flood propensity 0.0672 -0.122 -0.177* -0.0870 -0.233* 
 (0.0802) (0.105) (0.101) (0.117) (0.0947) 
ln per capita income of country -0.334*** -0.403*** -0.205** -0.107 -0.0997 
 (0.0973) (0.104) (0.101) (0.0976) (0.127) 
ln Gross Domestic Product of country 0.537*** 0.812*** 0.892*** 0.812*** 0.709*** 
 (0.0605) (0.0812) (0.0759) (0.0761) (0.0988) 
Constant -15.66*** -19.18*** -20.92*** -18.41*** -12.22*** 
 (1.076) (1.272) (1.108) (1.218) (1.331) 
Observations 1,662 1,662 1,662 1,662 1,662 
Countries 161 161 161 161 161 
R-squared 0.07 0.13 0.20 0.23 0.22 
 

Note: Dependent variable is the natural log of disaster loss. Bootstrapped standard 

errors in parentheses, based on 100 iterations. 

* significant at .1 level  ** at .05 level  *** at .01 level. 
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Table 4. Summary Statistics of Monte Carlo Analysis testing the Robustness of Re-

sults toward Measurement Error. 

 

 Mean Std. Dev. Min Max 

Quake propensity     
    at .05 quantile  -0.0135 0.0096 -0.0364 0.0113 
    at .25 quantile -0.2349 0.0285 -0.3442 -0.1827 
    at .5 quantile -0.1038 0.0091 -0.1267 -0.0870 
    at .75 quantile -0.2090 0.0115 -0.2364 -0.1795 
    at .95 quantile -0.2368 0.0278 -0.3109 -0.1806 
     
Tropical cyclone propensity     
    at .05 quantile  0.2424 0.0501 0.1252 0.3580 
    at .25 quantile 0.2455 0.0486 0.1473 0.3528 
    at .5 quantile -0.4347 0.0425 -0.5453 -0.3388 
    at .75 quantile -0.5513 0.0455 -0.6488 -0.4297 
    at .95 quantile -0.3377 0.0751 -0.4842 -0.1602 
     
Flood propensity     
    at .05 quantile  0.0633 0.0335 -0.0063 0.1422 
    at .25 quantile -0.1065 0.0215 -0.1566 -0.0610 
    at .5 quantile -0.1664 0.0218 -0.2241 -0.1234 
    at .75 quantile -0.0765 0.0220 -0.1182 -0.0036 
    at .95 quantile -0.2420 0.0297 -0.3002 -0.1572 
 

Note: Random measurement error of up to ±30 percent injected into all observations. 

Based on 100 iterations. N = 847 for earthquakes, N = 428 for tropical cyclones and N 

= 1,662 for general floods. 
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Figure 1. The effect of quake propensity for varying damage quantiles. 

a) Main estimation 
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Note: the solid line shows the estimated coefficient, while the grey area represents a 

90 percent confidence interval around it. 
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Figure 2. The effect of tropical cyclone propensity for varying damage quantiles. 

a) Main estimation 
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b) Robustness test 
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Note: the solid line shows the estimated coefficient, while the grey area represents a 

90 percent confidence interval around it. 
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Figure 3. The effect of flood propensity for varying damage quantiles. 

a) Main estimation 
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Note: the solid line shows the estimated coefficient, while the grey area represents a 

90 percent confidence interval around it. 
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Appendix. Countries included in the samples. 

Earthquakes: 

Afghanistan, Albania, Algeria, Argentina, Armenia, Australia, Austria, Azerbaijan, 
Bangladesh, Barbados, Belgium, Bhutan, Bolivia, Bosnia and Herzegovina, Brazil, 
Bulgaria, Burundi, Canada, Chile, China, Colombia, Congo (DRC), Costa Rica, Croa-
tia, Cuba, Cyprus, Czech Republic, Djibouti, Dominica, Dominican Republic, Ecua-
dor, Egypt, El Salvador, Ethiopia, Fiji, France, Georgia, Germany, Ghana, Greece, 
Guatemala, Guyana, Haiti, Honduras, Hungary, Iceland, India, Indonesia, Iran, Israel, 
Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenya, Kyrgyz Republic, Lao PDR, Leba-
non, Macedonia, Madagascar, Malawi, Malaysia, Maldives, Mexico, Moldova, Mon-
golia, Morocco, Mozambique, Nepal, Netherlands, New Zealand, Nicaragua, Paki-
stan, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Poland, Portugal, 
Puerto Rico, Romania, Russian Federation, Rwanda, Samoa, Saudi Arabia, Sey-
chelles, Slovenia, Solomon Islands, Somalia, South Africa, Spain, Sri Lanka, St. Lu-
cia, St. Vincent and the Grenadines, Sudan, Sweden, Switzerland, Tajikistan, Tanza-
nia, Thailand, Tonga, Trinidad and Tobago, Tunisia, Turkey, Turkmenistan, Uganda, 
United Kingdom, United States, Uzbekistan, Vanuatu, Venezuela, Vietnam, Yemen, 
Zambia, Zimbabwe. 
 

Floods: 

Afghanistan, Albania, Algeria, Angola, Argentina, Armenia, Australia, Austria, Azer-
baijan, Bahamas, Bahrain, Bangladesh, Belarus, Belgium, Belize, Benin, Bhutan, Bo-
livia, Bosnia and Herzegovina, Botswana, Brazil, Bulgaria, Burkina Faso, Burundi, 
Cambodia, Cameroon, Canada, Central African Republic, Chad, Chile, China, Co-
lombia, Congo (DRC), Congo (Rep.), Costa Rica, Cote d'Ivoire, Croatia, Cuba, Cy-
prus, Czech Republic, Denmark, Djibouti, Dominica, Dominican Republic, Ecuador, 
Egypt, El Salvador, Eritrea, Estonia, Ethiopia, Fiji, Finland, France, Gabon, Gambia, 
The, Georgia, Germany, Ghana, Greece, Greenland, Guatemala, Guinea, Guinea-
Bissau, Guyana, Haiti, Honduras, Hungary, Iceland, India, Indonesia, Iran, Ireland, 
Israel, Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenya, Kuwait, Kyrgyz Republic, 
Lao PDR, Latvia, Lebanon, Lesotho, Liberia, Liechtenstein, Luxembourg, Mace-
donia, Madagascar, Malawi, Malaysia, Mali, Mauritania, Mexico, Moldova, Mongo-
lia, Morocco, Mozambique, Namibia, Nepal, Netherlands, New Zealand, Nicaragua, 
Niger, Nigeria, Norway, Oman, Pakistan, Panama, Papua New Guinea, Paraguay, 
Peru, Philippines, Poland, Portugal, Puerto Rico, Romania, Russian Federation, 
Rwanda, Saudi Arabia, Senegal, Sierra Leone, Singapore, Slovak Republic, Slovenia, 
Somalia, South Africa, South Korea, Spain, Sri Lanka, St. Lucia, St. Vincent and the 
Grenadines, Sudan, Suriname, Swaziland, Sweden, Switzerland, Syrian Arab Repub-
lic, Tajikistan, Tanzania, Thailand, Timor-Leste, Togo, Trinidad and Tobago, Tunisia, 
Turkey, Turkmenistan, Uganda, Ukraine, United Arab Emirates, United Kingdom, 
United States, Uruguay, Uzbekistan, Vanuatu, Venezuela, Vietnam, Yemen, Zambia, 
Zimbabwe. 
 

Tropical Cyclones: 

Antigua and Barbuda, Australia, Bahamas, Bangladesh, Barbados, Belize, Brazil, 
Cambodia, Canada, China, Colombia, Costa Rica, Cuba, Dominica, Dominican Re-
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public, El Salvador, Fiji, French Polynesia, Grenada, Guatemala, Haiti, Honduras, In-
dia, Indonesia, Iran, Jamaica, Japan, Madagascar, Malaysia, Mauritius, Mexico, Mi-
cronesia, Morocco, Mozambique, New Caledonia, New Zealand, Nicaragua, Oman, 
Pakistan, Papua New Guinea, Philippines, Portugal, Puerto Rico, Russian Federation, 
Samoa, Seychelles, Solomon Islands, South Africa, South Korea, Spain, Sri Lanka, 
St. Kitts and Nevis, St. Lucia, St. Vincent and the Grenadines, Swaziland, Thailand, 
Tonga, Trinidad and Tobago, United States, Vanuatu, Venezuela, Vietnam. 


