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The Political Economy of Natural Disaster Damage
Abstract

Economic damage from natural hazards can somebmesevented and always miti-
gated. However, private individuals tend to undest in such measures due to prob-
lems of collective action, information asymmetrylanyopic behavior. Governments,
which can in principle correct these market faifytiemselves face incentives to un-
derinvest in costly disaster prevention policiesl @@amage mitigation regulations.
Yet, disaster damage varies greatly across cosnifie argue that rational actors will
invest more in trying to prevent and mitigate dam#ge larger a country’s propensity
to experience frequent and strong natural haz#dsordingly, economic loss from
an actually occurring disaster will be smaller ldrger a country’s disaster propensity
— holding everything else equal, such as hazarchiatg, the country’s total wealth
and per capita income. At the same time, damag®tsentirely preventable and
smaller losses tend to be random. Disaster proyensli therefore have a larger
marginal effect on larger predicted damages thasnoaller ones. We employ quan-
tile regression analysis in a global sample to tlesse predictions, focusing on the
three disaster types causing the vast majority ashabe worldwide: earthquakes,

floods and tropical cyclones.



1. Introduction

With an estimated economic loss of between 82dhil(iKnapp et al. 2005), 125 bil-
lion (Munich Re 2011) and 150 billion US$ (BurtondaHicks 2005), hurricane
Katrina used to be the costliest natural disaster.&hen March 2011 came and with
it the earthquake and subsequent tsunami in J&siimated costs of this disaster
have grown over time to 235 billion (World Bank, ida 21) and finally to 309 bil-
lion US$ according to economic and fiscal policynisier Kaoru Yosano (Xinhua,
March 23). Whatever the final cost will be, thehdku quake will prove to be the
most expensive natural disaster of all time.

Should it be surprising that the two costliest slieses were triggered by a hur-
ricane in the US and an earthquake in Japan? Oiewak the answer is clearly no.
Common sense tells us that economic damage of ahadisasters is higher the
wealthier the affected country and the US and Japarmamong the wealthiest nations
in the world, though hurricane Katrina and thehdku quake struck relatively poor
areas of these countries.

Still, we argue in this article that because thedtd Japan are frequently hit
by strong tropical cyclones and quakes, the predicgsulting economic loss $ys-
tematically lowerthan if cyclones and quakes of similar magnitudlec& countries
where such natural hazards generally tend to Iseflequent and less strong. Natural
disaster propensity, i.e. the frequency and intgrdiexperiencing natural hazards of
a certain type, influences disaster damage bedauds¢ermines the incentives faced
by governments and private actors in undertakingsumees that will prevent or at
least mitigate damage in case hazard strikes.igiréspect, the two costliest disasters
in human history are outliers. They were so coBdgause existing safety measures

were insufficient and failed, not because the U8 Japanese governments irration-



ally abstained from taking any precautionary measum the face of high tropical cy-

clone and earthquake propensity, respectivelyatt, fa safety device that fails leads
to the worst case scenario: If individuals relytba functioning of, say, a dam they
will accumulate more wealth in areas behind the tizan they would have in the ab-

sence of the dam, thereby exacerbating the disaffeuts (Hallegatte 2012). Thus,

the absence of security measures reduces the fcthet worst disasters but increases
the cost of the average disaster.

In Keefer et al. (2011), we developed a theoretizgument predicting that
earthquake propensity reduces earthquake mortHlése, we augment our analysis in
two important ways. First, we move the focus of #malysis from the death toll of
disasters to the economic toll. While there is@ngng literature analyzing the deter-
minants of disaster mortality (e.g., Kahn 2005; Amdb et al. 2005; Escaleras et al.
2007; Neumayer and Plumper 2007; Plimper and Neen2Z®09, Keefer et al. 2011)
as well as a nascent literature on the determinaintésaster damage (e.g. Mendel-
sohn and Saher 2011; Schumacher and Strobl 201ayenvthe first to argue that the
political economy of natural disaster damage ptedsystematically lower damage
for any given disaster in high disaster propensiiyntries.

Whether the effect of disaster propensity on mibytahrries over to economic
damage is not clear priori. For example, early warning systems, which camdta
cally reduce fatality for some disaster types ibple are moved out of harm’s way in
time, are less effective for preventing economgslas buildings and infrastructure
cannot be entirely moved out of harms way befomatds strike. One consequence is
that there are many more disaster events with dedoeconomic loss than with re-
corded loss of life. While previous studies haddly on publicly available datasets,

which do not report damage estimates for most syem can employ data from a



comprehensive database assembled by Munich Réjgbest re-insurance company
in the world.

Second, we extend the analysis to other typestafaladisasters, demonstrat-
ing that the systematic impact of disaster proggnsinot restricted to earthquakes,
but carries over to the other two major disasteesy tropical cyclones and floods.
Together with earthquakes, they account for rougtilypercent of total worldwide
economic damage from natural disasters.

In the next section, we develop a political econdhgory of natural disaster
prevention and loss mitigation. We discuss theowsrireasons why private individu-
als underinvest in such measures. Governments tegnirs to overcome collective
action, information asymmetry and myopic behaviosbtems, but they also suffer
from similar incentives to underprovide disastervention and loss mitigation meas-
ures. We argue that private and public incentivesaafunction of disaster propensity
(the expected frequency and magnitude with whichatds strike). In section 3, we
describe our empirical research design in someldatd report results in section 4
from our empirical analysis. Section 5 conducts important sets of robustness tests.

Section 6 concludes.

2. Natural Disaster Prevention and Damage Mitigation

Modern science has identified the causes of nahaaards and how to prevent or
mitigate their consequences. Hazards are evegtgeted by natural forces, but they
only turn into disasters if people are exposedht ltazard and are not resilient to
fully absorbing the impact without damage to lifie pyoperty (Schwab et al. 2007;
Paul 2011).

Three major, commonly accepted, factors determisester damage. First and

foremost, the size of economic loss depends ommignitude of the natural hazard



event triggering the disaster. All other things &ga stronger earthquake, for exam-
ple, will cause more damage than a more moderaend below a certain threshold
a quake can hardly be felt, let alone cause muotada. Second, the economic toll is
higher the wealthier the area hit by the naturalahé (Pielke et al. 1999; Neumayer
and Barthel 2012; Bouwer 2011). While human bersgmot prevent natural hazards
or reduce their strengths, they massively influetheelevel of wealth exposed to the
forces of nature. There is also a risk that anthgepic greenhouse gas emissions
might increase the occurrence or the strength eftlves-related natural hazard events
(Min et al. 2011; Pall et al. 2011). Of course, likely geographic location of disas-
ters is more easily predictable for some disasteed (e.g., volcanoes) than others
(e.g., earthquakes) and for some hardly at all,(bayl storm). However, people ac-
cumulate wealth in areas known to be prone to, #@yding or hurricane landfall or
known to be near active tectonic plate boundadesl third, people can either en-
tirely prevent damage with appropriate protectiogasures or at least mitigate dam-
age by increasing the resistance of the exposetthvstmck to the hazard impact.
Better constructed buildings and infrastructuresreif they were not explicitly built
with natural hazards in mind, can more easily wiéhd ground shaking and high-
speed winds, for example, than more poorly conttclones.

A theory of disaster damage, however, has to gormyhis functionalist log-
ic and also explain why some private individuald governments specifically invest
in disaster prevention and damage mitigation wbileers do not or not as much. We
argue that investment incentives depend on theghitity and expected magnitude of
natural hazards, what we call disaster propengftyere propensity is high, individu-
als have higher incentives to privately invest ravention and mitigation measures

and policy-makers are more likely to enact and mefcsuch measures than where



propensity is low. We start with private individaaf{both households and profit-
maximizing firms). We argue that due to marketuiges and due to the expectation of
public transfers after disaster, private individutdnd to underinvest in disaster pre-
vention and damage mitigation, even if disastepensity is large, but more so when
it is low. We then turn to governments, which catelivene to correct these market
failures. Unfortunately, government interventiordanvestment in disaster preven-

tion and mitigation might induce individuals in muio lower their own investments.

2.1 Private Underinvestment in Disaster Prevenaod Loss Mitigation

Private individuals can adopt two main strateg@séducing expected disaster costs.
They can refrain from settling or economically aigrg in high-risk areas or they
can construct buildings and infrastructure in a \&ayo minimize the probability that
they will become damaged if and when a hazardesrikleither strategy is particular-
ly popular. High-risk areas such as coastlinesamdf plains are often places that pro-
vide large economic and amenity values to thosérgebr operating there — so long
as nothing happens. Strong natural hazards tebe tare, and the time of their occur-
rence as well as their exact location essentiallyredictable, prompting individuals
to neglect or ignore the risk. For example, no kmaws when exactly an earthquake
will strike or with what magnitude or where its egnter will be (Hough 2010).

The second strategy is costly and thus unpopuwar, Earthquake-proof con-
structions increase building costs by at least é&&gnt (Kenny 2009), solidly con-
structed dwellings that can withstand high top wapdeds are more expensive than
light-weight wood constructions that can easilybb@vn away, and so on. Individual
solutions to floods are even more expensive, wigciwhy the Dutch water boards,
some of which stem from the ®&entury, can be regarded as one of the earlidst pu

licly provided goods. Compared to the opportunibgtoof not settling or operating in



high-risk areas, the costs of disaster-proofinglesaents are typically smaller. Yet,
individuals often ignore potential impacts that @owmith very small probability, un-
known size and unknown timing (Camerer and Kunreut989; Kunreuther 1996)
and therefore fail to sufficiently protect theioperty against natural hazards.

Even if individuals are willing to invest in disastproofing buildings, they
face the additional uncertainty that whether adig will in fact be able to withstand
the full force of a natural hazard is unknown et@ithe owner. It is exacting on the
prospective owner to supervise the constructiorrgs® in order to verify the quality
of the materials used and of the constructionfitsgtile disaster-proofness is diffi-
cult to verify after construction. These informatiasymmetries generate disincen-
tives for voluntary private investment in disagpeoof construction. As Akerlof
(1970) has argued, an information gap betweenrsatié buyer leads to a situation in
which sellers do not sell high quality products &ngyers assume that goods sold on
this market are of low standard. Applied to theadisr-proofness of buildings (An-
barci et al. 2005), this means investors will findlifficult to get a higher price for
high-quality disaster-proof constructions, which turn discourages investment in
such constructions in the first place.

To make things worse, even constructors do noy tutow the exact hazard
strength up to which a construction can withstdredtitazard’s destructive force. For
those constructing a building and willing to investdisaster-proofness, the worst
case scenario is to invest marginally too litttewihich case the costs of construction
rise, but the building still does not withstand ttezard if it occurs. To be on the safe
side, investors would thus have to invest signifitamore than the highest expected
level of hazard strength requires. This rendersirtkestment even more expensive

than on average necessary.



Another reason why private actors tend to undesnhire disaster prevention
and damage mitigation is that they can cover thémsegainst the low-probability
risk of natural disaster loss by purchasing inscearCertain disaster types will be
covered by general insurance policies, for othedssiduals or businesses need to buy
special policies. However, sometimes insurance aorneg outright refuse to sell spe-
cific insurance policies in particularly high riskeas or set premia so high that few
wish to buy them. Even if private individuals bungurance, this does not reduce the
total economic toll of natural disasters, unlegsitisurance policies are tied to certain
requirements that can prevent or mitigate natursdster loss and that the insured
need to demonstrate to have enacted in order &veepay-out. Often, the exact op-
posite may be the case: insured individuals exsd &ffort at pre-emptively reducing
natural disaster loss in the knowledge that thdlybeiinsured in the event the hazard
strikes — a phenomenon well-known as moral hazagimilar problem arises if gov-
ernments compensate disaster victims for theiregsk fact, governments amplify
the moral hazard problem by creating a so-calleatighhazard problem (Raschky
and Weck-Hannemann 2007).

Also, buildings and infrastructure can be madeetsist the forces of some
types of natural hazards such as earthquakes andames, but not others. It would
be prohibitively expensive for individuals to bufldod-proof or fire-proof construc-
tions. No construction can withstand the lava ffoem the eruption of a volcano. For
these disaster types, either individuals resistéhgptation to settle and economically
operate in high-risk areas, which as argued al®uelikely, or the government needs
to step in with regulations and other policies preing or reducing settlement or or-

ganizing joint and collective investments such yeed or flood management schemes



protecting buildings and infrastructure that canhetrendered disaster-proof indi-
vidually.

Finally, private individuals will underinvest ingdister prevention and mitiga-
tion policies because some of the economic damageesiform of indirect losses will
be felt not by individuals directly affected, but bthers in the wider sub-national re-
gion or even the entire country. Large-scale desastause significant collateral dam-
age and macroeconomic distortions that impact th@emnwpopulation (Lall and
Deichmann 2010; Hallegatte and Przysluski 2011)y @avernments can internalize

these costs that private individuals will ignorelame now turn to the role of public

policy.

2.2 Underprovision of Public Disaster Preventiordddamage Mitigation Policies

Governments exert a strong influence on disasteiscdo start with, many buildings
and the vast majority of a country’s infrastructateh as roads, ports, airports, power
lines etc. are built for public ownership, in folt in part. Governments can thus di-
rectly impact the quality of these constructionsit Bhe influence of governments
reaches much further (Paul 2011). With private stwent into disaster prevention
and loss mitigation riddled by market failures audy collective action problems,
information asymmetries and myopic behavior of @toit actors, governments
could step in to correct these failures. They daoalirage or even ban settlement or
business operations in particularly high-risk arddsey can pass and strictly enforce
disaster-proof building standards (Kenny 2009; \WoBank and United Nations
2010). They can overcome the collective action lemband provide public goods in
the form of dam constructions, flood managementvaaiching schemes (Carsell et al.

2004), fire fighting facilities and the like.

10



Not unlike their citizens, however, governments enawentives to underin-
vest in such policies. They face the following dilea. On the one hand, they can en-
gage in transfer payments for the benefit of pivgtaups with political influence or
in projects which promise to increase short-territipal support, but are entirely ir-
relevant for preventing or mitigating disaster dgmeaOn the other hand, they can in-
vest in prevention and mitigation measures, whidhomly increase political support
in the relatively unlikely event of a severe disastnd is costly both in terms of direct
and opportunity costs. Not surprisingly, many goveents prefer short-term political
support. This is consistent with the findings ofs@ar and Reeves (2011) who show
that citizens pay greater attention to post-disgstéicies than to pre-disaster preven-
tion and mitigation measures. Governments, thohgl perfectly know that a certain
amount of long-term investments in disaster praearand mitigation is in the social
interest, decide in favor of their short-term intbegs and invest too little. lllustrative
of such incentives is that no one seems to havewetl the example of the mayor of
the small city of Fudai on the North-East coasiaban who in the 1960s built a six-
teen meter high concrete wall against tsunami wawbgh protected Fudai’'s 3000
inhabitants from the tsunami waves following thertha2011 earthquake. In his
days, mayor Wamura was accused of and ridiculedvéesting public money, even
though the construction was greatly facilitatedfoyuntains on both sides of the dam
such that the construction merely needed to clogapabetween mountains (Daily
Mail 2011). Other villages in the vicinity built mmb smaller dams, which were sim-
ply washed over by the March 2011 tsunami.

Likewise, in the knowledge that discouraging orriag settlement and busi-
ness operations in high-risk areas is politicaliypopular unless a natural disaster oc-

curs, governments will under-engage in such pdiciéhe same applies for passing
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and enforcing building standards (Healy and Mak@009), which will be perceived
as an additional burden on private individuals 8&ves little purpose in the absence
of disaster. Yet, governments clearly vary in tkeest to which they invest in preven-
tion and mitigation measures and our aim is to tstdad why.

We argue that these incentives are largely infladrzy the likelihood and ex-
pected strength of potential future hazard everiiteugh neither probability nor mag-
nitude can be known with certainty, areas diffetheir propensity to experience fre-
guent and strong natural hazards. For simplicigy,call this disaster propensity even
though it is strictly speaking hazard propensityhe propensity to experienpeten-
tial disasters that matters. Disaster propensity caappeoximately known by gov-
ernments and the public either via receiving expdvice from scientists or simply by
inference from a country’s past history of evelisaster propensity in turn also af-
fects tax-payers’ willingness to pay for costlyyertion and mitigation measures im-
plemented by the government. Thus, the degree tchvehgovernment loses political
support from voters and organized interests depemdsvhether citizens perceive
such measures as responsible government actiorasteful over-reaction. Govern-
ments that invest more than citizens are willingdoept lose support. Loss of support
amongst citizens is more important for democratiandries than for autocracies, in
which the support amongst a small ruling elite sratimore. However, even autocra-
cies cannot entirely ignore citizen support andKaefer et al. (2011) we explore the
conditioning effect of political regime type andhet governance aspects on earth-
guake mortality. We leave an exploration of sucketwgeneity across political re-
gimes in their response to natural hazard riskitoré research.

In sum, when the expected damage of a potentiaktdis increases, govern-

ments are incentivized to invest more in disastergntion and damage mitigation.
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Put differently, a high disaster propensity lowtrs political costs to governments of
investing in prevention and mitigation measuresileva low disaster propensity in-
creases these costs. Governments in countriesavitgh disaster propensity will thus
invest more in such policies than governments ntaes with a low disaster pro-
pensity.

Does this mean that governments in high propertyntries can entirely
prevent disaster damage? This is unlikely to bectme for most hazards. Quake-
proofing buildings, for example, can avert theillajse, but cannot entirely prevent
property damage within buildings from the shakifghe ground transmitted into the
shaking of buildings. Infrastructure and buildirtbat withstand collapse may still be
damaged as the quake causes cracks and otheedeigs that require repair. Worse
still, earthquakes can also trigger tsunamis, leshels and fires, which are much more
difficult to mitigate, let alone prevent. It is liely that a significant portion of the
damage of Japan’s two costliest earthquakes —388& Kobe quake and the 201&-T
hoku quake — was caused not by the ground shalgeld, ibut by the ensuing fire and
tsunami waves, respectively. Likewise, better amesed buildings and infrastructure
can escape collapse from very high wind speedsyimatows may still be smashed if
a tropical cyclone passes through. Some damagebwiltaused by debris dragged
along by the storm, while the associated rainfadlyncause local flooding. In the
worst case scenario (e.g. hurricane Katrina), feeng winds cause a storm surge that
breaks the protective dam system. Flood damagentae easily be entirely pre-
vented with a proper system of dams and dykesaoeplBut it is very difficult to pre-
vent local flooding damage everywhere altogethechSdamage can occur because

the rainfall in an area exceeds the intake capadfitye ground and, where existent,
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of the drainage system or because strong raimfglldreeks and rivers swell and even-
tually leave their streambed where dams and dylesat existent or are inadequate.

Two conclusions follow from our reasoning. Firsglipies enacted by gov-
ernments in high disaster propensity countriescglfyi cannot fully prevent natural
disaster damage. Small-scale damage is often wteei and essentially random.
For example, the average estimated damage of reamtinquakes — smaller than 6.0
on the Richter scale — in the low quake propenstyntries of Spain (.19 million
US$), Germany (10.6 million US$) and the UK (16.Rlion US$) varies for no ap-
parent reason and is not much different from theraxye damage of 3.9 million US$
caused by minor quakes in Japan with its extrenakejypropensity (all values de-
flated to 2009 prices). Where disaster preparedsiessld have its strongest effect is
in the mitigation and prevention of large-scale dgm Japan is plagued by frequent
large quakes. Yet only eleven quakes over the geirf880 to 2009 inflicted damage
in excess of 500 million US$, only five in exce$oe billion US$ and only two in
excess of 30 billion US$. Compare this to Italyhwits much lower quake propensity,
where a rare earthquake of magnitude 6.3 on thiet&iscale struck close to the town
of L’Aquila in Central Italy in April 2009, leavinglmost 300 people dead and caus-
ing an estimated damage of 2.5 billion US$. In castt the worst damage any quake
of magnitude 6.3 (or lower) ever caused in Japas158& million US$.

The second conclusion following from our reasonisghat while govern-
ments in high disaster propensity countries havime@entive to enact policies that can
mitigate large-scale damage for most of the titney &also have a higher likelihood of
experiencing an outlier disaster event with extraaenage. Exactly because high
disaster propensity means that the country is ety hit by strong natural hazards,

the likelihood increases that one of these evextsesls the disaster preparedness ca-
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pacity that otherwise prevents large-scale damidgeicane Katrina caused damage
that is about four times larger than the next ndashaging hurricane during the 1980
to 2011 period and at least one order of magnitadger than average damage for
similarly strong tropical cyclones. The 1995 Koh&ke and the 20116hoku quake
caused about three and ten times higher damagegcatesely, than the third most
damaging quake from 2004 in @su as well as damage far in excess of average
damage for even large Japanese quakes. Largelygeg@diamage from strong disaster

events can thus go hand in hand with extreme dafnageextreme outlier events.

3. Resear ch Design

In this section, we test the hypothesis that foldvem our discussion of the political
economy of natural disaster damage, namely thattdes with higher disaster pro-
pensity experience lower damage for a hazard ofgargn strength and that the effect
of disaster propensity is more pronounced at thpeeupnd of the disaster damage dis-
tribution. This renders ordinary least squares (P8 standard workhorse of econ-
ometric analysis, ill-suited for two reasons. Firstis vulnerable to the existence of
outliers, which as argued above are bound to eXestond, it fails to take into account
that disaster propensity is likely to have strongiects at the top end of the condi-
tional disaster damage distribution than at itsdoend. In contrast, quantile regres-
sion, our chosen estimation technique, is more sbtmthe presence of outliers and
allows us to go “beyond models for the conditionsan” (Koenker and Hallock
2001: 151) by estimating different effects of theplanatory variables at different
points of the conditional disaster damage distrdmytthus providing a fuller picture
of the impact of the explanatory variables thart jhge conditional mean given by

OLS. It is also more suitable for heteroskedastitadCameron and Trivedi 2009:
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205) and inspection of residuals as well as fortesls suggest the presence of het-
eroskedasticity in our data.

We use quantile regression with bootstrapped stdnelaors with 100 sam-
pling repetitions. We report detailed results feefquantiles, namely the .05, .25, .5
(median), .75 and .95 quantiles, but for the eftdallisaster propensity we also pre-
sent graphs, which show its changing effect asaaméinuously moves in .05 inter-
vals from the .05 to the .95 quantile. A quantde gercentile)y is defined such that
proportions of the values of the dependent variddllebelow and (1g) proportions
fall above. Quantile regression works similarly@aS. The estimation formulas are
somewhat complex involving linear programming teghas (Cameron and Trivedi
2009: 206-207), but in essence rather than minngie sum of squared residuals as
with OLS, one minimizes the sum of equally weightdxsolute residuals for the me-
dian quantile and the sum of asymmetrically weighabsolute residuals for all other
guantiles (Koenker and Hallock 2005: 145).

Analysis of disaster damage is hampered by thetlfi@ttnone of the publicly
available disaster datasets provide comprehensioromnic loss estimates. This pa-
per’s analysis benefits from the authors havinghbgranted access to a unique high-
guality dataset compiled by Munich Re (2011), tihggést re-insurance company in
the world. The construction and maintenance ofdaiset is described in detail in
Wirtz et al. (2012) and Kron et al. (2012). Econorass consists predominantly of
damage to buildings and the physical infrastructbrg also of production losses if
economic operations are interrupted as a resuhlieotlisaster. Even price increases as
a consequence of demand surges in the wake of déggsters are included. What is
not included, however, is the loss of life and neassures of the statistical value of life

lost enters the economic damage estimates.
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The data are of course not perfect. For examplallendisasters are underre-
ported especially in the early periods. Likewisatadon disasters in developing coun-
tries appear to be less reliable than data on sverdeveloped countries. Still, with
more than 20,000 entries of country years with réeo disaster damage over the pe-
riod 1980 to 2009, it is by far the most comprehen®xisting global database on
natural disaster damage. The database reachesrfidlok in time, but Munich Re
acknowledges that before 1980 the data becomeasiagly unreliable and incom-
plete.

In order to maintain the database, several anabyetser information about
natural disaster events. Information on econonseds is collected from a variety of
sources including government representatives fretganizations and research facili-
ties, but also based on information of insuran@®@ations and insurance services as
well as on claims made by Munich Re’s customeilifialimeports on losses, which are
usually available in the immediate aftermath oisaster, are often highly unreliable.
To deal with these problems, data are updatedroamtisly as more accurate informa-
tion becomes available, which might be even yeftes the disaster event.

Munich Re groups natural disasters into one ofyp4g. These are avalanche,
blizzard/snow storm, drought, flash flood, cold wHkost, general flood, ground
shaking/earthquake, hail storm, heat wave, liglggthilandslide, local windstorm,
sandstorm, storm surge, subsidence, tropical cgcltampest/severe storm, tornado,
tsunami, rockfall, volcano, winter damage, wildfivanter storm. We study the three
types that cause the largest economic damage:geakbs, tropical cyclones and
general floods. General floods are distinguishechfand do not include flash floods,
storm surges and tsunami flooding (Kron et al. 20844-545). General floods are

typically caused by intense and prolonged raincsfig a large area or by snowmelt.
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Flash floods instead refer to highly localized dsecaused by very heavy but geo-
graphically concentrated rainfall temporarily liedt to at maximum one day. Storm
surges are caused by high winds as part of witems or tropical cyclones, while
most tsunamis are caused by earthquakes.

Natural disasters can thus involve multiple hazardnts. Tropical cyclones
for example may also cause flooding and storm sur§arthquakes may also cause
tsunamis and fires. Where multiple hazard ever@smolved, it is typically impossi-
ble to attribute economic losses to individual mdgaAs a general rule (see Kron et
al. 2012: 538-540 and 544-545 for details), thedssfrom a tsunami triggered by an
earthquake are attributed to the earthquake e®mtfor example, the March 2011
natural disaster in Japan, which is not yet in datiaset, would enter as quake dam-
age. For all disasters involving nhamed tropicallayes, the entire damage is attrib-
uted to the tropical cyclone. For all disastersolming both general floods and
storms, the loss is generally attributed to thenstevents rather than floods, unless
there is information that water damage dominatesadge caused by wind.

Together, earthquakes, tropical cyclones and gerfewads account for
roughly 70 percent of total disaster damage inNMlmich Re dataset, with the rest
scattered over the remaining 21 types. Of the estich sum of disaster damage
worldwide over the period 1980 to 2009 of more tRaf trillion US$ (in prices of
2009), 28.8 percent were caused by general fla22I8, percent by tropical cyclones
and 17.6 percent by earthquakes. The average damm&j, 363 and 224 million
US$, respectively, but damage is highly skewed witst disasters causing relatively
small damage and relatively few disasters caustagively large damage. Of the al-
most 3,900 country years with general flood eve#s caused damage above 100

million US$ and 98 resulted in damage above 1dnllUS$. For the roughly 1,800
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country years with tropical cyclone and the 2,200ntry years with quake events,
the relevant numbers are, respectively, 394 andfdOdyclones and 117 and 40 for
guakes. That there are more general flood thancbpyclone and earthquake events
is entirely consistent with many more countries arahy more regions within coun-

tries exposed to flood hazards than exposed tbapsake or tropical cyclone hazards
(World Bank 2005: 38).

To appropriately test the predictions derived froor theory, we require
measures of hazard strength or magnitude, bothdardo control for strength itself
but also to construct a proxy for the latent disaptopensity variable (see the discus-
sion below). The Munich Re database contains Riddale and top wind speed in-
formation for the vast majority of quake and tr@picyclone events. It holds no com-
prehensive and consistent information on precipiafor floods. However, because
almost without exception the geographical locatbbrthe disaster center is given by
degree latitude and longitude, we combine inforaratirom the NatCatSERVICE
database with precipitation measures taken fromnvgtt and Matsuura (2011). We
acknowledge that the Richter scale is not the oelgvant magnitude variable for
guakes (see Keefer et al. 2011), nor are top woeed and precipitation the only rel-
evant magnitude variables for tropical cyclones #oods. However, these measures
capture the main destructive forces of the respedtazard events and offer the best
available proxy since other relevant magnitude aldeis (such as focal depth for
guakes, minimum air pressure for tropical cycloaeshe melting of snow in moun-
tains feeding into upstream rivers for floods) @itber not reported for the majority of
relevant disaster events or entirely unavailable.

We aggregate the data from the individual disastent to the country-year

level, principally because with a string of eveotsa particular disaster type the des-
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ignation of economic loss to each single evenbmewhat arbitrary and does not of-
fer much additional information. For 56.4 percehbor country-years only one event
of a specific disaster type had occurred. To araiveountry-year values in years with
more than one event of a specific disaster type given country, we use the sum of
values in a year in a country. Our results are sblboaward estimating the same esti-
mation models at the individual disaster event llewsich produces results that are
statistically indistinguishable from our resultdla country year level.

We transform the raw hazard magnitude variableacicordance with what
can be known about their likely non-linear impastezonomic loss. Given the Rich-
ter scale is a base-32 logarithmic scale in termth® amount of energy set free,
which implies that small increases on the scalelrés very large increases in un-
leashed energy (our proxy for hazard strength)traresform the Richter scale magni-
tude according to the formula 32~(Richter magnijusie that the transformed scale
measures the energy actually unleashed by theqgeakb. Wind speed is typically
seen as causing damage as a function of its cubgditunde (Emanuel 2005; Schmidt
et al. 2009). Nordhaus (2010) finds that"apgwer transformation of top wind speed
fits US hurricane damage data best, while Bouwer Botzen (2011) find a best fit
for an 8™-power transformation. Both sets of authors ackedg that their estimated
best fit power transformations are well above wither studies suggest. We thus take
the cube of top wind speeds, i.e. the highest odmam wind speed reached during
the event, as our measure. For precipitation wevkmiono suggestions on how to ac-
count for any potential non-linearity. Monthly dada precipitation on a 0.5 degree
latitude and 0.5 degree longitude spatial resatuisoprovided by Willmott and Ma-
tsuura (2011) and we use the absolute precipitatioing the flood disaster period

from the nearest measurement point to the disastaire, implicitly assuming that
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flood damage is a linear function of precipitatitaieally, one would like to have data
on daily rainfall, but such information is not aale. Instead, we attribute monthly
rainfall equally across days; longer lasting floads attributed more rainfall by sum-
ming up “daily” rainfall over the period of the dister.

Compared to the transformed Richter scale as piarxguake hazard strength,
our hazard magnitude variables for tropical cyctomed floods suffer from larger
measurement error. What matters for tropical cyesoare wind speeds sustained over
some pre-defined short time period rather tharvtoq speeds as such, which might
occur for only a few seconds without being sustifee longer. Unfortunately, the
database only records top wind speeds, which wiltdrrelated with maximum sus-
tained wind speeds, but less than perfectly so.fléods, our precipitation measure
similarly measures true hazard magnitude only wahsiderable, probably even lar-
ger, measurement error. Floods need not be exelyspaused by local rainfall. Ra-
ther, they can be caused by rainfall or the meltihgnow in far-away regions where
the excess run-off water is carried by rivers ddvaasn causing a flood there. Unfor-
tunately, we have no way of capturing for eachhef1662 general flood events in our
sample the relevant area from which the excessrwaiginates. Extending the num-
ber of relevant measurement points away from ttegest one to the disaster center
would not only increase the likelihood that we captpotentially relevant rainfall in
remote places, but also the likelihood that we waptrrelevant rainfall that, for to-
pographical reasons, could never reach the areeataff by the disaster.

We use the same sources of information for constigiour central explana-
tory variabledisaster propensity- a latent variable. To approximate disaster prepe
sity, we sum over the entire period 1980 to 2008ha transformed hazard magni-

tudes separately for each of the three specifiastiés events occurring in a country.
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This variable has two desirable properties: ityisteamatically higher the more fre-
guent a country experiences hazards of a certg® &nd the stronger these hazard
events are. For example, the proxy for earthquakpemsity takes very high values
for Japan and Indonesia given very large quakeiggtis high for Iran, medium for
New Zealand and low for Germany or Spain with thew quake activity. It might
appear problematic to use a value that covers rthieeeestimation period when this
value can only be truly known to individuals andrgmments at the very end of the
period. However, note that these measures proxiatent and next to time-invariant
disaster propensity of countries, such that thaesélom 1980 to 2008, for which we
have data, should be very highly correlated with\thlues from, say, 1900 to 1979 or
from the entire 18 century, for which we do not have data.

As control variables we include a country’s totabgs domestic product
(GDP), with data taken from World Bank (2010). Ather things equal, countries of
larger economic size will have more wealth potdiytidestroyable and are therefore
expected to experience larger losses. Similarlgnemic growth leads to a rise in po-
tentially destroyable wealth and disaster lossey mean grow faster than wealth
(Hallegatte 2011). We have no information on weakhsuch, but GDP can function
as a proxy. While wealth is a stock and GDP iow flwealth and income (GDP) are
highly correlated with each other. From the samgre® comes information on a
country’s income per capita. There are reasons mdiner countries should experi-
ence lower damages. Buildings and infrastructurel teo be better constructed in
richer countries and thus more likely to withstdinel forces of natural hazards than in
poorer countries. Also, disaster prevention andatgmmitigation measures are costly
and both private actors and governments shouldifiedsier to finance such meas-

ures in richer than in poorer countries, where enun opportunity cost imposes a
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more binding constraint. In economic terminologigadter prevention and damage
mitigation should be normal goods, that is, goodth & positive per capita income
elasticity of demand. At the same time, howeverhear countries also accumulate
more capital seemingly protected by such policielsich means they have higher
capital at risk and thus higher economic lossesase of disasters that are not fully
prevented (Hallegatte 2011, 2012) The effect of gagita income is therefore am-
biguous, given our proxy for wealth will necessafail to fully capture the value of
capital at risk. Schumacher and Strobl (2011) repon-linear effects of per capita
income on damage for earthquakes, but not for¢ebmiyclones or floods. We find no
evidence for non-linear effects for any of our thdisaster types and therefore only
include the “linear” term.

The sample size depends on whether an economiotasspecific disaster
type is recorded for a country year in the Munighd@tabase. Country years with no
known damage are excluded from the sample. Thsupmoses that the database cap-
tures all relevant natural hazard events of quakepijcal cyclones and floods — an
assumption that can be questioned on various geowsaine hazard events will not
have caused damage because of successful prevenéiasures, smaller disasters
from the early years of data collection might hageaped Munich Re’s attention, and
disaster events in the developing world are likelyoe underreported. Starting with
the latter two factors, they provide yet anothexsom for out quantile analysis: at
higher quantiles of the conditional damage distrdyuunder-reporting is not a prob-
lem since high damage events will not have escapetdch Re’s attention or are un-
reported. As concerns the problem that some hazamdts will not have caused dam-
age, as argued in the previous section, in themagirity of cases hazard events are

bound to cause some positive damage despite theriggation measures in place.
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This will be particularly true for quakes and trogdi cyclones. For floods, on the other
hand, successful measures, e.g. in the form of damght sometimes prevent any
recorded damage, such that the estimation resurltfoibds might suffer from selec-
tion bias: some country years of damage zero shelth the sample as countries
successfully withstood the hazard event, but ateénuuded in the sample since no
economic loss occurred. The sample selection makess likely that we find empiri-
cal support for our hypothesis under the assumpghahcountries with high propen-
sity are more likely to enact policies that canreht prevent damage for some hazard
events. The relative under-representation of smdikasters in the early periods of
our study does not seem to be severe since inemoried robustness tests we found
neither a linear year variable to be statisticalynificant nor did we find a trend in
year-specific period dummy variables. The relatinelerrepresentation of damage in
the developing world should also not representadlpm for our estimations since,
firstly, we control for total economic size in cduas and, secondly, any sample se-
lection effect is unlikely to be systematically egated with disaster strength and dis-
aster propensity as these are not systematicailyehior lower in developing coun-
tries. The appendix lists the countries includedach of the respective natural disas-
ter event type samples.

We convert the nominal economic loss, GDP and irecper capita data into
constant US$ of 1995 using the US GDP deflatoraflier damage is a highly skewed
variable with the vast majority of events causietatively little damage and only a
small minority of events causing very large damadgereduce skewness, we take the
natural log of disaster damage and, as MendelsantrSaher (2011) have done be-

fore us, estimate log-log models. This allows ipteting the estimated coefficients as
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elasticities. Our analysis starts in 1980, the yfeam which onwards damage esti-

mates were comprehensively collected in the datglzasl ends in 2008.

4. Results

Table 1 presents estimation results on the detammsnof economic damage from
earthquakes. Each column presents estimated diastiat one of the five quantiles
looked at, moving from the .05 quantile on the tefthe .95 quantile on the right. Re-
sults for the lowest quantile at .05 corroborate @ntention that very small damages
tend to be random. With the exception of quake rtade, none of the explanatory
variables is statistically significant and the @@ value is very low. The explana-
tory power of the estimation model increases fghlr quantiles. As can be seen,
disaster damage is higher the stronger the quakmitnde, as one would expect. Its
effect increases at higher quantiles, meaning fitrahigher damages the same in-
crease in unleashed energy results in a largeeaserin damage. The estimated elas-
ticity of a country’s GDP is smaller than unitamhis is consistent with Mendelsohn
and Saher (2011) who similarly find income elasigsi below one in their log-log es-
timation models, using EM-DAT as the source foadisr damage. What this implies
is that quake damage increases less than propalffiomith a country’s GDP as a

proxy for the stock of potentially destroyable whaPer capita income has no consis

tent effect on expected quake damage, being statigt significantly negative for
only one quantile, the .75 one.

Quake propensity, our central explanatory variaislestimated to have a neg-
ative effect on quake damage throughout, albetissitally indistinguishable from
zero at the bottom quantile. The estimated eldigtscincrease for higher quantiles
and become statistically significant. All otherrips equal, the effect of quake pro-

pensity on expected quake damage is almost fowstiarger at the .95 quantile than
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at the .25 quantile. At the .95 quantile, a terceet increase in quake propensity low-
ers expected damage by 2.4 percent, whereas the isanease in quake propensity
lowers expected damage by only .8 percent at theu2ntile. In other words, a very
high quake propensity is much more conducive fdueeng very large damages than
it is for reducing relatively small quake damag&s.F-test rejects the hypothesis that
the estimated coefficients at the five quantilesexjual at p<0.0004, while another F-
test rejects the hypothesis that the coefficienthea.25 quantile (i.e., in the middle of
the lower half of the distribution) and at the dttantile (i.e., in the middle of the up-
per half of the distribution) are equal at p<0.00Bigure la illustrates how the elas-
ticity of quake propensity increases in absolute as one moves in .05 intervals
from the .05 to the .95 quantile.

Table 2 presents estimation results for economioadge from tropical cy-
clones. As with earthquakes, the explanatory paféne regression model increases,
if less strongly, moving from lower to higher quéed, and damage increases with
higher tropical cyclone hazard magnitude. Also Eimio earthquakes, damage in-
creases less than unitarily with a country’s lagenomic size and per capita income
has no consistent effect on expected tropical eycldamages. In fact, at the largest
guantile per capita income even has a statisticgitipificant positive effect. This
could be because of the larger potentially desbigyavealth in richer countries,
which might not be fully captured by a country’saldGDP. As concerns tropical cy-
clone propensity, it has no statistically significaffect at the lower quantiles of the
cyclone damage distribution, but it becomes sigaiit at roughly the median of the
distribution. An F-test rejects the hypothesis that estimated coefficients at the five
guantiles are equal at p<0.0055, while anothersE+tgects the hypothesis that the

coefficients at the specific .25 and .75 quantdes equal at p<0.0098. Figure 2a
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graphically summarizes the changing effect of ayelpropensity on expected dam-
age. After an initial unexpected upward spike at bpuantiles, it continuously falls
(that is, becomes stronger in absolute terms) fabout the .15 quantile onward, but
levels off at about the .7 quantile. At high qukestiof the damage distribution cy-
clone propensity has a stronger effect on expedéadage than at low quantiles, but
at very high quantiles the effect is not strongp@ntat high quantiles. At the .75 quan-
tile, a ten percent increase in tropical cycloneppnsity lowers expected cyclone
damage by about five percent.

Finally, table 3 presents estimation results foodl damage. The estimated
elasticities for flood hazard magnitude increasdéigher quantiles. As with quakes
and tropical cyclones, the estimated elasticitg cbuntry’s GDP is less than unitary,
but somewhat higher than for these two other desagpes. Apparently, flood dam-
age increases almost proportionally with a cousttgtal economic size. Richer coun-
tries experience lower expected damage, an effiattis statistically distinguishable
from zero at the lower quantiles up to the medfeconcerns flood propensity, simi-
lar to the other disaster types there is no sigaifi effect at the lowest quantile
looked at. A negative effect starts at the .25 tjlearthe effect becomes more nega-
tive and statistically significant at the mediaraqtile, decreases in absolute size as
well as becoming statistically indistinguishablenfr zero at the .75 quantile, but in-
creases again in absolute size at the .95 quawfilere it is again statistically distin-
guishable from zero. An F-test rejects the hyposhémt the estimated coefficients at
the five quantiles are equal at p<0.0751. A sinfld@est cannot reject the hypothesis
that the coefficients at the .25 and .75 quantesequal, but rejects the hypothesis
that the coefficients at the .05 and .95 quanaikesequal at p<0.0165. Figure 3a sum-

marizes the effect of flood propensity at continslgwarying .05 intervals of quan-
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tiles of the flood damage distribution. Note thia¢ 90 percent confidence interval
around the estimated elasticities as representédebghaded area is relatively larger
than it was for tropical cyclones propensity, whigre confidence interval in turn was
larger than was the case for quake propensity. iBhie be expected, given, as dis-
cussed above, the likely larger measurement eaothfe cyclone and even larger
measurement error for the flood propensity measamesthe fact that the flood sam-
ple might suffer from sample selection as well. esthis larger measurement error,
which renders it less likely that we find statiatlg significant evidence for our hy-
pothesis, on the whole it remains true that a hidlloed propensity has no effect on
avoiding smaller flood damages, but higher proggnsedicts lower damage at high-
er quantiles of the conditional damage distributidh median flood damage, a ten
percent increase in flood propensity lowers predictamage by an estimated 1.8 per-
cent, while at the .95 quantile, the same floodoprsity increase lowers predicted

damage by 2.3 percent.

5. Robustness tests

We conducted two sets of important robustness.tégtst, our main estimations do
not include country fixed effects since our theorgkes predictions about the cross-
country variation of disaster propensity — a vdagahat does not change in the short
term. However, we tested the robustness of ourenfees toward including income
group fixed effects (following the classificatioh @untries into low-, lower middle-,
upper middle-, high- and high-OECD income groupsAiorld Bank 2010), which
accounts for heterogeneity across countries aqu@rdi their economic development
status, as well as a fixed effect for small islaradion states (as defined in World
Bank 2010), which may be particularly vulnerablel(irg and Uitto 2001). In addi-

tion, we included a measure of insurance penetrgtisaster-relevant insurance pre-
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mia divided by gross domestic product), directlgyided by Munich Re (Barthel and
Neumayer 2012), in order to account for the faat ttountries with higher insurance
penetration are more likely to have disaster danmages comprehensively recorded.
Detailed results are provided in the replicatiotagdéut figures 1b to 3b graphically
show the effect of disaster propensity on eachstksaype. Clearly, the results are
very similar. For earthquakes, quake propensity dasgnificantly negative effect
over a similar range as in the main estimationsepkaround the .6 quantile where
the relative large confidence interval just so udles the zero threshold. For tropical
cyclones, the inferences across the quantileslspevary similar, except for the very
last one, in which the effect becomes marginalitistically insignificant. For flood
damage, the effect of flood propensity is actuallynificantly negative for a wider
range of quantiles in this robustness test comptirdde main estimations. In sum,
the corroborating empirical evidence for our theofyatural disaster damage is fully
robust to accounting for country group heteroggnaiitd for differences in insurance
penetration rates across countries.

Our second robustness test deals with the factalhdita on natural disaster
damage are based on estimates, which carry coabidenncertainty with them. In
the opening paragraph of this article, we refet@dcost estimates for hurricane
Katrina that vary from a low of 82 billion US$ (Kpma and Brown 2005) to a high of
150 billion US$ (Burton and Hicks 2005); similasyide cost estimate intervals will
almost inevitably result for the vast majority adher disaster events. We therefore
conducted a Monte Carlo study, similar to what Riémand Neumayer (2009) do for
mortality from famines, which aims at exploring te&#ect of measurement error.
Specifically, we re-estimated all models 100 tinlaseach re-estimation, we injected

a random measurement error of up to £30 percerdlloobservations. By reporting
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the full range of coefficients from the Monte Casludy (minimum to maximum) in
table 4 rather than merely the mean, we reporfuleange of vulnerability of our
estimates to measurement error, not just averagienability. Measurement error
will only be random on average, but it is corretat@th the covariates in almost all
individual iterations. By looking at the full rangé the Monte Carlo estimates, we
thus also take some non-random measurement etooacoount.

We focus on estimates for disaster propensity,camtral explanatory vari-
able. As one would expect, the minimum of the Mo@&lo estimates suggest a
stronger effect of disaster propensity, while theximum suggests a weaker effect
than the mean of the Monte Carlo estimates, widhrn is close to our main estima-
tion results without induced measurement error.drigmtly, however, results are ful-
ly robust for all disaster types in the sense thatsign of the maximum of the Monte
Carlo estimates is always consistent with the sigthhe mean estimate, which in turn
is consistent with the results from the main esta®avithout measurement error in-
jected into the observations. In other words, whieneur main estimations suggest a
negative effect of disaster propensity this is canitradicted by either random (mean
estimate) or partially non-random measurement gm@nimum to maximum) ac-

counted for in the Monte Carlo analysis.

6. Conclusion

Economic damage caused by natural hazards can tigated, though typically not

entirely prevented. In this article, we explaineldywndividuals and governments of-
ten fail to do so. Given individuals face colleetiaction problems, myopic behavior
and asymmetric information, successful disastevearon and damage mitigation in
important respects depend on government policeggjlations and interventions. We

have argued that the incentives to enact both fgrigad public disaster prevention
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and damage mitigation measures strongly depencherptopensity with which a

country experiences frequent and strong naturahrdaz Where propensity is high,
the incentives are high and vice versa where pipeis low. Natural disasters thus
cause more damage when a relatively strong odtéierard hits an area where histori-
cally hazard events are infrequent or tend to dewfstrength.

We have also argued that the effect of disastgrgmsity on predicted damage
is stronger toward the top end of the conditioraahege distribution than toward the
bottom end since smaller losses are often unpralbknand tend to be random. We
found evidence for this hypothesis in our quarntgressions of damage from earth-
guakes, tropical cyclones and floods, which togethake up nearly three quarters of
global economic damage from natural disasters theeperiod 1980 to 2008.

Our analysis does not answer the question whelleefotver prevention and
mitigation efforts undertaken in countries with Emwdisaster propensity is fully ra-
tional given the lower frequency or intensity ofpexted disasters or is sub-optimal.
To answer this question one would have to comgeeobsts of prevention and miti-
gation efforts to the expected disaster damagescasiich is beyond the scope of this
article since we have no information on the co§tgrevention and mitigation. For the
same reason, it is unclear whether countries wgh disaster propensity invest suffi-
ciently in prevention and mitigation measures ispanse to the high propensity they
face or whether even their higher efforts are bellow the social optimum. Our the-
ory predicts that prevention and mitigation areljkto be sub-optimal given market
and government failures, but we cannot empiricadlgnonstrate this.

One thing we do know is that even where disastepgnsity is high, preven-
tion and mitigation can fail and, for the odd sgaoutlier hazard event, sometimes

spectacularly so. For example, dams will be bbili, built too low to withstand the
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forces of extreme events. Ironically, the existeoica dyke will encourage settlement
and investment in high-risk areas so that whendtra breaks fatalities and damage
massively increase relative to the counterfactitahon of no dyke. As a result, ex-
pected damage for hazard events of “normal” magdeitis much lower, but damage
will be larger if an exceptionally strong outlieazard event hits that nullifies the pre-
ventive measures. Both hurricane Katrina and thkoKu earthquake demonstrate
that extreme economic losses and fatalities arsilplesdespite considerable public
prevention and mitigation efforts. In New Orleati® levees were just “not built for
worst case events” (Handwerk 2005) and were inatetyumaintained. In Japan, the
vast majority of people were not killed and theagest damage was not caused by the
earthquake itself, for which Japan is well prepatag by the ensuing tsunami, for
which it is not. It would have been possible butrexely expensive to protect Ja-
pan’s coastline against waves of such height. taréuresearch, we intend to explore
further the costs and benefits of disaster pregardnd mitigation measures in order
to provide better insights into what an optimalipplesponse to a given disaster pro-

pensity would look like.
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Table 1. Economic loss from earthquakes.

Quantile: .05 .25 .5 .75 .95

In quake hazard magnitude 0.0818**  0.302***  0.452*0.640*** (Q.702***
(0.0380) (0.0341)  (0.0441) (0.0416) (0.0801)

In quake propensity -0.00755 -0.0725***0.108*** -0.207*** -0.242**
(0.0197) (0.0259)  (0.0343) (0.0461) (0.103)

In per capita income of country 0.0387 -0.0332 60.1 -0.404** 0.0204

(0.0542) (0.0859) (0.118) (0.176) (0.236)
In Gross Domestic Product of country 0.0722 0.369***  0.502*** 0.753*** 0.633***
(0.0540) (0.0528) (0.0831) (0.0875) (0.130)

Constant -8.000***  -15.80*** -18.69*** -22.07*** -19.60***
(1.545) (1.132) (1.497) (2.577) (3.720)
Observations 847 847 847 847 847
Countries 117 117 117 117 117
R-squared 0.02 0.12 0.19 0.25 0.24

Note: Dependent variable is the natural log of stesaloss. Bootstrapped standard
errors in parentheses, based on 100 iterations.

** gignificant at .05 level *** at .01 level.
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Table 2. Economic loss from tropical cyclones.

Quantile: .05 .25 .5 .75 .95
In tropical cyclone hazard magnitude  1.459** 1420 1.607** 1.468** (.917***
(0.373) (0.217) (0.159) (0.187) (0.172)

In tropical cyclone propensity 0.242 0.240 -0.420%0.524**  -0.370*
(0.206) (0.244) (0.233) (0.166) (0.199)
In per capita income of country -0.301 -0.0938 73%2 0.0728 0.202**

(0.200) (0.170) (0.111) (0.114) (0.102)
In Gross Domestic Product of country0.278**  0.457***  0.740*** 0.489***  (0.345***
(0.129) (0.131) (0.0822) (0.0727) (0.0772)

Constant -31.72*%* -33.87*** -28.67*** -19.61*** -9.898***
(5.950) (2.889) (2.749) (2.312) (2.637)
Observations 428 428 428 428 428
Countries 62 62 62 62 62
R-squared 0.18 0.22 0.27 0.22 0.27

Note: Dependent variable is the natural log of stesaloss. Bootstrapped standard
errors in parentheses, based on 100 iterations.

* significant at .1 level ** at .05 level *** ai01 level.
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Table 3. Economic loss from general floods.

Quantile: .05 .25 5 .75 .95

In flood hazard magnitude 0.272**  0.540** 0.733** 0.751** (0.714***
(0.0609) (0.0698) (0.0475) (0.0651) (0.0813)

In flood propensity 0.0672 -0.122 -0.177* -0.0870 0.233*
(0.0802) (0.105) (0.101) (0.117) (0.0947)

In per capita income of country -0.334**  -0.403*** -0.205** -0.107 -0.0997

(0.0973) (0.104) (0.101) (0.0976) (0.127)
In Gross Domestic Product of country).537***  0.812***  0.892*** 0.812***  0.709***
(0.0605) (0.0812) (0.0759) (0.0761)  (0.0988)

Constant -15.66%**  -19.18*** -20.92*** -18.41*** -12.22%**
(1.076) (1.272) (1.108) (1.218) (2.331)
Observations 1,662 1,662 1,662 1,662 1,662
Countries 161 161 161 161 161
R-squared 0.07 0.13 0.20 0.23 0.22

Note: Dependent variable is the natural log of stesaloss. Bootstrapped standard
errors in parentheses, based on 100 iterations.

* significant at .1 level ** at .05 level *** ai01 level.
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Table 4. Summary Statistics of Monte Carlo Analysisting the Robustness of Re-

sults toward Measurement Error.

Mean Std. Dev. Min Max
Quake propensity
at .05 quantile -0.0135 0.0096 -0.0364 0.0113
at .25 quantile -0.2349 0.0285 -0.3442 -0.1827
at .5 quantile -0.1038 0.0091 -0.1267 -0.0870
at .75 quantile -0.2090 0.0115 -0.2364 -0.1795
at .95 quantile -0.2368 0.0278 -0.3109 -0.1806
Tropical cyclone propensity
at .05 quantile 0.2424 0.0501 0.1252 0.3580
at .25 quantile 0.2455 0.0486 0.1473 0.3528
at .5 quantile -0.4347 0.0425 -0.5453 -0.3388
at .75 quantile -0.5513 0.0455 -0.6488 -0.4297
at .95 quantile -0.3377 0.0751 -0.4842 -0.1602
Flood propensity
at .05 quantile 0.0633 0.0335 -0.0063 0.1422
at .25 quantile -0.1065 0.0215 -0.1566 -0.0610
at .5 quantile -0.1664 0.0218 -0.2241 -0.1234
at .75 quantile -0.0765 0.0220 -0.1182 -0.0036
at .95 quantile -0.2420 0.0297 -0.3002 -0.1572

Note: Random measurement error of up to £30 pelioggdted into all observations.

Based on 100 iterations. N = 847 for earthquakes 448 for tropical cyclones and N

= 1,662 for general floods.
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Figure 1. The effect of quake propensity for vagyttamage quantiles.

a) Main estimation
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Note: the solid line shows the estimated coeffigiarhile the grey area represents a

90 percent confidence interval around it.
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Figure 2. The effect of tropical cyclone propensiyvarying damage quantiles.

a) Main estimation
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Figure 3. The effect of flood propensity for varyidamage quantiles.

a) Main estimation
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Appendix. Countries included in the samples.

Earthquakes:

Afghanistan, Albania, Algeria, Argentina, Armenidystralia, Austria, Azerbaijan,
Bangladesh, Barbados, Belgium, Bhutan, Bolivia, iB®sand Herzegovina, Brazil,
Bulgaria, Burundi, Canada, Chile, China, Colomkiango (DRC), Costa Rica, Croa-
tia, Cuba, Cyprus, Czech Republic, Djibouti, Doro@iDominican Republic, Ecua-
dor, Egypt, El Salvador, Ethiopia, Fiji, France,dB@ga, Germany, Ghana, Greece,
Guatemala, Guyana, Haiti, Honduras, Hungary, leklémdia, Indonesia, Iran, Israel,
Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenyayy® Republic, Lao PDR, Leba-
non, Macedonia, Madagascar, Malawi, Malaysia, Ma&slj Mexico, Moldova, Mon-
golia, Morocco, Mozambique, Nepal, Netherlands, Nésaland, Nicaragua, Paki-
stan, Panama, Papua New Guinea, Paraguay, Petippileis, Poland, Portugal,
Puerto Rico, Romania, Russian Federation, Rwandao8, Saudi Arabia, Sey-
chelles, Slovenia, Solomon Islands, Somalia, Séditita, Spain, Sri Lanka, St. Lu-
cia, St. Vincent and the Grenadines, Sudan, Sweslerizerland, Tajikistan, Tanza-
nia, Thailand, Tonga, Trinidad and Tobago, Tuni$iakey, Turkmenistan, Uganda,
United Kingdom, United States, Uzbekistan, Vanuatenezuela, Vietnam, Yemen,
Zambia, Zimbabwe.

Floods:

Afghanistan, Albania, Algeria, Angola, Argentinasndenia, Australia, Austria, Azer-

baijan, Bahamas, Bahrain, Bangladesh, Belarus,ielgBelize, Benin, Bhutan, Bo-

livia, Bosnia and Herzegovina, Botswana, Brazil|gaua, Burkina Faso, Burundi,

Cambodia, Cameroon, Canada, Central African Repulilhad, Chile, China, Co-
lombia, Congo (DRC), Congo (Rep.), Costa Rica, Gbieire, Croatia, Cuba, Cy-

prus, Czech Republic, Denmark, Djibouti, DominiPmminican Republic, Ecuador,
Egypt, El Salvador, Eritrea, Estonia, Ethiopiaj,Fynland, France, Gabon, Gambia,
The, Georgia, Germany, Ghana, Greece, Greenlandie@®ala, Guinea, Guinea-
Bissau, Guyana, Haiti, Honduras, Hungary, Iceldndia, Indonesia, Iran, Ireland,
Israel, Italy, Jamaica, Japan, Jordan, Kazakh#&tanya, Kuwait, Kyrgyz Republic,

Lao PDR, Latvia, Lebanon, Lesotho, Liberia, Liecistein, Luxembourg, Mace-
donia, Madagascar, Malawi, Malaysia, Mali, MaurigarMexico, Moldova, Mongo-

lia, Morocco, Mozambique, Namibia, Nepal, NethedsenNew Zealand, Nicaragua,
Niger, Nigeria, Norway, Oman, Pakistan, Panama,uRdgew Guinea, Paraguay,
Peru, Philippines, Poland, Portugal, Puerto RicomBnia, Russian Federation,
Rwanda, Saudi Arabia, Senegal, Sierra Leone, Sargaflovak Republic, Slovenia,
Somalia, South Africa, South Korea, Spain, Sri lagn&t. Lucia, St. Vincent and the
Grenadines, Sudan, Suriname, Swaziland, Swedemze$iand, Syrian Arab Repub-
lic, Tajikistan, Tanzania, Thailand, Timor-Lest&gDb, Trinidad and Tobago, Tunisia,
Turkey, Turkmenistan, Uganda, Ukraine, United AEmirates, United Kingdom,

United States, Uruguay, Uzbekistan, Vanuatu, Vealaz/ietnam, Yemen, Zambia,
Zimbabwe.

Tropical Cyclones:

Antigua and Barbuda, Australia, Bahamas, Banglad@siibados, Belize, Brazil,
Cambodia, Canada, China, Colombia, Costa Rica, Cbbminica, Dominican Re-
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public, El Salvador, Fiji, French Polynesia, Grema@uatemala, Haiti, Honduras, In-
dia, Indonesia, Iran, Jamaica, Japan, Madagascaagy®sla, Mauritius, Mexico, Mi-
cronesia, Morocco, Mozambique, New Caledonia, Ne&l&hd, Nicaragua, Oman,
Pakistan, Papua New Guinea, Philippines, Portiyadrto Rico, Russian Federation,
Samoa, Seychelles, Solomon Islands, South AfricaitfSKorea, Spain, Sri Lanka,
St. Kitts and Nevis, St. Lucia, St. Vincent and Geenadines, Swaziland, Thailand,
Tonga, Trinidad and Tobago, United States, Vanuatngzuela, Vietnam.
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